# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7334 | 0 | 1.0000 | Distribution of antibiotic resistance genes and their association with bacteria and viruses in decentralized sewage treatment facilities. The distribution of antibiotic resistance genes (ARGs) has been intensively studied in large-scale wastewater treatment plants and livestock sources. However, small-scale decentralized sewage treatment facilities must also be explored due to their possible direct exposure to residents. In this study, six wastewater treatment facilities in developed rural areas in eastern China were investigated to understand their risks of spreading ARGs. Using metagenomics and network analysis tools, ARGs and bacterial and viral communities were identified in the influent (INF) and effluent (EFF) samples. The dominant ARGs belonged to the bacitracin class, which are different from most of municipal wastewater treatment plants (WWTPs). The dominant hosts of ARGs are Acidovorax in bacterial communities and Prymnesiovirus in viral communities. Furthermore, a positive relationship was found between ARGs and phages. The ARGs significantly correlated with phages were all hosted by specific genera of bacteria, indicating that phages had contributed to the ARG's proliferation in sewage treatment facilities. Paying significant concern on the possible enhanced risks caused by bacteria, viruses and their related ARGs in decentralized sewage treatment facilities is necessary. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at 10.1007/s11783-021-1469-4 and is accessible for authorized users. | 2022 | 34249401 |
| 7315 | 1 | 0.9998 | Seasonal variability of the correlation network of antibiotics, antibiotic resistance determinants, and bacteria in a wastewater treatment plant and receiving water. Sewage treatment plants are an essential source of antibiotics, antibiotic resistance determinants, and bacteria in environmental waters. However, it is still unclear whether they can maintain a relatively stable relationship in wastewater and environmental waters. This study analyzed the removal capacity of the above three pollutants in the sewage treatment plant in summer and their impact on environmental waters, and then examines the relationship between the three contaminants in the wastewater and environmental waters in summer and winter based on our previous study. The results found that the removal capacity of bacteria in summer was poor, the concentration of fluoroquinolone in the effluent was higher than that in influent, and the abundance of intI1, tetW, qnrB, and ermB increased after wastewater treatment. Proteobacteria and Bacteroides were the main bacteria that constitute the correlation network between bacteria, and they existed stably in summer and winter. However, fluoroquinolones occupied a significant position in the determinant network of antibiotics and antibiotic resistance in summer and winter. There are fewer correlation between antibiotics and antibiotics resistance determinants in winter. Interestingly, the relationship between bacteria, antibiotics, and antibiotic resistance determinants was a mainly positive correlation in summer and negative correlation in winter. This study analyzed the relationship between bacteria, antibiotics, and antibiotic resistance determinants that were stable in the wastewater and environmental waters and pointed out the direction for subsequent targeted seasonal control of novel pollutants in wastewater and environmental waters. | 2022 | 35642820 |
| 7310 | 2 | 0.9998 | Metagenomic Analysis Reveals Changes in Bacterial Communities and Antibiotic Resistance Genes in an Eye Specialty Hospital and a General Hospital Before and After Wastewater Treatment. The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in hospital wastewater poses a great threat to public health, and wastewater treatment plants (WWTPs) play an important role in reducing the levels of ARB and ARGs. In this study, high-throughput metagenomic sequencing was used to analyze the bacterial community composition and ARGs in two hospitals exposed to different antibiotic use conditions (an eye specialty hospital and a general hospital) before and after wastewater treatment. The results showed that there were various potential pathogenic bacteria in the hospital wastewater, and the abundance and diversity of the influent ARGs in the general hospital were higher than those in the eye hospital. The influent of the eye hospital was mainly composed of Thauera and Pseudomonas, and sul1 (sulfonamide) was the most abundant ARG. The influent of the general hospital contained mainly Aeromonas and Acinetobacter, and tet39 (tetracycline) was the most abundant ARG. Furthermore, co-occurrence network analysis