# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7258 | 0 | 1.0000 | Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China. Non-irrigated and wastewater-irrigated soils were collected from five wastewater irrigation areas in Beijing and Tianjin, China. The concentrations of sulfadiazine, sulfamethoxazole, oxytetracycline and chlortetracycline in the soils were determined. Abundances of antibiotic resistant bacteria and corresponding resistance genes were also measured to examine the impact of wastewater irrigation. No significant difference in antibiotic resistance bacteria was observed between irrigated and non-irrigated soils. However, the concentrations of antibiotics and abundances of resistance genes were significantly greater in irrigated soils, indicating that agricultural activities enhanced the occurrence of antibiotics and resistance genes in the soils. In addition, no significant difference was observed between previously and currently wastewater-irrigated soils. Therefore, cessation of wastewater irrigation did not significantly reduce the levels of antibiotic concentrations and resistance gene abundances. Other factors, e.g., manure application, may explain the lack of significant difference in the occurrence of antibiotics and resistance genes between previously and currently wastewater-irrigated soils. | 2014 | 25016103 |
| 7254 | 1 | 0.9999 | Field-based evidence for enrichment of antibiotic resistance genes and mobile genetic elements in manure-amended vegetable soils. The increasing prevalence of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in the soil environment represents a serious threat to public health. In this study, the diversity and abundance of ARGs and mobile genetic elements (MGEs) in different years of manure-amended vegetable soils were investigated. A total of eight genes, including four tetracycline resistance genes: tetW, tetM, tetO and tetT; two sulfonamide resistance genes: sul1 and sul2; and two MGEs: intI1 and intI2; were quantified in ten vegetable soils. The relative abundance of ARGs in soils amended with manure was significantly higher than that in soils without manure application. The relative abundance of the intI1 and intI2 genes had significantly positive correlations with the relative abundance of the tetW, tetO, sul1 and sul2 genes. Under different concentrations of antibiotics, the resistant bacteria rates of manure-amended soil were much higher than the control soil. Bacillus and Chryseobacterium, more likely to be multi-drug-resistant bacteria, were detected in both two antibiotics. Moreover, the significant correlation was found between the concentrations of Cu and Zn and the ARGs. Our findings provide empirical evidence that the dissemination risk of ARGs and ARB in long-term manure-amended vegetable soils, which might promote to the development of effective strategies to reduce the spread of ARGs in agro-ecosystems. | 2019 | 30453260 |
| 7259 | 2 | 0.9999 | Practical survey on antibiotic-resistant bacterial communities in livestock manure and manure-amended soil. Through livestock manure fertilization, antibiotics, antibiotic-resistant bacteria and genes are transferred to agricultural soils, resulting in a high prevalence of antibiotic-resistant bacteria in the soil. It is not clear, however, whether a correlation exists between resistant bacterial populations in manure and manure-amended soil. In this work, we demonstrate that the prevalence of cephalexin-, amoxicillin-, kanamycin- and gentamicin-resistant bacteria as well as bacteria simultaneously resistant to all four antibiotics was much higher in manure-amended soils than in manure-free soil. 454-pyrosequencing indicated that the ARB and multiple antibiotic-resistant bacteria (MARB) in swine or chicken manure and manure-amended soil were mainly distributed among Sphingobacterium, Myroides, Enterococcus, Comamonas and unclassified Flavobacteriaceae. The genus Sphingobacterium was highly prevalent among ARB from swine manure and manure-amended soil, and was also the most dominant genus among MARB from chicken manure and manure-amended soil. Other dominant genera among ARB or MARB populations in manure samples, including Myroides, Enterococcus and Comamonas, could not be detected or were detected at very low relative abundance in manure-amended soil. The present study suggests the possibility of transfer of ARBs from livestock manures to soils and persistence of ARB in these environments. | 2016 | 26513264 |
