# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7335 | 0 | 1.0000 | Wastewater bypass is a major temporary point-source of antibiotic resistance genes and multi-resistance risk factors in a Swiss river. Untreated combined sewage (bypass) is often discharged by wastewater treatment plants to receiving rivers during stormwater events, where it may contribute to increased levels of antibiotic resistance genes (ARGs) and multi-resistance risk factors (multi-resistant bacteria and multi-resistance genomic determinants (MGDs)) in the receiving water. Other contamination sources, such as soil runoff and resuspended river sediment could also play a role during stormwater events. Here we report on stormwater event-based sampling campaigns to determine temporal dynamics of ARGs and multi-resistance risk factors in bypass, treated effluent, and the receiving river, as well as complimentary data on catchment soils and surface sediments. Both indicator ARGs (qPCR) and resistome (ARG profiles revealed by metagenomics) indicated bypass as the main contributor to the increased levels of ARGs in the river during stormwater events. Furthermore, we showed for the first time that the risk of exposure to bypass-borne multi-resistance risk factors increase under stormwater events and that many of these MGDs were plasmid associated and thus potentially mobile. In addition, elevated resistance risk factors persisted for some time (up to 22 h) in the receiving water after stormwater events, likely due to inputs from distributed overflows in the catchment. This indicates temporal dynamics should be considered when interpreting the risks of exposure to resistance from event-based contamination. We propose that reducing bypass from wastewater treatment plants may be an important intervention option for reducing dissemination of antibiotic resistance. | 2022 | 34794019 |
| 7514 | 1 | 0.9999 | Early and differential bacterial colonization on microplastics deployed into the effluents of wastewater treatment plants. Microbial colonization of microplastics (MPs) in aquatic ecosystems is a well-known phenomenon; however, there is insufficient knowledge of the early colonization phase. Wastewater treatment plant (WWTP) effluents have been proposed as important pathways for MPs entry and transport in aquatic environments and are hotspots of bacterial pathogens and antibiotic resistance genes (ARGs). This study aimed at characterizing bacterial communities in the early stage of biofilm formation on seven different types of MPs deployed in two different WWTPs effluents as well as measuring the relative abundance of two ARGs (sulI and tetM) on the tested MPs. Illumina Miseq sequencing of the 16S rRNA showed significant higher diversity of bacteria on MPs in comparison with free-living bacteria in the WWTP effluents. β-diversity analysis showed that the in situ environment (sampling site) and hydrophobicity, to a lesser extent, had a role in the early bacterial colonization phase. An early colonization phase MPs-core microbiome could be identified. Furthermore, specific core microbiomes for each type of polymer suggested that each type might select early attachment of bacteria. Although the tested WWTP effluent waters contained antibiotic resistant bacteria (ARBs) harboring the sulI and tetM ARGs, MPs concentrated ARBs harboring the sulI gene but not tetM. These results highlight the relevance of the early attachment phase in the development of bacterial biofilms on different types of MP polymers and the role that different types of polymers might have facilitating the attachment of specific bacteria, some of which might carry ARGs. | 2021 | 33246729 |
| 7429 | 2 | 0.9999 | Industrial wastewater treatment plant enriches antibiotic resistance genes and alters the structure of microbial communities. Antibiotic resistance is an emerging global health crisis, driven largely by overuse and misuse of antibiotics. However, there are examples in which the production of these antimicrobial agents has polluted the environment with active antibiotic residues, selecting for antibiotic resistant bacteria and the genes they carry. In this work, we have used shotgun metagenomics to investigate the taxonomic structure and resistance gene composition of sludge communities in a treatment plant in Croatia receiving wastewater from production of the macrolide antibiotic azithromycin. We found that the total abundance of antibiotic resistance genes was three times higher in sludge from the treatment plant receiving wastewater from pharmaceutical production than in municipal sludge from a sewage treatment plant in Zagreb. Surprisingly, macrolide resistance genes did not have higher abundances in the industrial sludge, but genes associated with mobile genetic elements such as integrons had. We conclude that at high concentrations of antibiotics, selection may favor taxonomic shifts towards intrinsically resistant species or strains harboring chromosomal resistance mutations rather than acquisition of mobile resistance determinants. Our results underscore the need for regulatory action also within Europe to avoid release of antibiotics into the environment. | 2019 | 31301473 |
