Antibiotic resistance genes in municipal wastewater treatment systems and receiving waters in Arctic Canada. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
734401.0000Antibiotic resistance genes in municipal wastewater treatment systems and receiving waters in Arctic Canada. Domestic wastewater discharges may adversely impact arctic ecosystems and local indigenous people, who rely on being able to hunt and harvest food from their local environment. Therefore, there is a need to develop efficient wastewater treatment plants (WWTPs), which can be operated in remote communities under extreme climatic conditions. WWTPs have been identified as reservoirs of antibiotic resistance genes (ARGs). The objective of this work was to quantify the presence of nine different ARG markers (int1, sul1, sul2, tet(O), erm(B), mecA, bla(CTX-M), bla(TEM), and qnr(S)) in two passive systems (waste stabilization ponds [WSPs]) and one mechanical filtration plant operating in two smaller and one large community, respectively, in Nunavut, Canada. Measurement of water quality parameters (carbonaceous oxygen demand, ammonia, total suspended solids, Escherichia coli and total coliforms) showed that the WWTPs provided only primary treatment. Low levels of the ARGs (2logcopies/mL) were observed in the effluent, demonstrating that bacteria residing in three northern WWTPs harbour ARGs conferring resistance to multiple clinically-relevant classes of antibiotics. Our results indicate that long-term storage in WSPs benefitted removal of organic material and some ARGs. However, one WSP system showed evidence of the enrichment of sul1, sul2, mecA, tet(O) and qnr(S). Further research is needed to fully understand if these ARG releases pose a risk to human health, especially in the context of traditional hunting and fishing activities.201728482456
728410.9998Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. Antibiotic resistance genes (ARGs) are emerging environmental contaminants, known to be continuously discharged into the aquatic environment via human and animal waste. Freshwater aquatic environments represent potential reservoirs for ARG and potentially allow sewage-derived ARG to persist and spread in the environment. This may create increased opportunities for an eventual contact with, and gene transfer to, human and animal pathogens via the food chain or drinking water. However, assessment of this risk requires a better understanding of the level and variability of the natural resistance background and the extent of the human impact. We have analyzed water samples from 21 Swiss lakes, taken at sampling points that were not under the direct influence of local contamination sources and analyzed the relative abundance of ARG using quantitative real-time PCR. Copy numbers of genes mediating resistance to three different broad-spectrum antibiotic classes (sulfonamides: sul1, sul2, tetracyclines: tet(B), tet(M), tet(W) and fluoroquinolones: qnrA) were normalized to copy numbers of bacterial 16S rRNA genes. We used multiple linear regression to assess if ARG abundance is related to human activities in the catchment, microbial community composition and the eutrophication status of the lakes. Sul genes were detected in all sampled lakes, whereas only four lakes contained quantifiable numbers of tet genes, and qnrA remained below detection in all lakes. Our data indicate higher abundance of sul1 in lakes with increasing number and capacity of wastewater treatment plants (WWTPs) in the catchment. sul2 abundance was rather related to long water residence times and eutrophication status. Our study demonstrates the potential of freshwater lakes to preserve antibiotic resistance genes, and provides a reference for ARG abundance from lake systems with low human impact as a baseline for assessing ARG contamination in lake water.201525913323
728320.9998Comparative metagenomics reveals a diverse range of antimicrobial resistance genes in effluents entering a river catchment. The aquatic environment has been implicated as a reservoir for antimicrobial resistance genes (ARGs). In order to identify sources that are contributing to these gene reservoirs, it is crucial to assess effluents that are entering the aquatic environment. Here we describe a metagenomic assessment for two types of effluent entering a river catchment. We investigated the diversity and abundance of resistance genes, mobile genetic elements (MGEs) and pathogenic bacteria. Findings were normalised to a background sample of river source water. Our results show that effluent contributed an array of genes to the river catchment, the most abundant being tetracycline resistance genes tetC and tetW from farm effluents and the sulfonamide resistance gene sul2 from wastewater treatment plant (WWTP) effluents. In nine separate samples taken across 3 years, we found 53 different genes conferring resistance to seven classes of antimicrobial. Compared to the background sample taken up river from effluent entry, the average abundance of genes was three times greater in the farm effluent and two times greater in the WWTP effluent. We conclude that effluents disperse ARGs, MGEs and pathogenic bacteria within a river catchment, thereby contributing to environmental reservoirs of ARGs.201627054725