| 7067 | 3 | 0.9999 | Impact of the antibiotic doxycycline on the D. magna reproduction, associated microbiome and antibiotic resistance genes in treated wastewater conditions. Wastewater Treatment Plant (WWTP) effluents are important sources of antibiotics, antibiotic resistance genes (ARGs) and resistant bacteria that threaten aquatic biota and human heath. Antibiotic effects on host-associated microbiomes, spread of ARGs and the consequences for host health are still poorly described. This study investigated changes of the Daphnia magna associated microbiome exposed to the recalcitrant antibiotic doxycycline under artificial reconstituted lab water media (lab water) and treated wastewater media. D. magna individual juveniles were exposed for 10 days to treated wastewater with and without doxycycline, and similarly in lab water. We analysed 16 S rRNA gene sequences to assess changes in community structure, monitored Daphnia offspring production and quantified ARGs abundances by qPCR from both Daphnia and water (before and after the exposure). Results showed that doxycycline and media (lab water or wastewater) had a significant effect modulating Daphnia-associated microbiome composition and one of the most discriminant taxa was Enterococcus spp. Moreover, in lab water, doxycycline reduced the presence of Limnohabitans sp., which are dominant bacteria of the D. magna-associated microbiome and impaired Daphnia reproduction. Contrarily, treated wastewater increased diversity and richness of Daphnia-associated microbiome and promoted fecundity. In addition, the detected ARG genes in both lab water and treated wastewater medium included the qnrS1, sul1, and bla(TEM,) and the integron-related intI1 gene. The treated wastewater contained about 10 times more ARGs than lab water alone. Furthermore, there was an increase of sul1 in Daphnia cultured in treated wastewater compared to lab water. In addition, there were signs of a higher biodegradation of doxycycline by microbiomes of treated wastewater in comparison to lab water. Thus, results suggest that Daphnia-associated microbiomes are influenced by their environment, and that bacterial communities present in treated wastewater are better suited to cope with the effects of antibiotics. | 2023 | 37442322 |
| 6848 | 4 | 0.9999 | Swine farming elevated the proliferation of Acinetobacter with the prevalence of antibiotic resistance genes in the groundwater. Swine farming generates a large amount of wastes containing various contaminants, resulting in environmental contamination and human health problems. Here we investigated the contamination profiles of antibiotics and antibiotic resistance genes (ARGs) as well as microbial community in groundwater of the two villages with or without swine farms, and then assessed the human exposure risks of antibiotics, ARGs and indicator bacteria through drinking groundwater. The results showed that swine farming could lead to enhanced concentration levels of various veterinary antibiotics and ARGs in the groundwater in comparison to the reference village without swine farming. The microbial diversity of groundwater was significantly decreased with predominance of conditional pathogens Acinetobacter (up to 90%) in some wells of the swine farming village. Meanwhile, the abundance of Acinetobacter was significantly correlated to bacterial abundance, ARGs and integrons. The local residents could ingest various antibiotic residues and ARGs as well as pathogens, with daily intake of Acinetobacter up to approximately 10 billion CFU/resident through drinking groundwater contaminated by swine farming. The findings from this study suggest potential health risks of changing gut microbial community and resistome by drinking contaminated groundwater. | 2020 | 31999967 |
| 7247 | 5 | 0.9999 | Environmental analysis of typical antibiotic-resistant bacteria and ARGs in farmland soil chronically fertilized with chicken manure. Antibiotics and the corresponding resistant bacteria and resistance genes (ARGs) are generally considered emerging pollutants. To assess the impacts of tetracycline (TC) and sulfonamide (SA) antibiotics that are eliminated with fecaluria as drug prototypes, farmland soil used to research long-term fertilization with chicken manure was collected at four sites in Shandong Province. In this study, the rates of bacterial drug resistance to the same antibiotic decreased with an increase in the concentration of that antibiotic, and the resistance rates to TCs were lower than those to SAs. PCR of ARGs revealed that the ARGs detected at the highest frequency were the TC resistance genes tetW and tetO and the SA resistance genes sul1 and sul2. Real-time qPCR showed that the quantities of ARGs in farmland soil fertilized with chicken manure were significantly greater compared with the control soil. Moreover, significant correlations (R(2)=0.9525, p<0.05) between the number of sul ARGs and the total SA concentration were observed in all of the soil samples. In summary, this study showed that SAs can induce the appearance of ARGs and pollute the soil environment. | 2017 | 28340477 |