| 7342 | 3 | 0.9998 | Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment plant. The increased antibiotic resistance among microorganisms has resulted into growing interest for investigating the wastewater treatment plants (WWTPs) as they are reported to be the major source in the dissemination of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in the environment. In this study, we investigated the prevalence and persistence of ARGs and HMRGs as well as bacterial diversity and mobile genetic elements (MGEs) in influent and effluent at the WWTP in Gwangju, South Korea, using high-throughput sequencing based metagenomic approach. A good number of broad-spectrum of resistance genes (both ARG and HMRG) were prevalent and likely persistent, although large portion of them were successfully removed at the wastewater treatment process. The relative abundance of ARGs and MGEs was higher in effluent as compared to that of influent. Our results suggest that the resistance genes with high abundance and bacteria harbouring ARGs and MGEs are likely to persist more through the treatment process. On analyzing the microbial community, the phylum Proteobacteria, especially potentially pathogenic species belonging to the genus Acinetobacter, dominated in WWTP. Overall, our study demonstrates that many ARGs and HMRGs may persist the treatment processes in WWTPs and their association to MGEs may contribute to the dissemination of resistance genes among microorganisms in the environment. | 2018 | 29858829 |
| 7425 | 4 | 0.9998 | Antibiotic resistant bacteria and genes in wastewater treatment plants: From occurrence to treatment strategies. This study aims to discuss the following: (1) occurrence and proliferation of antibiotic resistance in wastewater treatment plants (WWTPs); (2) factors influencing antibiotic resistance bacteria and genes in WWTPs; (3) tools to assess antibiotic resistance in WWTPs; (4) environmental contamination of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from WWTPs; (5) effects of ARB and ARGs from WWTPs on human health; and (6) treatment strategies. In general, resistant and multi-resistant bacteria, including Enterobacteriaceae, Pseudomonas aeruginosa, and Escherichia coli, exist in various processes of WWTPs. The existence of ARB and ARGs results from the high concentration of antibiotics in wastewater, which promote selective pressures on the local bacteria present in WWTPs. Thus, improving wastewater treatment technology and avoiding the misuse of antibiotics is critical to overcoming the threat of proliferation of ARBs and ARGs. Numerous factors can affect the development of ARB and ARGs in WWTPs. Abiotic factors can affect the bacterial community dynamics, thereby, affecting the applicability of ARB during the wastewater treatment process. Furthermore, the organic loads and other nutrients influence bacterial survival and growth. Specifically, molecular methods for the rapid characterization and detection of ARBs or their genes comprise DNA sequencing, real-time PCR, simple and multiplex PCR, and hybridization-based technologies, including micro- and macro-arrays. The reuse of effluent from WWTPs for irrigation is an efficient method to overcome water scarcity. However, there are also some potential environmental risks associated with this practice, such as increase in the levels of antibiotic resistance in the soil microbiome. Human mortality rates may significantly increase, as ARB can lead to resistance among several types of antibiotics or longer treatment times. Some treatment technologies, such as anaerobic and aerobic treatment, coagulation, membrane bioreactors, and disinfection processes, are considered potential techniques to restrict antibiotic resistance in the environment. | 2022 | 35679932 |
