Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
73101.0000Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Bacterial pathogenesis requires proteins that sense host microenvironments and respond by regulating virulence gene transcription. For Salmonellae, one such regulatory system is PhoP-PhoQ, which regulates genes required for intracellular survival and resistance to cationic peptides. Analysis by mass spectrometry revealed that Salmonella typhimurium PhoP-PhoQ regulated structural modifications of lipid A, the host signaling portion of lipopolysaccharide (LPS), by the addition of aminoarabinose and 2-hydroxymyristate. Structurally modified lipid A altered LPS-mediated expression of the adhesion molecule E-selectin by endothelial cells and tumor necrosis factor-alpha expression by adherent monocytes. Thus, altered responses to environmentally induced lipid A structural modifications may represent a mechanism for bacteria to gain advantage within host tissues.19979092473
73010.9997How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. Bacterial pathogens regulate the expression of virulence factors in response to environmental signals. In the case of salmonellae, many virulence factors are regulated via PhoP/PhoQ, a two-component signal transduction system that is repressed by magnesium and calcium in vitro. PhoP/PhoQ-activated genes promote intracellular survival within macrophages, whereas PhoP-repressed genes promote entrance into epithelial cells and macrophages by macropinocytosis and stimulate epithelial cell cytokine production. PhoP-activated genes include those that alter the cell envelope through structural alterations of lipopolysaccharide and lipid A, the bioactive component of lipopolysaccharide. PhoP-activated changes in the bacterial envelope likely promote intracellular survival by increasing resistance to host cationic antimicrobial peptides and decreasing host cell cytokine production.199910081503
72720.9995Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope. Bacillus subtilis provides a model for investigation of the bacterial cell envelope, the first line of defense against environmental threats. Extracytoplasmic function (ECF) sigma factors activate genes that confer resistance to agents that threaten the integrity of the envelope. Although their individual regulons overlap, σ(W) is most closely associated with membrane-active agents, σ(X) with cationic antimicrobial peptide resistance, and σ(V) with resistance to lysozyme. Here, I highlight the role of the σ(M) regulon, which is strongly induced by conditions that impair peptidoglycan synthesis and includes the core pathways of envelope synthesis and cell division, as well as stress-inducible alternative enzymes. Studies of these cell envelope stress responses provide insights into how bacteria acclimate to the presence of antibiotics.201626901131
70730.9995Reciprocal control between a bacterium's regulatory system and the modification status of its lipopolysaccharide. Gram-negative bacteria often modify their lipopolysaccharide (LPS), thereby increasing resistance to antimicrobial agents and avoidance of the host immune system. However, it is unclear how bacteria adjust the levels and activities of LPS-modifying enzymes in response to the modification status of their LPS. We now address this question by investigating the major regulator of LPS modifications in Salmonella enterica. We report that the PmrA/PmrB system controls expression of a membrane peptide that inhibits the activity of LpxT, an enzyme responsible for increasing the LPS negative charge. LpxT's inhibition and the PmrA-dependent incorporation of positively charged L-4-aminoarabinose into the LPS decrease Fe(3+) binding to the bacterial cell. Because Fe(3+) is an activating ligand for the sensor PmrB, transcription of PmrA-dependent LPS-modifying genes is reduced. This mechanism enables bacteria to sense their cell surface by its effect on the availability of an inducing signal for the system regulating cell-surface modifications.201222921935