| 7255 | 6 | 0.9998 | Distribution of quinolone and macrolide resistance genes and their co-occurrence with heavy metal resistance genes in vegetable soils with long-term application of manure. The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has become an increasingly serious global public health issue. This study investigated the distribution characteristics and influencing factors of ARB and ARGs in greenhouse vegetable soils with long-term application of manure. Five typical ARGs, four heavy metal resistance genes (MRGs), and two mobile genetic elements (MGEs) were quantified by real-time quantitative polymerase chain reaction (qPCR). The amount of ARB in manure-improved soil greatly exceeded that in control soil, and the bacterial resistance rate decreased significantly with increases in antibiotic concentrations. In addition, the resistance rate of ARB to enrofloxacin (ENR) was lower than that of tylosin (TYL). Real-time qPCR results showed that long-term application of manure enhanced the relative abundance of ARGs in vegetable soils, and the content and proportion of quinolone resistance genes were higher than those of macrolide resistance genes. Redundancy analysis (RDA) showed that qepA and qnrS significantly correlated with total and available amounts of Cu and Zn, highlighting that certain heavy metals can influence persistence of ARGs. Integrase gene intI1 correlated significantly with the relative abundance of qepA, qnrS, and ermF, suggesting that intI1 played an important role in the horizontal transfer of ARGs. Furthermore, there was a weakly but not significantly positive correlation between specific detected MRGs and ARGs and MGEs. The results of this study enhance understanding the potential for increasing ARGs in manure-applied soil, assessing ecological risk and reducing the spread of ARGs. | 2022 | 34559332 |
| 6847 | 7 | 0.9998 | Nutrients, heavy metals and microbial communities co-driven distribution of antibiotic resistance genes in adjacent environment of mariculture. With the rapid development of aquaculture, the large amounts of pollutants were discharged into the aquatic environment, where the detected antibiotic resistance genes (ARGs) have drawn increasing attention due to their potential threats to ecological environment and human health. Thus, the impact of mariculture on ARGs was assessed and the underlying mechanism of their propagation was explained. Sediments from eight sampling sites were collected along a mariculture drainage ditch, and the sediment in Yellow River Delta National Park was used as a non-mariculture control. Microbial ARGs qPCR array and illumina sequencing of 16S rRNA gene were applied to examine the changing patterns of ARGs and bacterial communities. Results showed that 18 ARGs (3 fluoroquinolone, 1 aminoglycoside, 3 macrolide-lincosamide-streptogramin B, 2 tetracycline, and 9 beta-lactam resistance genes) were influenced by mariculture, and ARGs abundance and diversity were significantly increased in mariculture sediments (p < 0.05). A remarkable shift in bacterial community structure and composition was also observed. The abundance of most of ARGs were significantly decreased in the estuary samples, implying that seawater had a significant dilution effect on the ARGs emission from the mariculture sites. Partial redundancy analysis showed that nutrients, heavy metals, and bacteria communities might directly and indirectly contribute to ARGs propagation, suggesting that the profile and dissemination of ARGs were driven by the combined effects of multiple factors in mariculture-impacted sites. | 2017 | 27814984 |