| 7341 | 5 | 0.9998 | Metagenomic analysis of an urban resistome before and after wastewater treatment. Determining the effect of wastewater treatment in water resistome is a topic of interest for water quality, mainly under re-use and One-Health perspectives. The resistome, the plasmidome, and the bacterial community composition of samples from influents and treated effluents from a wastewater treatment plant located in Northern Portugal were studied using metagenomic techniques. Wastewater treatment contributed to reduce the abundance of resistance genes and of plasmid replicons, coinciding with a decline in the number of intrinsic resistance genes from Enterobacteriaceae, as well as with a reduction in the relative abundance of Firmicutes and Proteobacteria after treatment. These taxons comprise bacterial pathogens, including those belonging to the ESKAPE group, which encompasses bacteria with the highest risk of acquiring antibiotic resistance, being the most relevant hosts of resistance genes acquired through horizontal gene transfer. Our results support that wastewater treatment efficiently removes the hosts of antibiotic resistance genes and, consequently, the harboured antibiotic resistance genes. Principal component analysis indicates that the resistome and the bacterial composition clustered together in influent samples, while did not cluster in final effluent samples. Our results suggest that wastewater treatment mitigates the environmental dissemination of urban resistome, through the removal of the hosts harbouring mobile resistance genes. | 2020 | 32424207 |
| 7389 | 6 | 0.9998 | Temporal changes of antibiotic-resistance genes and bacterial communities in two contrasting soils treated with cattle manure. The emerging environmental spread of antibiotic-resistance genes (ARGs) and their subsequent acquisition by clinically relevant microorganisms is a major threat to public health. Animal manure has been recognized as an important reservoir of ARGs; however, the dissemination of manure-derived ARGs and the impacts of manure application on the soil resistome remain obscure. Here, we conducted a microcosm study to assess the temporal succession of total bacteria and a broad spectrum of ARGs in two contrasting soils following manure application from cattle that had not been treated with antibiotics. High-capacity quantitative PCR detected 52 unique ARGs across all the samples, with β-lactamase as the most dominant ARG type. Several genes of soil indigenous bacteria conferring resistance to β-lactam, which could not be detected in manure, were found to be highly enriched in manure-treated soils, and the level of enrichment was maintained over the entire course of 140 days. The enriched β-lactam resistance genes had significantly positive relationships with the relative abundance of the integrase intI1 gene, suggesting an increasing mobility potential in manure-treated soils. The changes in ARG patterns were accompanied by a significant effect of cattle manure on the total bacterial community compositions. Our study indicates that even in the absence of selective pressure imposed by agricultural use of antibiotics, manure application could still strongly impact the abundance, diversity and mobility potential of a broad spectrum of soil ARGs. Our findings are important for reliable prediction of ARG behaviors in soil environment and development of appropriate strategies to minimize their dissemination. | 2016 | 26712351 |
| 6897 | 7 | 0.9998 | Occurrence of antibiotic resistance genes in an oilfield's water re-injection systems. The recent widespread increase in antibiotic resistance has become a real threat to both human and environmental ecosystem health. In oil reservoirs, an extreme environment potentially influenced by human activity such as water flooding, the distribution and abundance of antibiotic resistance genes (ARGs) remains poorly understood. Herein, we investigated the distribution of ARGs at different positions in a water-flooding oilfield in China, and found that ARGs were observed in all parts of the investigated system. The surface regions of the water re-injection system were more vulnerable to ARG pollution, and the final ARG concentration was up to 2.2 × 10(8) gene copies/L, and sulfonamide were the most abundant. However, ARG concentration decreased sharply in the samples from underground part of the re-injection system. The bacterial community composition was also varied with sampling position. The sample from production well, which was enriched in crude oil, contained more bacteria but the community richness was simpler. This study also indicated the wastewater-recycling process above ground, which proposed to reduce the discharge into environment directly, may pose a risk for ARGs spread. | 2020 | 31869712 |