730730.9998Prevalence of antibiotic resistance in drinking water treatment and distribution systems. The occurrence and spread of antibiotic-resistant bacteria (ARB) are pressing public health problems worldwide, and aquatic ecosystems are a recognized reservoir for ARB. We used culture-dependent methods and quantitative molecular techniques to detect and quantify ARB and antibiotic resistance genes (ARGs) in source waters, drinking water treatment plants, and tap water from several cities in Michigan and Ohio. We found ARGs and heterotrophic ARB in all finished water and tap water tested, although the amounts were small. The quantities of most ARGs were greater in tap water than in finished water and source water. In general, the levels of bacteria were higher in source water than in tap water, and the levels of ARB were higher in tap water than in finished water, indicating that there was regrowth of bacteria in drinking water distribution systems. Elevated resistance to some antibiotics was observed during water treatment and in tap water. Water treatment might increase the antibiotic resistance of surviving bacteria, and water distribution systems may serve as an important reservoir for the spread of antibiotic resistance to opportunistic pathogens.200919581476
730840.9998Urban wastewater effluent increases antibiotic resistance gene concentrations in a receiving northern European river. Antibiotic-resistant bacteria are an emerging global problem that threatens to undermine important advances in modern medicine. The environment is likely to play an important role in the dissemination of antibiotic-resistance genes (ARGs) among both environmental and pathogenic bacteria. Wastewater treatment plants (WWTPs) accumulate both chemical and biological waste from the surrounding urban milieu and have therefore been viewed as potential hotspots for dissemination and development of antibiotic resistance. To assess the effect of wastewater effluent on a river that flows through a Swedish city, sediment and water samples were collected from Stångån River, both upstream and downstream of an adjacent WWTP over 3 mo. Seven ARGs and the integrase gene on class 1 integrons were quantified in the collected sediment using real-time polymerase chain reaction (PCR). Liquid chromatography-mass spectrometry was used to assess the abundance of 10 different antibiotics in the water phase of the samples. The results showed an increase in ARGs and integrons downstream of the WWTP. The measured concentrations of antibiotics were low in the water samples from the Stångån River, suggesting that selection for ARGs did not occur in the surface water. Instead, the downstream increase in ARGs is likely to be attributable to accumulation of genes present in the treated effluent discharged from the WWTP.201525331227
730950.9998Identification of Selected Antibiotic Resistance Genes in Two Different Wastewater Treatment Plant Systems in Poland: A Preliminary Study. Antibiotic resistance is a growing problem worldwide. The emergence and rapid spread of antibiotic resistance determinants have led to an increasing concern about the potential environmental and public health endangering. Wastewater treatment plants (WWTPs) play an important role in this phenomenon since antibacterial drugs introduced into wastewater can exert a selection pressure on antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Therefore, WWTPs are perceived as the main sources of antibiotics, ARB and ARG spread in various environmental components. Furthermore, technological processes used in WWTPs and its exploitation conditions may influence the effectiveness of antibiotic resistance determinants' elimination. The main aim of the present study was to compare the occurrence of selected tetracycline and sulfonamide resistance genes in raw influent and final effluent samples from two WWTPs different in terms of size and applied biological wastewater treatment processes (conventional activated sludge (AS)-based and combining a conventional AS-based method with constructed wetlands (CWs)). All 13 selected ARGs were detected in raw influent and final effluent samples from both WWTPs. Significant ARG enrichment, especially for tet(B, K, L, O) and sulIII genes, was observed in conventional WWTP. The obtained data did not show a clear trend in seasonal fluctuations in the abundance of selected resistance genes in wastewaters.202032575673