70340.9994Bacterial modification of LPS and resistance to antimicrobial peptides. Antimicrobial peptides (APs) are ubiquitous in nature and are thought to kill micro-organisms by affecting membrane integrity. These positively charged peptides interact with negative charges in the LPS of Gram-negative bacteria. A common mechanism of resistance to AP killing is LPS modification. These modifications include fatty acid additions, phosphoethanolamine (PEtN) addition to the core and lipid A regions, 4-amino-4-deoxy-L-arabinose (Ara4N) addition to the core and lipid A regions, acetylation of the O-antigen, and possibly hydroxylation of fatty acids. In Salmonella typhimurium, LPS modifications are induced within host tissues by the two-component regulatory systems PhoPQ and PmrAB. PmrAB activation results in AP resistance by Ara4N addition to lipid A through the activation of at least 8 genes, 7 of which are transcribed as an operon. Loss of this operon and, therefore, Ara4N LPS modification, affects S. typhimurium virulence when administered orally. Transposon mutagenesis of Proteus mirabilis also suggests that LPS modifications affect AP resistance and virulence phenotypes. Therefore, LPS modification in Gram-negative bacteria plays a significant role during infection in resistance to host antimicrobial factors, avoidance of immune system recognition, and maintenance of virulence phenotypes.200111521084
66850.9994c-di-GMP regulates the resistance of Pseudomonas aeruginosa to heat shock and aminoglycoside antibiotics by targeting the σ factor RpoH. Cyclic di-GMP (c-di-GMP) is a second messenger molecule that is widely distributed in bacteria and plays various physiologically important regulatory roles through interactions with a variety of effector molecules. Sigma (σ) factors are the predominant transcription factors involved in transcription regulation in bacteria. While c-di-GMP has been shown to bind to a range of transcription factors, c-di-GMP-binding σ factors have never been reported before. In a c-di-GMP/σ factors binding screen, we identified the σ factor RpoH as a c-di-GMP-responsive transcription factor in Pseudomonas aeruginosa PAO1. We further show that the binding of c-di-GMP to RpoH inhibits binding of RpoH to the promoters of its target genes such as asrA and dnaK, thereby downregulating the expression of these genes and reducing the resistance of P. aeruginosa to heat shock and aminoglycoside antibiotics. RpoH from Escherichia coli, Burkholderia thailandensis and Agrobacterium tumefaciens are also capable of binding c-di-GMP, suggesting that c-di-GMP-mediated control of the activity of RpoH is conserved in members of Proteobacteria.202641005124
70660.9994Effect of PhoP-PhoQ activation by broad repertoire of antimicrobial peptides on bacterial resistance. Pathogenic bacteria can resist their microenvironment by changing the expression of virulence genes. In Salmonella typhimurium, some of these genes are controlled by the two-component system PhoP-PhoQ. Studies have shown that activation of the system by cationic antimicrobial peptides (AMPs) results, among other changes, in outer membrane remodeling. However, it is not fully clear what characteristics of AMPs are required to activate the PhoP-PhoQ system and whether activation can induce resistance to the various AMPs. For that purpose, we investigated the ability of a broad repertoire of AMPs to traverse the inner membrane, to activate the PhoP-PhoQ system, and to induce bacterial resistance. The AMPs differ in length, composition, and net positive charge, and the tested bacteria include two wild-type (WT) Salmonella strains and their corresponding PhoP-PhoQ knock-out mutants. A lacZ-reporting system was adapted to follow PhoP-PhoQ activation. The data revealed that: (i) a good correlation exists among the extent of the positive charge, hydrophobicity, and amphipathicity of an AMP and its potency to activate PhoP-PhoQ; (ii) a +1 charged peptide containing histidines was highly potent, suggesting the existence of an additional mechanism independent of the peptide charge; (iii) the WT bacteria are more resistant to AMPs that are potent activators of PhoP-PhoQ; (iv) only a subset of AMPs, independent of their potency to activate the system, is more toxic to the mutated bacteria compared with the WT strains; and (v) short term exposure of WT bacteria to these AMPs does not enhance resistance. Overall, this study advances our understanding of the molecular mechanism by which AMPs activate PhoP-PhoQ and induce bacterial resistance. It also reveals that some AMPs can overcome such a resistance mechanism.201222158870
70570.9994First structure of the polymyxin resistance proteins. PmrA/PmrB and PhoP/PhoQ are a pair of two-component systems (TCSs) that allow the Gram-negative bacteria to survive the cationic antimicrobial peptide polymyxin B. The two TCSs are linked by the polymyxin resistance protein, PmrD. The PhoP-activated PmrD protects the phosphorylated response regulator PmrA from dephosphorylation, and promotes the transcription of PmrA-activated genes responsible for polymyxin resistance. PmrD is the first protein identified to mediate the connectivity between two TCSs by protecting the phosphorylated response regulator of the downstream TCS. PmrD shows no homology to proteins with known structures. We present here the solution structure of PmrD from Escherichia coli, the first three-dimensional structure of the PmrD family. Our study provides the structural basis of the novel interacting mechanism of bacterial two-component signal-transduction systems.200717686460