showed that the main bacteria carrying ARGs in hospital wastewater varied with hospital type; the same bacteria in wastewater from different hospitals could carry different ARGs, and the same ARG could also be carried by different bacteria. The changes in the bacterial community and ARG abundance in the effluent from the two hospitals showed that the activated sludge treatment and the direct chlorination disinfection can effectively remove some bacteria and ARGs in wastewater but have limitations. The species diversity increased significantly after the activated sludge treatment, while the direct chlorination disinfection did not increase the diversity. The activated sludge treatment has a better effect on the elimination of ARGs than the direct chlorination disinfection. In summary, we investigated the differences in bacterial communities and ARGs in wastewater from two hospitals exposed to different antibiotic usage conditions, evaluated the effects of different wastewater treatment methods on the bacterial communities and ARGs in hospital wastewater, and recommended appropriate methods for certain clinical environments. | 2022 | 35663906 |
| 3097 | 3 | 0.9998 | Investigation of the Prevalence of Antibiotic Resistance Genes According to the Wastewater Treatment Scale Using Metagenomic Analysis. Although extensive efforts have been made to investigate the dynamics of the occurrence and abundance of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs), understanding the acquisition of antibiotic resistance based on the WWTP scale and the potential effects on WWTPs is of relatively less interest. In this study, metagenomic analysis was carried out to investigate whether the WWTP scale could be affected by the prevalence and persistence of ARGs and mobile genetic elements (MGEs). As a result, 152 ARG subtypes were identified in small-scale WWTP samples, while 234 ARG subtypes were identified in large-scale WWTP samples. Among the detectable ARGs, multidrug, MLS (macrolide-lincosamide-streptogramin), sulfonamide, and tetracycline resistance genes had the highest abundance, and large and small WWTPs had similar composition characteristics of ARGs. In MGE analysis, plasmids and integrons were 1.5-2.0-fold more abundant in large-scale WWTPs than in small-scale WWTPs. The profile of bacteria at the phylum level showed that Proteobacteria and Actinobacteria were the most dominant bacteria, representing approximately 70% across large- and small-scale WWTPs. Overall, the results of this study elucidate the different abundances and dissemination of ARGs between large- and small-scale WWTPs, which facilitates the development of next-generation engineered wastewater treatment systems. | 2021 | 33671905 |
| 7342 | 4 | 0.9998 | Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment plant. The increased antibiotic resistance among microorganisms has resulted into growing interest for investigating the wastewater treatment plants (WWTPs) as they are reported to be the major source in the dissemination of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in the environment. In this study, we investigated the prevalence and persistence of ARGs and HMRGs as well as bacterial diversity and mobile genetic elements (MGEs) in influent and effluent at the WWTP in Gwangju, South Korea, using high-throughput sequencing based metagenomic approach. A good number of broad-spectrum of resistance genes (both ARG and HMRG) were prevalent and likely persistent, although large portion of them were successfully removed at the wastewater treatment process. The relative abundance of ARGs and MGEs was higher in effluent as compared to that of influent. Our results suggest that the resistance genes with high abundance and bacteria harbouring ARGs and MGEs are likely to persist more through the treatment process. On analyzing the microbial community, the phylum Proteobacteria, especially potentially pathogenic species belonging to the genus Acinetobacter, dominated in WWTP. Overall, our study demonstrates that many ARGs and HMRGs may persist the treatment processes in WWTPs and their association to MGEs may contribute to the dissemination of resistance genes among microorganisms in the environment. | 2018 | 29858829 |