| 7315 | 8 | 0.9998 | Seasonal variability of the correlation network of antibiotics, antibiotic resistance determinants, and bacteria in a wastewater treatment plant and receiving water. Sewage treatment plants are an essential source of antibiotics, antibiotic resistance determinants, and bacteria in environmental waters. However, it is still unclear whether they can maintain a relatively stable relationship in wastewater and environmental waters. This study analyzed the removal capacity of the above three pollutants in the sewage treatment plant in summer and their impact on environmental waters, and then examines the relationship between the three contaminants in the wastewater and environmental waters in summer and winter based on our previous study. The results found that the removal capacity of bacteria in summer was poor, the concentration of fluoroquinolone in the effluent was higher than that in influent, and the abundance of intI1, tetW, qnrB, and ermB increased after wastewater treatment. Proteobacteria and Bacteroides were the main bacteria that constitute the correlation network between bacteria, and they existed stably in summer and winter. However, fluoroquinolones occupied a significant position in the determinant network of antibiotics and antibiotic resistance in summer and winter. There are fewer correlation between antibiotics and antibiotics resistance determinants in winter. Interestingly, the relationship between bacteria, antibiotics, and antibiotic resistance determinants was a mainly positive correlation in summer and negative correlation in winter. This study analyzed the relationship between bacteria, antibiotics, and antibiotic resistance determinants that were stable in the wastewater and environmental waters and pointed out the direction for subsequent targeted seasonal control of novel pollutants in wastewater and environmental waters. | 2022 | 35642820 |
| 7065 | 9 | 0.9998 | Exploring the immediate and long-term impact on bacterial communities in soil amended with animal and urban organic waste fertilizers using pyrosequencing and screening for horizontal transfer of antibiotic resistance. We investigated immediate and long-term effects on bacterial populations of soil amended with cattle manure, sewage sludge or municipal solid waste compost in an ongoing agricultural field trial. Soils were sampled in weeks 0, 3, 9 and 29 after fertilizer application. Pseudomonas isolates were enumerated, and the impact on soil bacterial community structure was investigated using 16S rRNA amplicon pyrosequencing. Bacterial community structure at phylum level remained mostly unaffected. Actinobacteria, Proteobacteria and Chloroflexi were the most prevalent phyla significantly responding to sampling time. Seasonal changes seemed to prevail with decreasing bacterial richness in week 9 followed by a significant increase in week 29 (springtime). The Pseudomonas population richness seemed temporarily affected by fertilizer treatments, especially in sludge- and compost-amended soils. To explain these changes, prevalence of antibiotic- and mercury-resistant pseudomonads was investigated. Fertilizer amendment had a transient impact on the resistance profile of the soil community; abundance of resistant isolates decreased with time after fertilizer application, but persistent strains appeared multiresistant, also in unfertilized soil. Finally, the ability of a P. putida strain to take up resistance genes from indigenous soil bacteria by horizontal gene transfer was present only in week 0, indicating a temporary increase in prevalence of transferable antibiotic resistance genes. | 2014 | 25087596 |
| 7262 | 10 | 0.9998 | Soil texture-depending effects of doxycycline and streptomycin applied with manure on the bacterial community composition and resistome. Veterinary antibiotics, bacteria carrying antibiotic resistance determinants located on mobile genetic elements and nutrients are spread on agricultural soil using manure as fertilizer. However, systematic quantitative studies linking antibiotic concentrations and antimicrobial resistance genes (ARGs) in manure and the environment are scarce but needed to assess environmental risks. In this microcosm study, a sandy and a loamy soil were mixed with manure spiked with streptomycin or doxycycline at five concentrations. Total-community DNA was extracted on days 28 and 92, and the abundances of ARGs (aadA, strA, tet(A), tet(M), tet(W), tet(Q), sul1, qacE/qacEΔ1) and class 1 and 2 integron integrase genes (intI1 and intI2) were determined by qPCR relative to 16S rRNA genes. Effects on the bacterial community composition were evaluated by denaturing gradient gel electrophoresis of 16S rRNA gene amplicons. Manure application to the soils strongly increased the relative abundance of most tested genes. Antibiotics caused further enrichments which decreased over time and were mostly seen at high concentrations. Strikingly, the effects on relative gene abundances and soil bacterial community composition were more pronounced in sandy soil. The concept of defining antibiotic threshold concentrations for environmental risk assessments remains challenging due to the various influencing factors. | 2018 | 29087461 |