731460.9998Microbial diversity and antibiotic resistance in a final effluent-receiving lake. Wastewater treatment plants have been recognised as hotspots for antibiotic resistance genes and antibiotic-resistant bacteria which enter the environment. However, the persistence of these genes and bacteria in receiving ecosystems remains poorly understood. The aim of the study was to evaluate the effect of final effluent release on microbial diversity and the antibiotic resistance gene pool in a final effluent-receiving lake. The numbers of total culturable heterotrophs and unculturable bacteria (represented as the 16S rRNA gene copy number) were significantly reduced during the treatment process. The number of ampicillin-resistant bacteria was higher in the sediment than in water samples, suggesting accumulation of ampicillin-resistant bacteria in freshwater sediments. Using an exogenous method, we captured 56 resistance plasmids which were further characterised. Next-generation sequencing revealed that the microbial phyla represented in the studied metagenomes were typical of corresponding environments. The highest relative abundance of antibiotic resistance genes was observed in the final effluent, suggesting that a considerable number of genes were released from the wastewater treatment plant. However, the lowest relative abundance and lowest diversity of the genes in the lake water, compared to the other studied metagenomes, suggest a negligible effect of treated sewage release on antibiotic resistance within water microbial communities of the lake. Furthermore, uncontrolled sewage dumping into this reservoir in the past as well as lower quality of the water upstream of the lake indicated that the wastewater treatment plant protected the studied ecosystem.201930373071
734670.9998Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into lake geneva, Switzerland. At present, very little is known about the fate and persistence of multiresistant bacteria (MRB) and their resistance genes in natural aquatic environments. Treated, but partly also untreated sewage of the city of Lausanne, Switzerland is discharged into Vidy Bay (Lake Geneva) resulting in high levels of contamination in this part of the lake. In the present work we have studied the prevalence of MRB and resistance genes in the wastewater stream of Lausanne. Samples from hospital and municipal raw sewage, treated effluent from Lausanne's wastewater treatment plant (WTP) as well as lake water and sediment samples obtained close to the WTP outlet pipe and a remote site close to a drinking water pump were evaluated for the prevalence of MRB. Selected isolates were identified (16S rRNA gene fragment sequencing) and characterized with regards to further resistances, resistance genes, and plasmids. Mostly, studies investigating this issue have relied on cultivation-based approaches. However, the limitations of these tools are well known, in particular for environmental microbial communities, and cultivation-independent molecular tools should be applied in parallel in order to take non-culturable organisms into account. Here we directly quantified the sulfonamide resistance genes sul1 and sul2 from environmental DNA extracts using TaqMan real-time quantitative PCR. Hospital sewage contained the highest load of MRB and antibiotic resistance genes (ARGs). Wastewater treatment reduced the total bacterial load up to 78% but evidence for selection of extremely multiresistant strains and accumulation of resistance genes was observed. Our data clearly indicated pollution of sediments with ARGs in the vicinity of the WTP outlet. The potential of lakes as reservoirs of MRB and potential risks are discussed.201222461783
319780.9998Antibiotic resistance and pathogen spreading in a wastewater treatment plant designed for wastewater reuse. Climate change significantly contributes to water scarcity in various regions worldwide. While wastewater reuse is a crucial strategy for mitigating water scarcity, it also carries potential risks for human health due to the presence of pathogenic and antibiotic resistant bacteria (ARB). Antibiotic resistance represents a Public Health concern and, according to the global action plan on antimicrobial resistance, wastewater role in selecting and spreading ARB must be monitored. Our aim was to assess the occurrence of ARB, antibiotic resistance genes (ARGs), and potential pathogenic bacteria throughout a wastewater treatment plant (WWTP) designed for water reuse. Furthermore, we aimed to evaluate potential association between ARB and ARGs with antibiotics and heavy metals. The results obtained revealed the presence of ARB, ARGs and pathogenic bacteria at every stage of the WWTP. Notably, the most prevalent ARB and ARG were sulfamethoxazole-resistant bacteria (up to 7.20 log CFU mL(-1)) and sulII gene (up to 5.91 log gene copies mL(-1)), respectively. The dominant pathogenic bacteria included Arcobacter, Flavobacterium and Aeromonas. Although the abundance of these elements significantly decreased during treatment (influent vs. effluent, p < 0.05), they were still present in the effluent designated for reuse. Additionally, significant correlations were observed between heavy metal concentrations (copper, nickel and selenium) and antibiotic resistance elements (ampicillin-resistant bacteria, tetracycline-resistant bacteria, ARB total abundance and sulII) (p < 0.05). These results underscore the importance of monitoring the role of WWTP in spreading antibiotic resistance, in line with the One Health approach. Additionally, our findings suggest the need of interventions to reduce human health risks associated with the reuse of wastewater for agricultural purposes.202439357555