831580.9993The Induction and Modulation of Plant Defense Responses by Bacterial Lipopolysaccharides. Lipopolysaccharides (LPSs) are ubiquitous, indispensable components of the cell surface of Gram-negative bacteria that apparently have diverse roles in bacterial pathogenesis of plants. As an outer membrane component, LPS may contribute to the exclusion of plant-derived antimicrobial compounds promoting the ability of a bacterial plant pathogen to infect plants. In contrast, LPS can be recognized by plants to directly trigger some plant defense-related responses. LPS can also alter the response of plants to subsequent bacterial inoculation; these delayed effects include alterations in the expression patterns of genes coding for some pathogenesis-related (PR) proteins, promotion of the synthesis of antimicrobial hydroxycinnamoyl-tyramine conjugates, and prevention of the hypersensitive reaction caused by avirulent bacteria. Prevention of the response may allow expression of resistance in the absence of catastrophic tissue damage. Recognition of LPS (and other nonspecific determinants) may initiate responses in plants that restrict the growth of nonpathogenic bacteria, whereas plant pathogens may possess hrp gene-dependent mechanisms to suppress such responses.200011701843
72990.9993Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa. Extracellular DNA (eDNA) is in the environment, bodily fluids, in the matrix of biofilms, and accumulates at infection sites. eDNA can function as a nutrient source, a universal biofilm matrix component, and an innate immune effector in eDNA traps. In biofilms, eDNA is required for attachment, aggregation, and stabilization of microcolonies. We have recently shown that eDNA can sequester divalent metal cations, which has interesting implications on antibiotic resistance. eDNA binds metal cations and thus activates the Mg(2+)-responsive PhoPQ and PmrAB two-component systems. In Pseudomonas aeruginosa and many other Gram-negative bacteria, the PhoPQ/PmrAB systems control various genes required for virulence and resisting killing by antimicrobial peptides (APs), including the pmr genes (PA3552-PA3559) that are responsible for the addition of aminoarabinose to lipid A. The PA4773-PA4775 genes are a second DNA-induced cluster and are required for the production of spermidine on the outer surface, which protects the outer membrane from AP treatment. Both modifications mask the negative surface charges and limit membrane damage by APs. DNA-enriched biofilms or planktonic cultures have increased antibiotic resistance phenotypes to APs and aminoglycosides. These dual antibiotic resistance and immune evasion strategies may be expressed in DNA-rich environments and contribute to long-term survival.201323419933
200100.9993Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Microbial infection activates two distinct intracellular signalling cascades in the immune-responsive fat body of Drosophila. Gram-positive bacteria and fungi predominantly induce the Toll signalling pathway, whereas Gram-negative bacteria activate the Imd pathway. Loss-of-function mutants in either pathway reduce the resistance to corresponding infections. Genetic screens have identified a range of genes involved in these intracellular signalling cascades, but how they are activated by microbial infection is largely unknown. Activation of the transmembrane receptor Toll requires a proteolytically cleaved form of an extracellular cytokine-like polypeptide, Spätzle, suggesting that Toll does not itself function as a bona fide recognition receptor of microbial patterns. This is in apparent contrast with the mammalian Toll-like receptors and raises the question of which host molecules actually recognize microbial patterns to activate Toll through Spätzle. Here we present a mutation that blocks Toll activation by Gram-positive bacteria and significantly decreases resistance to this type of infection. The mutation semmelweis (seml) inactivates the gene encoding a peptidoglycan recognition protein (PGRP-SA). Interestingly, seml does not affect Toll activation by fungal infection, indicating the existence of a distinct recognition system for fungi to activate the Toll pathway.200111742401