| 7314 | 11 | 0.9998 | Microbial diversity and antibiotic resistance in a final effluent-receiving lake. Wastewater treatment plants have been recognised as hotspots for antibiotic resistance genes and antibiotic-resistant bacteria which enter the environment. However, the persistence of these genes and bacteria in receiving ecosystems remains poorly understood. The aim of the study was to evaluate the effect of final effluent release on microbial diversity and the antibiotic resistance gene pool in a final effluent-receiving lake. The numbers of total culturable heterotrophs and unculturable bacteria (represented as the 16S rRNA gene copy number) were significantly reduced during the treatment process. The number of ampicillin-resistant bacteria was higher in the sediment than in water samples, suggesting accumulation of ampicillin-resistant bacteria in freshwater sediments. Using an exogenous method, we captured 56 resistance plasmids which were further characterised. Next-generation sequencing revealed that the microbial phyla represented in the studied metagenomes were typical of corresponding environments. The highest relative abundance of antibiotic resistance genes was observed in the final effluent, suggesting that a considerable number of genes were released from the wastewater treatment plant. However, the lowest relative abundance and lowest diversity of the genes in the lake water, compared to the other studied metagenomes, suggest a negligible effect of treated sewage release on antibiotic resistance within water microbial communities of the lake. Furthermore, uncontrolled sewage dumping into this reservoir in the past as well as lower quality of the water upstream of the lake indicated that the wastewater treatment plant protected the studied ecosystem. | 2019 | 30373071 |
| 7313 | 12 | 0.9998 | Effect of the selective pressure of sub-lethal level of heavy metals on the fate and distribution of ARGs in the catchment scale. Our previous study demonstrated that high levels of antibiotic resistance genes (ARGs) in the Haihe River were directly attributed to the excessive use of antibiotics in animal agriculture. The antibiotic residues of the Xiangjiang River determined in this study were much lower than those of the Haihe River, but the relative abundance of 16 detected ARGs (sul1, sul2 and sul3, qepA, qnrA, qnrB, qnrD and qnrS, tetA, tetB, tetW, tetM, tetQ and tetO, ermB and ermC), were as high as the Haihe River particularly in the downstream of the Xiangjiang River which is close to the extensive metal mining. The ARGs discharged from the pharmaceutical wastewater treatment plant (PWWTP) are a major source of ARGs in the upstream of the Xiangjiang River. In the downstream, selective stress of heavy metals rather than source release had a significant influence on the distinct distribution pattern of ARGs. Some heavy metals showed a positive correlation with certain ARG subtypes. Additionally, there is a positive correlation between individual ARG subtypes and heavy metal resistance genes, suggesting that heavy metals may co select the ARGs on the same plasmid of antibiotic resistant bacteria. The co-selection mechanism between specific metal and antibiotic resistance was further confirmed by these isolations encoding the resistance genotypes to antibiotics and metals. To our knowledge, this is the first study on the fate and distribution of ARGs under the selective pressure exerted by heavy metals in the catchment scale. These results are beneficial to understand the fate, and to discern the contributors of ARGs from either the source release or the selective pressure by sub-lethal levels of environmental stressors during their transport on a river catchment scale. | 2017 | 27876226 |
| 7066 | 13 | 0.9998 | Seasonality of antibiotic prescriptions for outpatients and resistance genes in sewers and wastewater treatment plant outflow. To test the hypothesis of a seasonal relationship of antibiotic prescriptions for outpatients and the abundance of antibiotic resistance genes (ARGs) in the wastewater, we investigated the distribution of prescriptions and different ARGs in the Dresden sewer system and wastewater treatment plant during a two-year sampling campaign. Based on quantitative PCR (qPCR), our results show a clear seasonal pattern for relative ARGs abundances. The higher ARGs levels in autumn and winter coincide with the higher rates of overall antibiotic prescriptions. While no significant differences of relative