| 7339 | 8 | 0.9998 | Host range of antibiotic resistance genes in wastewater treatment plant influent and effluent. Wastewater treatment plants (WWTPs) collect wastewater from various sources for a multi-step treatment process. By mixing a large variety of bacteria and promoting their proximity, WWTPs constitute potential hotspots for the emergence of antibiotic resistant bacteria. Concerns have been expressed regarding the potential of WWTPs to spread antibiotic resistance genes (ARGs) from environmental reservoirs to human pathogens. We utilized epicPCR (Emulsion, Paired Isolation and Concatenation PCR) to detect the bacterial hosts of ARGs in two WWTPs. We identified the host distribution of four resistance-associated genes (tetM, int1, qacEΔ1and blaOXA-58) in influent and effluent. The bacterial hosts of these resistance genes varied between the WWTP influent and effluent, with a generally decreasing host range in the effluent. Through 16S rRNA gene sequencing, it was determined that the resistance gene carrying bacteria include both abundant and rare taxa. Our results suggest that the studied WWTPs mostly succeed in decreasing the host range of the resistance genes during the treatment process. Still, there were instances where effluent contained resistance genes in bacterial groups not carrying these genes in the influent. By permitting exhaustive profiling of resistance-associated gene hosts in WWTP bacterial communities, the application of epicPCR provides a new level of precision to our resistance gene risk estimates. | 2018 | 29514229 |
| 7513 | 9 | 0.9998 | Contribution of microplastic particles to the spread of resistances and pathogenic bacteria in treated wastewaters. Microplastic Particles (MPs) are ubiquitous pollutants widely found in aquatic ecosystems. Although MPs are mostly retained in wastewater treatment plants (WWTPs), a high number of MPs reaches the open waters potentially contributing to the spread of pathogenic bacteria and antibiotic resistance genes in the environment. Nowadays, a limited number of studies have focused on the role of MPs as carriers of potentially pathogenic and antibiotic resistant bacteria in WWTPs. Thus, an investigation on the community composition (by 16S rRNA gene amplicon sequencing) and the abundance of antibiotic and metal resistance genes (by qPCR) of the biofilm on MPs (the plastisphere) and of planktonic bacteria in treated (pre- and post-disinfection) wastewaters was performed. MPs resulted to be very similar in terms of type, color, size, and chemical composition, before and after the disinfection. The bacterial community on MPs differed from the planktonic community in terms of richness, composition, and structure of the community network. Potentially pathogenic bacteria generally showed higher abundances in treated wastewater than in the biofilm on MPs. Furthermore, among the tested resistance genes, only sul2 (a common resistance gene against sulfonamides) resulted to be more abundant in the plastisphere than in the planktonic bacterial community. Our results suggest that the wastewater plastisphere could promote the spread of pathogenic bacteria and resistance genes in aquatic environment although with a relatively lower contribution than the wastewater planktonic bacterial community. | 2021 | 34186288 |
| 7392 | 10 | 0.9998 | Distribution of genetic elements associated with antibiotic resistance in treated and untreated animal husbandry waste and wastewater. Animal breeding for meat production based on swine, cattle, poultry, and aquaculture is an activity that generates several impacts on the environment, among them the spread of antibiotic resistance. There is a worldwide concern related to the massive use of antibiotics, which causes selective pressure on the microbial community, triggering bacteria that contain "antibiotic resistance genes." According to the survey here presented, antibiotic resistance-related genes such as tetracyclines (tet), erythromycin (erm), and sulfonamides (sul), as well as the genetic mobile element interferon (int), are the most reported genetic elements in qualitative and quantitative studies of swine, cattle, poultry, and aquaculture manure/wastewater. It has been observed that biological treatments based on waste composting and anaerobic digestion are effective in ARG removal, particularly for tet, bla, erm, and qnr (quinolone) genes. On the other hand, sul and intI genes were more persistent in such treatments. Tertiary treatments, such advanced oxidative processes, are suitable strategies to improve ARG reduction. In general temperature, hydraulic retention time, and penetration of sunlight are the main operational parameters for ARG reduction in treatments applied to animal waste, and therefore attention should be addressed to optimize their efficacy regarding ARG removal. Despite being reduced, the presence of ARG in treated effluents and in biosolids indicates that there is a potential risk of antibiotic resistance spread in nature, especially through the release of treated livestock waste into the environment. | 2021 | 33835340 |