8210110.9993Bacterial sensing of antimicrobial peptides. Antimicrobial peptides (AMPs) form a crucial part of human innate host defense, especially in neutrophil phagosomes and on epithelial surfaces. Bacteria have a variety of efficient resistance mechanisms to human AMPs, such as efflux pumps, secreted proteases, and alterations of the bacterial cell surface that are aimed to minimize attraction of the typically cationic AMPs. In addition, bacteria have specific sensors that activate AMP resistance mechanisms when AMPs are present. The prototypical Gram-negative PhoP/PhoQ and the Gram-positive Aps AMP-sensing systems were first described and investigated in Salmonella typhimurium and Staphylococcus epidermidis, respectively. Both include a classical bacterial two-component sensor/regulator system, but show many structural, mechanistic, and functional differences. The PhoP/PhoQ regulon controls a variety of genes not necessarily limited to AMP resistance mechanisms, but apparently aimed to combat innate host defense on a broad scale. In contrast, the staphylococcal Aps system predominantly upregulates AMP resistance mechanisms, namely the D-alanylation of teichoic acids, inclusion of lysyl-phosphati-dylglycerol in the cytoplasmic membrane, and expression of the putative VraFG AMP efflux pump. Notably, both systems are crucial for virulence and represent possible targets for antimicrobial therapy.200919494583
709120.9993Structure of the Response Regulator NsrR from Streptococcus agalactiae, Which Is Involved in Lantibiotic Resistance. Lantibiotics are antimicrobial peptides produced by Gram-positive bacteria. Interestingly, several clinically relevant and human pathogenic strains are inherently resistant towards lantibiotics. The expression of the genes responsible for lantibiotic resistance is regulated by a specific two-component system consisting of a histidine kinase and a response regulator. Here, we focused on a response regulator involved in lantibiotic resistance, NsrR from Streptococcus agalactiae, and determined the crystal structures of its N-terminal receiver domain and C-terminal DNA-binding effector domain. The C-terminal domain exhibits a fold that classifies NsrR as a member of the OmpR/PhoB subfamily of regulators. Amino acids involved in phosphorylation, dimerization, and DNA-binding were identified and demonstrated to be conserved in lantibiotic resistance regulators. Finally, a model of the full-length NsrR in the active and inactive state provides insights into protein dimerization and DNA-binding.201626930060
722130.9993Evolution of Escherichia coli for maximum HOCl resistance through constitutive expression of the OxyR regulon. Exposure of cells to stress impairs cellular functions and may cause killing or adaptation. Adaptation can be facilitated by stress-induced mutagenesis or epigenetic changes, i.e. phenotypic variation without mutations. Upon exposure to HOCl, which is produced by the innate immune system upon bacterial infection, bacteria trigger stress responses that enable increased survival against the stress. Here, we addressed the question whether bacteria can adapt to high HOCl doses and if so, how the acquired resistance is facilitated. We evolved Escherichia coli cells for maximum HOCl resistance by successively increasing the HOCl concentration in the cultivation medium. HOCl-resistant cells showed broad stress resistance but did not carry any chromosomal mutations as revealed by whole-genome sequencing. According to proteome analysis and analysis of transcript levels of stress-related genes, HOCl resistance was accompanied by altered levels of outer-membrane proteins A, C, F and W, and, most prominently, a constitutively expressed OxyR regulon. Induction of the OxyR regulon is facilitated by a partially oxidized OxyR leading to increased levels of antioxidant proteins such as Dps, AhpC/AhpF and KatG. These changes were maintained in evolved strains even when they were cultivated without stress for a prolonged time, indicating epigenetic changes contributed to stress resistance. This indicated that maximum HOCl resistance was conferred by the accumulated action of the OxyR stress response and other factors such as altered levels of outer-membrane proteins.201424899627