| 7312 | 5 | 0.9998 | Sources of Antibiotic Resistance Genes in a Rural River System. The increasing prevalence of antibiotic resistance genes (ARGs) in the environment is problematic due to the risk of horizontal gene transfer and development of antibiotic resistant pathogenic bacteria. Using a suite of monitoring tools, this study aimed to investigate the sources of ARGs in a rural river system in Nova Scotia, Canada. The monitoring program specifically focused on the relative contribution of ARGs from a single tertiary-level wastewater treatment plant (WWTP) in comparison to contributions from the upgradient rural, sparsely developed, watershed. The overall gene concentration significantly ( < 0.05) increased downstream from the WWTP, suggesting that tertiary-level treatment still contributes ARGs to the environment. As a general trend, ARG concentrations upstream were found to decrease as proximity to human-impacted areas decreased; however, many ARGs remained above detection limits in headwater river samples, which suggested their ubiquitous presence in this watershed in the absence of obvious pollution sources. Significant correlations with ARGs were found for human fecal marker, and some antibiotics, suggesting that these markers may be useful for prediction and understanding of ARG levels and sources in rural rivers. | 2018 | 30272774 |
| 7309 | 6 | 0.9998 | Identification of Selected Antibiotic Resistance Genes in Two Different Wastewater Treatment Plant Systems in Poland: A Preliminary Study. Antibiotic resistance is a growing problem worldwide. The emergence and rapid spread of antibiotic resistance determinants have led to an increasing concern about the potential environmental and public health endangering. Wastewater treatment plants (WWTPs) play an important role in this phenomenon since antibacterial drugs introduced into wastewater can exert a selection pressure on antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Therefore, WWTPs are perceived as the main sources of antibiotics, ARB and ARG spread in various environmental components. Furthermore, technological processes used in WWTPs and its exploitation conditions may influence the effectiveness of antibiotic resistance determinants' elimination. The main aim of the present study was to compare the occurrence of selected tetracycline and sulfonamide resistance genes in raw influent and final effluent samples from two WWTPs different in terms of size and applied biological wastewater treatment processes (conventional activated sludge (AS)-based and combining a conventional AS-based method with constructed wetlands (CWs)). All 13 selected ARGs were detected in raw influent and final effluent samples from both WWTPs. Significant ARG enrichment, especially for tet(B, K, L, O) and sulIII genes, was observed in conventional WWTP. The obtained data did not show a clear trend in seasonal fluctuations in the abundance of selected resistance genes in wastewaters. | 2020 | 32575673 |
| 7391 | 7 | 0.9998 | Antibiotic resistance genes in China: occurrence, risk, and correlation among different parameters. Antibiotic resistance has become a widely concerned issue due to the huge risk on the ecological environment and human health. China has the highest production and consumption of antibiotics than other countries. Thus, antibiotic resistance genes (ARGs) have been detected in various environmental settings (e.g., surface water, wastewater, sediment) in China. The occurrence of ARGs in these matrixes was summarized and discussed in this review. Sulfonamide resistance genes and tetracycline resistance genes were the most frequently detected ARGs in China. According to the abundance of these two classes of ARGs in the natural environment, sulfonamide resistance genes seem to be more stable than tetracycline resistance genes. Furthermore, the relationships between ARGs and antibiotics, antibiotic resistance bacteria (ARB), heavy metals, and environmental parameters (e.g., pH, organics) were also investigated. Specifically, relative abundance of total ARGs was found to correlate well with concentration of total antibiotics in aqueous phase but not in the solid phase (soil, sediment, sludge, and manure). As for relationship between ARGs and ARB, metals, and environmental parameters in different media, due to complex and variable environment, some exhibit positive correlation, some negative, while others no correlation at all. Three potential risks are discussed in the text: transmission to human, synergistic effect of different ARGs, and variability of ARGs. However, due to the complexity of the environment, more work is needed to establish a quantitative approach of ARG risk assessment, which can provide a theoretical support for the management of antibiotics and the protection of human health. | 2018 | 29948704 |