| 7397 | 11 | 0.9998 | Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater. The emergence and prevalence of antibiotic resistance genes (ARGs) in the environment is a serious global health concern. ARGs from bacteria can be mobilized by mobile genetic elements, and recent studies indicate that phages and phage-derived particles, among others, could play a role in the spread of ARGs through the environment. ARGs are abundant in the bacterial and bacteriophage fractions of water bodies and for successful transfer of the ARGs, their persistence in these environments is crucial. In this study, three ARGs (blaTEM, blaCTX-M and sul1) that naturally occur in the bacterial and phage fractions of raw wastewater were used to evaluate the persistence of ARGs at different temperatures (4 °C, 22 °C and 37 °C) and pH values (3, 7 and 9), as well as after various disinfection treatments (thermal treatment, chlorination and UV) and natural inactivation in a mesocosm. Gene copies (GC) were quantified by qPCR; then the logarithmic reduction and significance of the differences between their numbers were evaluated. The ARGs persisted for a long time with minimal reductions after all the treatments. In general, they showed greater persistence in the bacteriophage fraction than in the bacterial fraction. Comparisons showed that the ARGs persisted under conditions that reduced culturable Escherichia coli and infectious coliphages below the limit of detection. The prevalence of ARGs, particularly in the bacteriophage fraction, poses the threat of the spread of ARGs and their incorporation into a new bacterial background that could lead to the emergence of new resistant clones. | 2016 | 26978717 |
| 7066 | 12 | 0.9998 | Seasonality of antibiotic prescriptions for outpatients and resistance genes in sewers and wastewater treatment plant outflow. To test the hypothesis of a seasonal relationship of antibiotic prescriptions for outpatients and the abundance of antibiotic resistance genes (ARGs) in the wastewater, we investigated the distribution of prescriptions and different ARGs in the Dresden sewer system and wastewater treatment plant during a two-year sampling campaign. Based on quantitative PCR (qPCR), our results show a clear seasonal pattern for relative ARGs abundances. The higher ARGs levels in autumn and winter coincide with the higher rates of overall antibiotic prescriptions. While no significant differences of relative abundances were observed before and after the wastewater treatment for most of the relative ARGs, the treatment clearly influenced the microbial community composition and abundance. This indicates that the ARGs are probably not part of the dominant bacterial taxa, which are mainly influenced by the wastewater treatment processes, or that plasmid carrying bacteria remain constant, while plasmid free bacteria decrease. An exception was vancomycin (vanA), showing higher relative abundance in treated wastewater. It is likely that a positive selection or community changes during wastewater treatment lead to an enrichment of vanA. Our results demonstrate that in a medium-term study the combination of qPCR and next generation sequencing corroborated by drug-related health data is a suitable approach to characterize seasonal changes of ARGs in wastewater and treated wastewater. | 2016 | 27073234 |
| 7336 | 13 | 0.9998 | Pathogenic and Indigenous Denitrifying Bacteria are Transcriptionally Active and Key Multi-Antibiotic-Resistant Players in Wastewater Treatment Plants. The global rise and spread of antibiotic resistance greatly challenge the treatment of bacterial infections. Wastewater treatment plants (WWTPs) harbor and discharge antibiotic resistance genes (ARGs) as environmental contaminants. However, the knowledge gap on the host identity, activity, and functionality of ARGs limits transmission and health risk assessment of the WWTP resistome. Hereby, a genome-centric quantitative metatranscriptomic approach was exploited to realize high-resolution qualitative and quantitative analyses of bacterial hosts of ARGs (i.e., multiresistance, pathogenicity, activity, and niches) in the 12 urban WWTPs. We found that ∼45% of 248 recovered genomes expressed ARGs against multiple classes of antibiotics, among which bacitracin and aminoglycoside resistance genes in Proteobacteria were the most prevalent scenario. Both potential pathogens and indigenous denitrifying bacteria were transcriptionally active hosts of ARGs. The almost unchanged relative expression levels of ARGs in the most resistant populations (66.9%) and the surviving ARG hosts including globally emerging pathogens (e.g., Aliarcobacter cryaerophilus) in treated WWTP effluent prioritize future examination on the health risks related to resistance propagation and human exposure in the receiving environment. | 2021 | 34282905 |