704140.9993Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in Burkholderia cenocepacia(†). One common mechanism of resistance against antimicrobial peptides in Gram-negative bacteria is the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) to the lipopolysaccharide (LPS) molecule. Burkholderia cenocepacia exhibits extraordinary intrinsic resistance to antimicrobial peptides and other antibiotics. We have previously discovered that unlike other bacteria, B. cenocepacia requires L-Ara4N for viability. Here, we describe the isolation of B. cenocepacia suppressor mutants that remain viable despite the deletion of genes required for L-Ara4N synthesis and transfer to the LPS. The absence of L-Ara4N is the only structural difference in the LPS of the mutants compared with that of the parental strain. The mutants also become highly sensitive to polymyxin B and melittin, two different classes of antimicrobial peptides. The suppressor phenotype resulted from a single amino acid replacement (aspartic acid to histidine) at position 31 of LptG, a protein component of the multi-protein pathway responsible for the export of the LPS molecule from the inner to the outer membrane. We propose that L-Ara4N modification of LPS provides a molecular signature required for LPS export and proper assembly at the outer membrane of B. cenocepacia, and is the most critical determinant for the intrinsic resistance of this bacterium to antimicrobial peptides.201222742453
726150.9993Regulation of antimicrobial resistance by extracytoplasmic function (ECF) sigma factors. Extracytoplasmic function (ECF) sigma factors are a subfamily of σ(70) sigma factors that activate genes involved in stress-response functions. In many bacteria, ECF sigma factors regulate resistance to antimicrobial compounds. This review will summarize the ECF sigma factors that regulate antimicrobial resistance in model organisms and clinically relevant pathogens.201728153747
686160.9992SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. One of the strongest and most noticeable responses of Bacillus subtilis cells to a range of stress and starvation stimuli is the dramatic induction of about 150 SigB-dependent general stress genes. The activity of SigB itself is tightly regulated by a complex signal transduction cascade with at least three main signaling pathways that respond to environmental stress, energy depletion, or low temperature. The SigB-dependent response is conserved in related gram-positive bacteria but is missing in strictly anaerobic or in some facultatively anaerobic gram-positive bacteria. It covers functions from nonspecific and multiple stress resistance to the control of virulence in pathogenic bacteria. A comprehensive understanding of this crucial stress response is essential not only for bacterial physiology but also for applied microbiology, including pathogenicity and pathogen control.200718035607
8308170.9992PhoPQ Regulates Quinolone and Cephalosporin Resistance Formation in Salmonella Enteritidis at the Transcriptional Level. The two-component system (TCS) PhoPQ has been demonstrated to be crucial for the formation of resistance to quinolones and cephalosporins in Salmonella Enteritidis (S. Enteritidis). However, the mechanism underlying PhoPQ-mediated antibiotic resistance formation remains poorly understood. Here, it was shown that PhoP transcriptionally regulated an assortment of genes associated with envelope homeostasis, the osmotic stress response, and the redox balance to confer resistance to quinolones and cephalosporins in S. Enteritidis. Specifically, cells lacking the PhoP regulator, under nalidixic acid and ceftazidime stress, bore a severely compromised membrane on the aspects of integrity, fluidity, and permeability, with deficiency to withstand osmolarity stress, an increased accumulation of intracellular reactive oxygen species, and dysregulated redox homeostasis, which are unfavorable for bacterial survival. The phosphorylated PhoP elicited transcriptional alterations of resistance-associated genes, including the outer membrane porin ompF and the aconitate hydratase acnA, by directly binding to their promoters, leading to a limited influx of antibiotics and a well-maintained intracellular metabolism. Importantly, it was demonstrated that the cavity of the PhoQ sensor domain bound to and sensed quinolones/cephalosporins via the crucial surrounding residues, as their mutations abrogated the binding and PhoQ autophosphorylation. This recognition mode promoted signal transduction that activated PhoP, thereby modulating the transcription of downstream genes to accommodate cells to antibiotic stress. These findings have revealed how bacteria employ a specific TCS to sense antibiotics and combat them, suggesting PhoPQ as a potential drug target with which to surmount S. Enteritidis. IMPORTANCE The prevalence of quinolone and cephalosporin-resistant S. Enteritidis is of increasing clinical concern. Thus, it is imperative to identify novel therapeutic targets with which to treat S. Enteritidis-associated infections. The PhoPQ two-component system is conserved across a variety of Gram-negative pathogens, by which bacteria adapt to a range of environmental stimuli. Our earlier work has demonstrated the importance of PhoPQ in the resistance formation in S. Enteritidis to quinolones and cephalosporins. In the current work, we identified a global profile of genes that are regulated by PhoP under antibiotic stresses, with a focus on how PhoP regulated downstream genes, either positively or negatively. Additionally, we established that PhoQ sensed quinolones and cephalosporins in a manner of directly binding to them. These identified genes and pathways that are mediated by PhoPQ represent promising targets for the development of a drug potentiator with which to neutralize antibiotic resistance in S. Enteritidis.202337184399