| 7339 | 8 | 0.9998 | Host range of antibiotic resistance genes in wastewater treatment plant influent and effluent. Wastewater treatment plants (WWTPs) collect wastewater from various sources for a multi-step treatment process. By mixing a large variety of bacteria and promoting their proximity, WWTPs constitute potential hotspots for the emergence of antibiotic resistant bacteria. Concerns have been expressed regarding the potential of WWTPs to spread antibiotic resistance genes (ARGs) from environmental reservoirs to human pathogens. We utilized epicPCR (Emulsion, Paired Isolation and Concatenation PCR) to detect the bacterial hosts of ARGs in two WWTPs. We identified the host distribution of four resistance-associated genes (tetM, int1, qacEΔ1and blaOXA-58) in influent and effluent. The bacterial hosts of these resistance genes varied between the WWTP influent and effluent, with a generally decreasing host range in the effluent. Through 16S rRNA gene sequencing, it was determined that the resistance gene carrying bacteria include both abundant and rare taxa. Our results suggest that the studied WWTPs mostly succeed in decreasing the host range of the resistance genes during the treatment process. Still, there were instances where effluent contained resistance genes in bacterial groups not carrying these genes in the influent. By permitting exhaustive profiling of resistance-associated gene hosts in WWTP bacterial communities, the application of epicPCR provides a new level of precision to our resistance gene risk estimates. | 2018 | 29514229 |
| 7311 | 9 | 0.9998 | Sludge as a potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions. The emergence and prevalence of antibiotic resistance genes (ARGs) in the environment is a serious global health concern. ARGs found in bacteria can become mobilized in bacteriophage particles in the environment. Sludge derived from secondary treatment in wastewater treatment plants (WWTPs) constitutes a concentrated pool of bacteria and phages that are removed during the treatment process. This study evaluates the prevalence of ARGs in the bacterial and phage fractions of anaerobic digested sludge; five ARGs (blaTEM, blaCTX-M, qnrA, qnrS, and sul1) are quantified by qPCR. Comparison between the wastewater and sludge revealed a shift in the prevalence of ARGs (blaTEM and sul1 became more prevalent in sludge), suggesting there is a change in the bacterial and phage populations from wastewater to those selected during the secondary treatment and the later anaerobic mesophilic digestion of the sludge. ARGs densities were higher in the bacterial than in the phage fraction, with high densities in both fractions; particularly for blaTEM and sul1 (5 and 8 log10 gene copies (GC)/g, respectively, in bacterial DNA; 5.5 and 4.4 log10 GC/g, respectively, in phage DNA). These results question the potential agricultural uses of treated sludge, as it could contribute to the spread of ARGs in the environment and have an impact on the bacterial communities of the receiving ecosystem. | 2014 | 24873655 |
| 6877 | 10 | 0.9998 | Exploring urban coastal areas: Investigating the urban coastal areas as a reservoirs of antibiotic resistance Genes★. Antibiotic resistance genes (ARGs) have long served as adaptive defensive mechanisms among bacteria, enabling their survival and propagation in challenging environments. The consequences of inefficient wastewater treatment have culminated the emergence of untreatable and lethal extensively drug-resistant. To understand the relationship between wastewater effluent and marine ecosystems, we conducted a study to monitor the diversity and prevalence of common ARGs in Hong Kong's urban coastal areas at different seasons. Our findings revealed that sul 1 was the most abundant resistance gene, with an average relative abundance of 4.45 × 10(-2) per 16s rRNA gene copy. Moreover, temperature, dissolved oxygen, and salinity were key factors influencing seasonal variations in total ARGs abundance. The influence of environmental factors varied based on ARGs' association with Intl1, with Intl1-associated ARGs strongly correlating with temperature and dissolved oxygen. Notably, despite their abundance, sul1 and mphA exhibited similar correlations with both Intl1 and key environmental factors, suggesting these ARGs share a common dissemination mechanism. Moreover, the robust association between resistance genes and mobile genetic elements (MGE) could potentially act as a valuable indicator for assessing the efficacy of removing ARGs in wastewater treatment methods when operating under carefully optimized environmental parameters. | 2025 | 39642594 |