abundances were observed before and after the wastewater treatment for most of the relative ARGs, the treatment clearly influenced the microbial community composition and abundance. This indicates that the ARGs are probably not part of the dominant bacterial taxa, which are mainly influenced by the wastewater treatment processes, or that plasmid carrying bacteria remain constant, while plasmid free bacteria decrease. An exception was vancomycin (vanA), showing higher relative abundance in treated wastewater. It is likely that a positive selection or community changes during wastewater treatment lead to an enrichment of vanA. Our results demonstrate that in a medium-term study the combination of qPCR and next generation sequencing corroborated by drug-related health data is a suitable approach to characterize seasonal changes of ARGs in wastewater and treated wastewater. | 2016 | 27073234 |
| 6846 | 14 | 0.9998 | Antibiotic resistance genes in an urban river as impacted by bacterial community and physicochemical parameters. Antibiotic resistance genes (ARGs) in urban rivers are a serious public health concern in regions with poorly planned, rapid development. To gain insights into the predominant factors affecting the fate of ARGs in a highly polluted urban river in eastern China, a total of 285 ARGs, microbial communities, and 20 physicochemical parameters were analyzed for 17 sites. A total of 258 unique ARGs were detected using high-throughput qPCR, and the absolute abundance of total ARGs was positively correlated with total organic carbon and total dissolved nitrogen concentrations (P < 0.01). ARG abundance and diversity were greatly altered by microbial community structure. Variation partitioning analysis showed that the combined effects of multiple factors contributed to the profile and dissemination of ARGs, and variation of microbial communities was the major factor affecting the distribution of ARGs. The disparate distribution of some bacteria, including Bacteroides from mammalian gastrointestinal flora, Burkholderia from zoonotic infectious diseases, and Zoogloea from wastewater treatment, indicates that the urban river was strongly influenced by point-source pollution. Results imply that microbial community shifts caused by changes in water quality may lead to the spread of ARGs, and point-source pollution in urban rivers requires greater attention to control the transfer of ARGs between environmental bacteria and pathogens. | 2017 | 28864929 |
| 7256 | 15 | 0.9998 | Impact of direct application of biogas slurry and residue in fields: In situ analysis of antibiotic resistance genes from pig manure to fields. Biogas slurry and residue contaminated with antibiotics are widely used as fertilizers in vegetable crop planting. However, their impact on the spreading of antibiotic resistance genes (ARGs) in vegetable fields is still largely unknown. In the present study, antibiotic resistant bacteria (ARB), ARGs and bacterial communities from pig manure to fields were monitored by using viable plate counts, high-throughput fluorescent quantitative PCR (HT-qPCR) and Illumina MiSeq sequencing. Eighty-three ARGs and 3 transposons genes were detected. Anaerobic digestion reduced relative abundance of tetracycline and Macrolide-Lincosamide-Streptogramin (MLSB) resistance genes. However, the number of ARB and the relative abundance of sulfa, aminoglycoside and florfenicol, chloramphenicol, and amphenicol (FCA) resistance genes, respectively, enriched up to 270 times and 52 times in biogas residue. Long-term application of biogas slurry and residue contaminated with antibiotics in fields increased the rate of ARB as well as relative abundance of ARGs and transposons genes. Additionally, bacterial communities significantly differed between the soil treated with biogas slurry and residue and the control sample, especially the phyla Bacteroidetes and Actinobacteria. Based on network analysis, 19 genera were identified as possible hosts of the detected ARGs. Our results provide an important significance for reasonable application of biogas slurry and residue. | 2018 | 29096257 |