729190.9998Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe. Wastewater treatment plants (WWTP) receive the effluents from various sources (communities, industrial, and hospital effluents) and are recognized as reservoir for antibiotic-resistance genes (ARGs) that are associated with clinical pathogens. The aquatic environment is considered a hot-spot for horizontal gene transfer, and lake sediments offer the opportunity for reconstructing the pollution history and evaluating the impacts. In this context, variation with depth and time of the total bacterial load, the abundance of faecal indicator bacteria (FIB; E. coli and Enterococcus spp. (ENT)), Pseudomonas spp., and ARGs (blaTEM, blaSHV, blaCTX-M, blaNDM, and aadA) were quantified in sediment profiles of different parts of Lake Geneva using quantitative PCR. The abundance of bacterial marker genes was identified in sediments contaminated by WWTP following eutrophication of the lake. Additionally, ARGs, including the extended-spectrum ß-lactam- and aminoglycoside-resistance genes, were identified in the surface sediments. The ARG and FIB abundance strongly correlated (r ≥ 0.403, p < 0.05, n = 34) with organic matter and metal concentrations in the sediments, indicating a common and contemporary source of contamination. The contamination of sediments by untreated or partially treated effluent water can affect the quality of ecosystem. Therefore, the reduction of contaminants from the source is recommended for further improvement of water quality.201525933054
7290100.9998Study of indiscriminate distribution of restrained antimicrobial resistome of different environmental niches. Prophylactic usage and high persistent nature of several antibiotics have put selective pressure on the native microbial population that led to the emergence, propagation, and persistence of antibiotic resistance in nature. The surveillance of antibiotic resistome pattern and identification of points of intervention throughout the different environmental habitats will help to break the flow of antibiotic resistance from environmental bacteria to human pathogens. The present study compares the occurrence, diversity, and abundance of ARGs in industrial sludge, wetland sludge, and sediment sample contaminated with pharmaceutical discharge. Metagenomes were mined for the presence of ARGs against the ResFinder 3.2 database using BLASTn program. Pharmaceutical sample (2.52%) showed high degree of ARG abundance and richness as compared with ETP sludge (2.28%) and wetland sludge samples (1.29%). The modern resistome pattern represented by critically important resistance genes against tetracycline (tetA, tetC, tetW, tetT, and tetS/M) and quinolone (qnrS, qnrVC, and qnrD) was identified in pharmaceutical sediment sample. However, effluent treatment plant (ETP) sludge sample showed abundance of multidrug efflux pumps indicating the presence of primitive resistome profile. In conclusion, the indiscriminate distribution pattern of antibiotic resistance genes in three selected environmental sites suggests enrichment and distribution of environmental niche-driven resistance. The study also suggests effluent discharge site from pharmaceutical industries and ETPs as pivotal points of intervention for the mitigation of antibiotic resistance.202133099734
7088110.9997Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environment. Wastewater treatment plants (WWTPs) are significant source of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which can spread further in the environment by reaching rivers together with effluents discharged from WWTPs. In this study untreated and treated wastewater (UWW, TWW), upstream and downstream river water (URW, DRW) were collected from 4 WWTPs, in the winter and autumn seasons. The occurrence of ARB resistant to beta-lactams and tetracyclines as well as the presence of antibiotics from these classes were analysed in water and wastewater samples. Additionally, the amounts of 12 ARGs, 2 genes of mobile genetic elements (MGEs), gene uidA identifying E. coli and 16S rRNA were also determined. Resistance to beta-lactams prevailed among ARB in water and wastewater samples (constituting 82-88% of total counts of bacteria). The dominant genes in water and wastewater samples were bla(TEM), tetA, sul1. The gene bla(OXA) demonstrated high variability of its concentration in samples collected in both seasons. Despite the high per cent reduction of ARB and ARGs concentration observed during the wastewater treatment processes, their large quantities are still transmitted into the environment. The research focuses on WWTPs' role in the dissemination of ARGs and MGEs in the aquatic environment.202031561123