| 7314 | 11 | 0.9998 | Microbial diversity and antibiotic resistance in a final effluent-receiving lake. Wastewater treatment plants have been recognised as hotspots for antibiotic resistance genes and antibiotic-resistant bacteria which enter the environment. However, the persistence of these genes and bacteria in receiving ecosystems remains poorly understood. The aim of the study was to evaluate the effect of final effluent release on microbial diversity and the antibiotic resistance gene pool in a final effluent-receiving lake. The numbers of total culturable heterotrophs and unculturable bacteria (represented as the 16S rRNA gene copy number) were significantly reduced during the treatment process. The number of ampicillin-resistant bacteria was higher in the sediment than in water samples, suggesting accumulation of ampicillin-resistant bacteria in freshwater sediments. Using an exogenous method, we captured 56 resistance plasmids which were further characterised. Next-generation sequencing revealed that the microbial phyla represented in the studied metagenomes were typical of corresponding environments. The highest relative abundance of antibiotic resistance genes was observed in the final effluent, suggesting that a considerable number of genes were released from the wastewater treatment plant. However, the lowest relative abundance and lowest diversity of the genes in the lake water, compared to the other studied metagenomes, suggest a negligible effect of treated sewage release on antibiotic resistance within water microbial communities of the lake. Furthermore, uncontrolled sewage dumping into this reservoir in the past as well as lower quality of the water upstream of the lake indicated that the wastewater treatment plant protected the studied ecosystem. | 2019 | 30373071 |
| 7318 | 12 | 0.9998 | Sewerage surveillance tracking characteristics of human antibiotic resistance genes in sewer system. Sewage surveillance is widely applied to track valid human excretion information and identify public health conditions during corona virus disease 2019 (COVID-19) pandemic. This approach can be applied to monitor the antibiotic resistance level in sewers and to assess the risk of spreading antibiotic resistance in municipal wastewater systems. However, there is still little information about human antibiotic resistance occurrence characteristics in sewer system. This study conducted a field trial for whole year to advance understanding on spatial and temporal occurrence of antibiotic resistance genes (ARGs) in gravity sewerage. The spatial distribution of ARGs along the drainage pipe line (from human settlements to wastewater treatement pant (WWTP)) was insignificant, which may be affected by irregular human emission alongside the pipeline. The correlation between ARGs and antibiotics in sewage was insignificant. The temporal distribution showed that the effect of temperature on ARGs abundance was evident, the ARGs abundance in sewage was generally higher during the cold season. Metagenomic analysis revealed that the detected ARGs were mainly distributed in Proteobacteria (47.51 %) and Antinobacteria (20.11 %). Potential hosts of ARGs in sewage were mainly identified as human gut microorganisms, including human pathogenic bacteria, such as Prevotella, Kocuria, and Propionibacterium, etc. This study provides a new insight into the sewerage surveillance tracking characteristics of human ARGs in sewer system, and suggesting that the sewage-carried ARGs surveillance is a promising method for assessment and management of antibiotic resistance level on population size. | 2024 | 39209175 |
| 7370 | 13 | 0.9998 | Distinct Resistomes and Microbial Communities of Soils, Wastewater Treatment Plants and Households Suggest Development of Antibiotic Resistances Due to Distinct Environmental Conditions in Each Environment. The use of antibiotics in humans and animals results in a release of excess antibiotic residues into the environment through wastewaters and insufficient removal in wastewater treatment plants (WWTP), leading to increasing numbers of bacteria enriched in antibiotic resistance genes (ARG). However, the potential transfer of ARG and their host bacteria between different environments remains largely unexplored. Since many factors need to be fulfilled for a transfer between different environments, we hypothesized that antibiotic resistance (ABR) is less frequently transferred between environments in the same geographical region but rather develops and clusters in each distinct environment, leading to characteristic metagenome patterns in samples of different environments. We sampled agricultural soils, a WWTP and private households and performed metagenomic analyses to evaluate differences and potential overlaps in bacterial communities and resistomes of different environments. Wastewater revealed significantly higher richness of ARG (n = 40) and mobile genetic elements (n = 52) than soil and household samples. Bacterial communities differed between the environments and antibiotic resistance factors clustered distinctly. Overall, only few overlaps of ARG between the environments were observed, leading to the conclusion that ABR predominantly develops in individual environments as caused by environmental filtering for ARG, while a transfer between different environments is less likely. | 2021 | 34062756 |