| 7474 | 14 | 0.9998 | Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Discharge of treated sewage leads to release of antibiotic resistant bacteria, resistance genes and antibiotic residues to the environment. However, it is unclear whether increased abundance of antibiotic resistance genes in sewage and sewage-impacted environments is due to on-site selection pressure by residual antibiotics, or is simply a result of fecal contamination with resistant bacteria. Here we analyze relative resistance gene abundance and accompanying extent of fecal pollution in publicly available metagenomic data, using crAssphage sequences as a marker of human fecal contamination (crAssphage is a bacteriophage that is exceptionally abundant in, and specific to, human feces). We find that the presence of resistance genes can largely be explained by fecal pollution, with no clear signs of selection in the environment, with the exception of environments polluted by very high levels of antibiotics from manufacturing, where selection is evident. Our results demonstrate the necessity to take into account fecal pollution levels to avoid making erroneous assumptions regarding environmental selection of antibiotic resistance. | 2019 | 30622259 |
| 7508 | 15 | 0.9998 | Residual chlorine persistently changes antibiotic resistance gene composition and increases the risk of antibiotic resistance in sewer systems. During the COVID-19 pandemic, excessive amounts of disinfectants and their transformation products entered sewer systems worldwide, which was an extremely rare occurrence before. The stress of residual chlorine and disinfection by-products is not only likely to promote the spread of antibiotic resistance genes (ARGs), but also leads to the enrichment of chlorine-resistant bacteria that may also be resistant to antibiotics. Therefore, the potential impact of such discharge on ARG composition should be studied and the health risks should be assessed. Thus, this study combined high-throughput 16S rRNA gene amplicon sequencing and metagenomic analysis with long-term batch tests that involved two stages of stress and recovery to comprehensively evaluate the impact of residual chlorine on the microbial community and ARG compositions in sewer systems. The tests demonstrated that the disturbance of the microbial community structure by residual chlorine was reversible, but the change in ARG composition was persistent. This study found that vertical propagation and horizontal gene transfer jointly drove ARG composition succession in the biofilm, while the driving force was mainly horizontal gene transfer in the sediment. In this process, the biocide resistance gene (BRG) subtype chtR played an important role in promoting co-selection with ARGs through plasmids and integrative and conjugative elements. Moreover, it was further shown that the addition of sodium hypochlorite increased the risk of ARGs to human health, even after discontinuation of dosing, signifying that the impact was persistent. In general, this study strengthens the co-selection theory of ARGs and BRGs, and calls for improved disinfection strategies and more environmentally friendly disinfectants. | 2023 | 37738943 |
| 7391 | 16 | 0.9998 | Antibiotic resistance genes in China: occurrence, risk, and correlation among different parameters. Antibiotic resistance has become a widely concerned issue due to the huge risk on the ecological environment and human health. China has the highest production and consumption of antibiotics than other countries. Thus, antibiotic resistance genes (ARGs) have been detected in various environmental settings (e.g., surface water, wastewater, sediment) in China. The occurrence of ARGs in these matrixes was summarized and discussed in this review. Sulfonamide resistance genes and tetracycline resistance genes were the most frequently detected ARGs in China. According to the abundance of these two classes of ARGs in the natural environment, sulfonamide resistance genes seem to be more stable than tetracycline resistance genes. Furthermore, the relationships between ARGs and antibiotics, antibiotic resistance bacteria (ARB), heavy metals, and environmental parameters (e.g., pH, organics) were also investigated. Specifically, relative abundance of total ARGs was found to correlate well with concentration of total antibiotics in aqueous phase but not in the solid phase (soil, sediment, sludge, and manure). As for relationship between ARGs and ARB, metals, and environmental parameters in different media, due to complex and variable environment, some exhibit positive correlation, some negative, while others no correlation at all. Three potential risks are discussed in the text: transmission to human, synergistic effect of different ARGs, and variability of ARGs. However, due to the complexity of the environment, more work is needed to establish a quantitative approach of ARG risk assessment, which can provide a theoretical support for the management of antibiotics and the protection of human health. | 2018 | 29948704 |