698180.9992Genome-wide transcriptional changes induced by phagocytosis or growth on bacteria in Dictyostelium. BACKGROUND: Phagocytosis plays a major role in the defense of higher organisms against microbial infection and provides also the basis for antigen processing in the immune response. Cells of the model organism Dictyostelium are professional phagocytes that exploit phagocytosis of bacteria as the preferred way to ingest food, besides killing pathogens. We have investigated Dictyostelium differential gene expression during phagocytosis of non-pathogenic bacteria, using DNA microarrays, in order to identify molecular functions and novel genes involved in phagocytosis. RESULTS: The gene expression profiles of cells incubated for a brief time with bacteria were compared with cells either incubated in axenic medium or growing on bacteria. Transcriptional changes during exponential growth in axenic medium or on bacteria were also compared. We recognized 443 and 59 genes that are differentially regulated by phagocytosis or by the different growth conditions (growth on bacteria vs. axenic medium), respectively, and 102 genes regulated by both processes. Roughly one third of the genes are up-regulated compared to macropinocytosis and axenic growth. Functional annotation of differentially regulated genes with different tools revealed that phagocytosis induces profound changes in carbohydrate, amino acid and lipid metabolism, and in cytoskeletal components. Genes regulating translation and mitochondrial biogenesis are mostly up-regulated. Genes involved in sterol biosynthesis are selectively up-regulated, suggesting a shift in membrane lipid composition linked to phagocytosis. Very few changes were detected in genes required for vesicle fission/fusion, indicating that the intracellular traffic machinery is mostly in common between phagocytosis and macropinocytosis. A few putative receptors, including GPCR family 3 proteins, scaffolding and adhesion proteins, components of signal transduction and transcription factors have been identified, which could be part of a signalling complex regulating phagocytosis and adaptational downstream responses. CONCLUSION: The results highlight differences between phagocytosis and macropinocytosis, and provide the basis for targeted functional analysis of new candidate genes and for comparison studies with transcriptomes during infection with pathogenic bacteria.200818559084
8317190.9992The Quorum Sensing Auto-Inducer 2 (AI-2) Stimulates Nitrogen Fixation and Favors Ethanol Production over Biomass Accumulation in Zymomonas mobilis. Autoinducer 2 (or AI-2) is one of the molecules used by bacteria to trigger the Quorum Sensing (QS) response, which activates expression of genes involved in a series of alternative mechanisms, when cells reach high population densities (including bioluminescence, motility, biofilm formation, stress resistance, and production of public goods, or pathogenicity factors, among others). Contrary to most autoinducers, AI-2 can induce QS responses in both Gram-negative and Gram-positive bacteria, and has been suggested to constitute a trans-specific system of bacterial communication, capable of affecting even bacteria that cannot produce this autoinducer. In this work, we demonstrate that the ethanologenic Gram-negative bacterium Zymomonas mobilis (a non-AI-2 producer) responds to exogenous AI-2 by modulating expression of genes involved in mechanisms typically associated with QS in other bacteria, such as motility, DNA repair, and nitrogen fixation. Interestingly, the metabolism of AI-2-induced Z. mobilis cells seems to favor ethanol production over biomass accumulation, probably as an adaptation to the high-energy demand of N(2) fixation. This opens the possibility of employing AI-2 during the industrial production of second-generation ethanol, as a way to boost N(2) fixation by these bacteria, which could reduce costs associated with the use of nitrogen-based fertilizers, without compromising ethanol production in industrial plants.202134073173