| 6883 | 14 | 0.9998 | Metagenomic insights into the profile of antibiotic resistomes in sediments of aquaculture wastewater treatment system. To meet the rapidly growing global demand for aquaculture products, large amounts of antibiotics were used in aquaculture, which might accelerate the evolution of antibiotic-resistant bacteria (ARB) and the propagation of antibiotic genes (ARGs). In our research, we revealed the ARGs profiles, their co-occurrence with mobile genetic elements (MGEs), and potential hosts in sediments of a crab pond wastewater purification system based on metagenomic analysis. The residual antibiotic seems to increase the propagation of ARGs in the crab pond, but there was no clear relationship between a given antibiotic type and the corresponding resistance genes. The effect of aquaculture on sediment was not as profound as that of other anthropogentic activities, but increased the relative abundance of sulfonamide resistance gene. A higher abundance of MGEs, especially plasmid, increased the potential ARGs dissemination risk in crab and purification ponds. Multidrug and sulfonamide resistance genes had greater potential to transfer because they were more frequently carried by MGEs. The horizontal gene transfer was likely to occur among a variety of microorganisms, and various ARGs hosts including Pseudomonas, Acinetobacter, Escherichia, and Klebsiella were identified. Bacterial community influenced the composition of ARG hosts, and Proteobacteria was the predominant hosts. Overall, our study provides novel insights into the environmental risk of ARGs in sediments of aquaculture wastewater treatment system. | 2022 | 34963542 |
| 7329 | 15 | 0.9998 | Metagenomic analysis reveals the abundance changes of bacterial communities and antibiotic resistance genes in the influent and effluent of hospital wastewater. The presence of substantial quantities of antibiotics and their metabolites in hospital wastewater can lead to the accumulation of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Research on the influent and effluent sewage of hospitals is crucial for understanding the effectiveness of wastewater treatment systems in inactivating ARB and ARGs. Key features of microbial communities and ARGs in influent and effluent wastewater - including taxonomic diversity and relative abundance - were assessed via metagenomic sequencing. The treatment process resulted in a reduction of the overall bacterial count in hospital wastewater. However, a notable increase in relative abundance was observed for three phyla, 16 genera, and 21 species post-treatment. Bacteria harboring ARGs were predominantly identified as belonging to Pseudomonadota and Bacillota. A total of 354 ARGs were detected in the influent, while 331 were identified in the effluent samples, with a general decrease in absolute abundance. Nevertheless, the relative abundance of certain ARGs, such as mphG, fosA8, and soxR, was found to increase in the effluent across all samples. Seasonal fluctuations also played a role in the distribution of microbial communities and ARGs. These findings underscore the role of hospital wastewater treatment systems in reducing the discharge of ARB and ARGs into the environment, while also revealing potential shortcomings in the wastewater treatment process that necessitate further improvement for more effective removal of these ARGs. | 2025 | 41171744 |
| 7326 | 16 | 0.9998 | Antibiotic resistance genes associated with size-segregated bioaerosols from wastewater treatment plants: A review. The antibiotic-resistant pollution in size-segregated bioaerosols from wastewater treatment plants (WWTPs) is of increasing concern due to its public health risks, but an elaborate review is still lacking. This work overviewed the profile, mobility, pathogenic hosts, source, and risks of antibiotic resistance genes (ARGs) in size-segregated bioaerosols from WWTPs. The dominant ARG type in size-segregated bioaerosols from WWTPs was multidrug resistance genes. Treatment units that equipped with mechanical facilities and aeration devices, such as grilles, grit chambers, biochemical reaction tanks, and sludge treatment units, were the primary sources of bioaerosol antibiotic resistome in WWTPs. Higher enrichment of antibiotic resistome in particulate matter with an aerodynamic diameter of <2.5 μm, was found along the upwind-downwind-WWTPs gradient. Only a small portion of ARGs in inhalable bioaerosols from WWTPs were flanked by mobile genetic elements. The pathogens with multiple drug resistance had been found in size-segregated bioaerosols from WWTPs. Different ARGs or antibiotic resistant bacteria have different aerosolization potential associated with bioaerosols from various treatment processes. The validation of pathogenic antibiotic resistance bacteria, deeper investigation of ARG mobility, emission mechanism of antibiotic resistome, and development of treatment technologies, should be systematically considered in future. | 2024 | 38128715 |