7331120.9997Metagenomics analysis of probable transmission of determinants of antibiotic resistance from wastewater to the environment - A case study. During mechanical-biological treatment, wastewater droplets reach the air with bioaerosols and pose a health threat to wastewater treatment plant (WWTP) employees and nearby residents. Microbiological pollutants and antimicrobial resistance determinants are discharged to water bodies with treated wastewater (TWW), which poses a potential global epidemiological risk. In the present study, the taxonomic composition of microorganisms was analyzed, and the resistome profile and mobility of genes were determined by metagenomic next-generation sequencing in samples of untreated wastewater (UWW), wastewater collected from an activated sludge (AS) bioreactor, TWW, river water collected upstream and downstream from the wastewater discharge point, and in upper respiratory tract swabs collected from WWTP employees. Wastewater and the emitted bioaerosols near WWTP's facilities presumably contributed to the transmission of microorganisms, in particular bacteria of the phylum Actinobacteria and the associated antibiotic resistance genes (ARGs) (including ermB, ant(2″)-I, tetM, penA and cfxA2) to the upper respiratory tract of WWTP employees. The discharged wastewater increased the taxonomic diversity of microorganisms and the concentrations of various ARGs (including bacA, emrE, sul1, sul2 and tetQ) in river water. This study fills in the knowledge gap on the health risks faced by WWTP employees. The study has shown that microbiological pollutants and antimicrobial resistance determinants are also in huge quantities discharged to rivers with TWW, posing a potential global epidemiological threat.202235259375
7311130.9997Sludge as a potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions. The emergence and prevalence of antibiotic resistance genes (ARGs) in the environment is a serious global health concern. ARGs found in bacteria can become mobilized in bacteriophage particles in the environment. Sludge derived from secondary treatment in wastewater treatment plants (WWTPs) constitutes a concentrated pool of bacteria and phages that are removed during the treatment process. This study evaluates the prevalence of ARGs in the bacterial and phage fractions of anaerobic digested sludge; five ARGs (blaTEM, blaCTX-M, qnrA, qnrS, and sul1) are quantified by qPCR. Comparison between the wastewater and sludge revealed a shift in the prevalence of ARGs (blaTEM and sul1 became more prevalent in sludge), suggesting there is a change in the bacterial and phage populations from wastewater to those selected during the secondary treatment and the later anaerobic mesophilic digestion of the sludge. ARGs densities were higher in the bacterial than in the phage fraction, with high densities in both fractions; particularly for blaTEM and sul1 (5 and 8 log10 gene copies (GC)/g, respectively, in bacterial DNA; 5.5 and 4.4 log10 GC/g, respectively, in phage DNA). These results question the potential agricultural uses of treated sludge, as it could contribute to the spread of ARGs in the environment and have an impact on the bacterial communities of the receiving ecosystem.201424873655
7282140.9997Sewers as potential reservoirs of antibiotic resistance. Wastewater transport along sewers favors the colonization of inner pipe surfaces by wastewater-derived microorganisms that grow forming biofilms. These biofilms are composed of rich and diverse microbial communities that are continuously exposed to antibiotic residues and antibiotic resistant bacteria (ARB) from urban wastewater. Sewer biofilms thus appear as an optimal habitat for the dispersal and accumulation of antibiotic resistance genes (ARGs). In this study, the concentration of antibiotics, integron (intI1) and antibiotic resistance genes (qnrS, sul1, sul2, bla(TEM), bla(KPC), ermB, tetM and tetW), and potential bacterial pathogens were analyzed in wastewater and biofilm samples collected at the inlet and outlet sections of a pressurized sewer pipe. The most abundant ARGs detected in both wastewater and biofilm samples were sul1 and sul2 with roughly 1 resistance gene for each 10 copies of 16s RNA gene. Significant differences in the relative abundance of gene intI1 and genes conferring resistance to fluoroquinolones (qnrS), sulfonamides (sul1 and sul2) and betalactams (bla(TEM)) were only measured between inlet and outlet biofilm samples. Composition of bacterial communities also showed spatial differences in biofilms and a higher prevalence of Operational Taxonomic Units (OTUs) with high sequence identity (>98%) to well-known human pathogens was observed in biofilms collected at the inlet pipe section. Our study highlights the role of sewer biofilms as source and sink of ARB and ARGs and supports the idea that community composition rather than antibiotic concentration is the main factor driving the diversity of the sewage resistome.201728709370