| 7315 | 17 | 0.9998 | Seasonal variability of the correlation network of antibiotics, antibiotic resistance determinants, and bacteria in a wastewater treatment plant and receiving water. Sewage treatment plants are an essential source of antibiotics, antibiotic resistance determinants, and bacteria in environmental waters. However, it is still unclear whether they can maintain a relatively stable relationship in wastewater and environmental waters. This study analyzed the removal capacity of the above three pollutants in the sewage treatment plant in summer and their impact on environmental waters, and then examines the relationship between the three contaminants in the wastewater and environmental waters in summer and winter based on our previous study. The results found that the removal capacity of bacteria in summer was poor, the concentration of fluoroquinolone in the effluent was higher than that in influent, and the abundance of intI1, tetW, qnrB, and ermB increased after wastewater treatment. Proteobacteria and Bacteroides were the main bacteria that constitute the correlation network between bacteria, and they existed stably in summer and winter. However, fluoroquinolones occupied a significant position in the determinant network of antibiotics and antibiotic resistance in summer and winter. There are fewer correlation between antibiotics and antibiotics resistance determinants in winter. Interestingly, the relationship between bacteria, antibiotics, and antibiotic resistance determinants was a mainly positive correlation in summer and negative correlation in winter. This study analyzed the relationship between bacteria, antibiotics, and antibiotic resistance determinants that were stable in the wastewater and environmental waters and pointed out the direction for subsequent targeted seasonal control of novel pollutants in wastewater and environmental waters. | 2022 | 35642820 |
| 7337 | 18 | 0.9998 | Chlorine disinfection modifies the microbiome, resistome and mobilome of hospital wastewater - A nanopore long-read metagenomic approach. The aim of the present study was to analyze changes in the microbiome, resistome, and mobilome of hospital wastewater (HWW) induced by disinfection with chlorine compounds. Changes in bacterial communities and specific antibiotic resistance genes (ARGs) in HWW were determined with the use of a nanopore long-read metagenomic approach. The main hosts of ARGs in HWW were identified, and the mobility of resistance mechanisms was analyzed. Special attention was paid to the prevalence of critical-priority pathogens in the HWW microbiome, which pose the greatest threat to human health. The results of this study indicate that chlorine disinfection of HWW can induce significant changes in the structure of the total bacterial population and antibiotic resistant bacteria (ARB) communities, and that it can modify the resistome and mobilome of HWW. Disinfection favored the selection of ARGs, decreased their prevalence in HWW, while increasing their diversity. The mobility of the HWW resistome increased after disinfection. Disinfection led to the emergence of new drug resistance mechanisms in previously sensitive bacterial taxa. In conclusion, this study demonstrated that HWW disinfected with low (sublethal) concentrations of free chlorine significantly contributes to the mobility and transfer of drug resistance mechanisms (including critical mechanisms) between bacteria (including pathogens). | 2023 | 37595469 |
| 7466 | 19 | 0.9998 | Effects of heavy metals on the development and proliferation of antibiotic resistance in urban sewage treatment plants. Sewage treatment plants (STPs) are considered as "hotspots" for the emergence and proliferation of antibiotic resistance. However, the impact of heavy metals contamination on dispersal of antibiotic resistance in STPs is poorly understood. This study simultaneously investigated the effect of removal of metal and antibiotic resistance as well as mobile elements at different treatment units of STPs in Delhi, India. Results showed that treatment technologies used in STPs were inefficient for the complete removal of metal and antibiotic resistance, posing an ecological risk of co-selection of antibiotic resistance. The strong correlations were observed between heavy metals, metal and antibiotic resistance, and integrons, implying that antibiotic resistance may be exacerbated in the presence of heavy metals via integrons, and that metal and antibiotic resistance share a common or closely associated mechanism. We quantified an MRG rcnA, conferring resistance to Co and Ni, and identified that it was more abundant than all MRGs, ARGs, integrons, and 16S rRNA, suggesting rcnA could be important in antibiotic resistance dissemination in the environment. The associations between heavy metals, metal and antibiotic resistance, and integrons highlight the need for additional research to better understand the mechanism of co-selection as well as to improve the removal efficacy of current treatment systems. | 2022 | 35724944 |