| 6846 | 17 | 0.9998 | Antibiotic resistance genes in an urban river as impacted by bacterial community and physicochemical parameters. Antibiotic resistance genes (ARGs) in urban rivers are a serious public health concern in regions with poorly planned, rapid development. To gain insights into the predominant factors affecting the fate of ARGs in a highly polluted urban river in eastern China, a total of 285 ARGs, microbial communities, and 20 physicochemical parameters were analyzed for 17 sites. A total of 258 unique ARGs were detected using high-throughput qPCR, and the absolute abundance of total ARGs was positively correlated with total organic carbon and total dissolved nitrogen concentrations (P < 0.01). ARG abundance and diversity were greatly altered by microbial community structure. Variation partitioning analysis showed that the combined effects of multiple factors contributed to the profile and dissemination of ARGs, and variation of microbial communities was the major factor affecting the distribution of ARGs. The disparate distribution of some bacteria, including Bacteroides from mammalian gastrointestinal flora, Burkholderia from zoonotic infectious diseases, and Zoogloea from wastewater treatment, indicates that the urban river was strongly influenced by point-source pollution. Results imply that microbial community shifts caused by changes in water quality may lead to the spread of ARGs, and point-source pollution in urban rivers requires greater attention to control the transfer of ARGs between environmental bacteria and pathogens. | 2017 | 28864929 |
| 7328 | 18 | 0.9998 | Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water. The presence of pathogenic bacteria and the dissemination of antibiotic resistance genes (ARGs) may pose big risks to the rivers that receive the effluent from municipal wastewater treatment plants (WWTPs). In this study, we investigated the changes of bacterial community and ARGs along treatment processes of one WWTP, and examined the effects of the effluent discharge on the bacterial community and ARGs in the receiving river. Pyrosequencing was applied to reveal bacterial community composition including potential bacterial pathogen, and Illumina high-throughput sequencing was used for profiling ARGs. The results showed that the WWTP had good removal efficiency on potential pathogenic bacteria (especially Arcobacter butzleri) and ARGs. Moreover, the bacterial communities of downstream and upstream of the river showed no significant difference. However, the increase in the abundance of potential pathogens and ARGs at effluent outfall was observed, indicating that WWTP effluent might contribute to the dissemination of potential pathogenic bacteria and ARGs in the receiving river. | 2016 | 27340885 |
| 7338 | 19 | 0.9998 | Sensitivity and consistency of long- and short-read metagenomics and epicPCR for the detection of antibiotic resistance genes and their bacterial hosts in wastewater. Wastewater surveillance is a powerful tool to assess the risks associated with antibiotic resistance in communities. One challenge is selecting which analytical tool to deploy to measure risk indicators, such as antibiotic resistance genes (ARGs) and their respective bacterial hosts. Although metagenomics is frequently used for analyzing ARGs, few studies have compared the performance of long-read and short-read metagenomics in identifying which bacteria harbor ARGs in wastewater. Furthermore, for ARG host detection, untargeted metagenomics has not been compared to targeted methods such as epicPCR. Here, we 1) evaluated long-read and short-read metagenomics as well as epicPCR for detecting ARG hosts in wastewater, and 2) investigated the host range of ARGs across the wastewater treatment plant (WWTP) to evaluate host proliferation. Results highlighted long-read revealed a wider range of ARG hosts compared to short-read metagenomics. Nonetheless, the ARG host range detected by long-read metagenomics only represented a subset of the hosts detected by epicPCR. The ARG-host linkages across the influent and effluent of the WWTP were characterized. Results showed the ARG-host phylum linkages were relatively consistent across the WWTP, whereas new ARG-host species linkages appeared in the WWTP effluent. The ARG-host linkages of several clinically relevant species found in the effluent were identified. | 2024 | 38490149 |