7115150.9997Antibiotics, antibiotic resistance and associated risk in natural springs from an agroecosystem environment. This study investigates the occurrence, transport, and risks associated to antibiotic residues, antibiotic resistance genes (ARGs) and antibiotic resistant Escherichia coli (AR-E. coli) in eleven natural springs in an agroecosystem environment with intense livestock production, where groundwater nitrate concentration usually sets above 50 mg L(-1). Out of 23 multiple-class antibiotics monitored, tetracycline and sulfonamide residues were the most ubiquitous, and they were detected at concentrations ranging from ng L(-1) to μg L(-1). Five ARGs were monitored, conferring resistance to the antibiotic classes of major use in livestock production. Thus, genes conferring resistance to sulfonamides (sul1 and sul2) and tetracyclines (tetW) as well as a gene proxy for anthropogenic pollution (intI1) were present in most springs. sul1 was the most abundant, with absolute concentrations ranging from 4 × 10(2) to 5.6 × 10(6) gene copies L(-1) water. AR-E. coli showing resistance to sulfonamides and tetracyclines was also detected, with a prevalence up to approximately 40 % in some sites but with poor correlations with the concentration of antibiotic residues and ARGs. The occurrence of antibiotics, ARGs and AR-E. coli was characterized by large seasonal variations which were mostly associated to both hydrological factors and reactive transport processes. Finally, a risk assessment approach pointed out towards low risk for both the groundwater environment and human health, when spring water is used for direct human consumption, associated with the occurrence of antibiotics, ARGs and AR-E. coli. However, long-term effects cannot be neglected, and proper actions must be taken to preserve groundwater quality.202336208750
7229160.9997Occurrence of antibiotic-resistant bacteria and resistance genes in the urban water cycle. This study investigates the antibiotic resistance fate in the urban water cycle, evaluating the dynamics of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in three different full-scale wastewater treatment plants (WWTPs) and two drinking water treatment plants (DWTPs) located in the same geographical area (North-West of Italy). ARB (tetracycline-, ampicillin-, and sulfonamide-resistant bacteria) were quantified by plate counting and the abundances of selected ARGs (i.e., tetA, bla(TEM), and sulII) and intI1 gene were measured using quantitative real-time PCR (qPCR). Higher concentrations of ARB and ARGs were observed in the WWTPs with respect to the DWTPs identifying the WWTP as hotspot for the spread of antibiotic resistances. Although a significant reduction of ARB and ARGs was observed in WWTPs and DWTPs after the treatment, none of the detected ARB or ARGs was completely removed in drinking water. The stability of the antibiotic-resistant rates between inlet and outlet associated with the reduction of relative ARG abundances underlined that both the treatments (WWTs and DWTs) did not apply any selective pressure. The overall results highlighted the importance to investigate the antibiotic resistance dynamics in aquatic ecosystems involved in urban water cycle integrating the information obtained by culture-dependent method with the culture-independent one and the need to monitor the presence of ARB and ARGs mainly in drinking water that represents a potential route of transmission to human.202336527555
7340170.9997High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant. Antibiotic resistance among bacteria is a growing problem worldwide, and wastewater treatment plants have been considered as one of the major contributors to the dissemination of antibiotic resistance to the environment. There is a lack of comprehensive quantitative molecular data on extensive numbers of antibiotic resistance genes (ARGs) in different seasons with a sampling strategy that would cover both incoming and outgoing water together with the excess sludge that is removed from the process. In order to fill that gap we present a highly parallel quantitative analysis of ARGs and horizontal gene transfer potential over four seasons at an urban wastewater treatment plant using a high-throughput qPCR array. All analysed transposases and two-thirds of primer sets targeting ARGs were detected in the wastewater. The relative abundance of most of the genes was highest in influent and lower in effluent water and sludge. The resistance profiles of the samples cluster by sample location with a shift from raw influent through the final effluents and dried sludge to the sediments. Wastewater discharge enriched only a few genes, namely Tn25 type transposase gene and clinical class 1 integrons, in the sediment near the discharge pipe, but those enriched genes may indicate a potential for horizontal gene transfer.201626832203
7327180.9997Exploring the microbiome, antibiotic resistance genes, mobile genetic element, and potential resistant pathogens in municipal wastewater treatment plants in Brazil. Wastewater treatment plants (WWTPs) have been widely investigated in Europe, Asia and North America regarding the occurrence and fate of antibiotic resistance (AR) elements, such as antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and antibiotic resistant bacteria and pathogens. However, monitoring data about AR elements in municipal WWTPs in Brazil are scarce. This study investigated the abundance of intI1, five ARGs (sul1, tetA, blaTEM, ermB and qnrB) and 16S rRNA in raw and treated wastewater of three WWTPs, using different sewage treatments named CAS (Conventional activated sludge), UASB/BTF (UASB followed by biological trickling filter) and MAS/UV (modified activated sludge with UV disinfection stage). Bacterial diversity and the presence of potentially pathogenic groups were also evaluated, and associations between genetic markers and the bacterial populations were presented. All WWTPs decreased the loads of genetic markers finally discharged to receiving water bodies and showed no evidence of being hotspots for antimicrobial resistance amplification in wastewater, since the abundances of intI1 and ARGs within the bacterial population were not increased in the treated effluents. UASB/BTF showed a similar performance to that of the CAS and MAS/UV, reinforcing the sanitary and environmental advantages of this biological treatment, widely applied for wastewater treatment in warm climate regions. Bacterial diversity and richness increased after treatments, and bacterial communities in wastewater samples differed due to catchment areas and treatment typologies. Potential pathogenic population underwent considerable decrease after the treatments; however, strong significant correlations with intI1 and ARGs revealed potential multidrug-resistant pathogenic bacteria (Aeromonas, Arcobacter, Enterobacter, Escherichia-Shigella, Stenotrophomonas and Streptococcus) in the treated effluents, although in reduced relative abundances. These are contributive results for understanding the fate of ARGs, MGEs and potential pathogenic bacteria after wastewater treatments, which might support actions to mitigate their release into Brazilian aquatic environments in the near future.202235724791
5347190.9997High-quality treated wastewater causes remarkable changes in natural microbial communities and intI1 gene abundance. We carry out a mesocosms experiment to assess the impact of high-quality treated wastewater intended for agricultural reuse (HQWR) on freshwater bacteria seldom exposed to anthropogenic pollution. Effects were assessed by comparing the abundance and composition of bacterial communities as well as their resistance profile under control (source water from an unpolluted lake) and treatment conditions (source water mixed 1:1 with HQWR, with and without 5 μg L(-1) of cefotaxime). We investigated the effect of the different conditions on the abundance of genes encoding resistance to β-lactams and carbapenems (bla(TEM), bla(CTX-M), bla(OXA,) and bla(KPC)), fluoroquinolones (qnrS), tetracyclines (tetA), sulfonamides (sul2), macrolides (ermB), arsenic and cadmium (arsB and czcA, respectively), and on the gene encoding the Class 1 integron integrase (intI1). Bacterial communities exposed to HQWR showed a significant higher abundance of tetA, arsB, czcA, and intI1 genes, whereas those exposed to Cefotaxime-amended HQWR did not. Genes conferring resistance to carbapenems, β-lactams, fluoroquinolones, and macrolides were below detection limit in all treatments. Besides, the higher availability of nutrients under treatment conditions favored bacterial growth in comparison to those exposed to control conditions. Particularly, Acinetobacter spp. and Pseudomonas spp. were significantly enriched after 22 days of treatment exposure. The presence of cefotaxime (a third generation cephalosporine) in the feeding medium caused an enrichment of bacterial communities in sequences affiliated to Acinetobacter thus suggesting that these resistant forms may possess resistance genes other than those studied here (bla(CTX-M), bla(OXA,) and bla(KPC)). Although derived from a mesocosm experiment in continuous cultures, our results call attention to the need of refined regulations regarding the use of reclaimed water in agriculture since even high-quality treated wastewater may lead to undesired effects on receiving bacterial communities in terms of composition and dissemination of antibiotic resistance genes.201931553931