| 7230 | 16 | 0.9998 | Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water. As emerging contaminants, antibiotic resistance genes (ARGs) have become a public concern. This study aimed to investigate the occurrence and diversity of ARGs, and variation in the composition of bacterial communities in source water, drinking water treatment plants, and tap water in the Pearl River Delta region, South China. Various ARGs were present in the different types of water. Among the 27 target ARGs, floR and sul1 dominated in source water from three large rivers in the region. Pearson correlation analysis suggested that sul1, sul2, floR, and cmlA could be potential indicators for ARGs in water samples. The total abundance of the detected ARGs in tap water was much lower than that in source water. Sand filtration and sedimentation in drinking water treatment plants could effectively remove ARGs; in contrast, granular activated carbon filtration increased the abundance of ARGs. It was found that Pseudomonas may be involved in the proliferation and dissemination of ARGs in the studied drinking water treatment system. Bacteria and ARGs were still present in tap water after treatment, though they were significantly reduced. More research is needed to optimize the water treatment process for ARG removal. | 2018 | 29127799 |
| 7069 | 17 | 0.9998 | Native soil microorganisms hinder the soil enrichment with antibiotic resistance genes following manure applications. Bacterial genes responsible for resistance to antibiotic agents (ARG) are spread from livestock to soil through application of manure, threatening environmental and human health. We investigated the mechanisms of ARG dissemination and persistence to disentangle i) the influence of nutrients and microorganisms on the soil tetracycline (TET) resistome, and ii) the role of indigenous soil microbiota in preventing ARG spread. We analysed short-term (7 days) and persistent (84 days) effects of manure on the resistome of three antibiotic-free pasture soils. Four microcosm treatments were evaluated: control, mineral nutrient fertilization, and deposition of a layer of fresh manure onto soil or γ-irradiated soil. We quantified five TET-resistance genes, isolated 135 TET-resistant bacteria and sequenced both culturable TET-resistant and whole bacterial communities. Manure amendments, but not nutrient addition, increased the abundance of TET-r genes such as tet(Y). Such changes persisted with time, in contrast with the TET-resistant bacterial composition, which partially recovered after manure amendments. Manured γ-irradiated soils showed significantly lower nutrient content and higher TET-r gene abundance than non-irradiated soils, suggesting that native soil bacteria are essential for the fertilization effect of manure on soil as well as control the dissemination of potentially risky TET-r genes. | 2019 | 31043618 |
| 7227 | 18 | 0.9998 | High-risk antibiotics positively correlated with antibiotic resistance genes in five typical urban wastewater. Antibiotic resistance genes (ARGs) and antibiotic amount increased within close proximity to human dominated ecosystems. However, few studies assessed the distribution of antibiotics and ARGs in multiple ecosystems especially the different urban wastewater. In this study, the spatial distribution of ARGs and antibiotics across the urban wastewater included domestic, livestock, hospital, pharmaceutical wastewater, influent of the wastewater treatment plant (WWTP) in Northeast China. The q-PCR results showed that ARGs were most abundant in community wastewater and followed by WWTP influent, livestock wastewater, pharmaceutical wastewater and hospital wastewater. The ARG composition differed among the five ecotypes with qnrS was the dominant ARG subtypes in WWTP influent and community wastewater, while sul2 dominant in livestock, hospital, pharmaceutical wastewater. The concentration of antibiotics was closely related to the antibiotic usage and consumption data. In addition to the high concentration of azithromycin at all sampling points, more than half of the antibiotics in livestock wastewater were veterinary antibiotics. However, antibiotics that closely related to humankind such as roxithromycin and sulfamethoxazole accounted for a higher proportion in hospital wastewater (13.6%) and domestic sewage (33.6%), respectively. The ambiguous correlation between ARGs and their corresponding antibiotics was detected. However, antibiotics that exhibited high ecotoxic effects were closely and positively correlated with ARGs and the class 1 integrons (intI1), which indicated that high ecotoxic compounds might affect antimicrobial resistance of bacteria by mediating horizontal gene transfer of ARGs. The coupling mechanism between the ecological risk of antibiotics and bacterial resistance needed to be further studied, and thereby provided a new insight to study the impact of environmental pollutants on ARGs in various ecotypes. | 2023 | 37267763 |
| 6897 | 19 | 0.9998 | Occurrence of antibiotic resistance genes in an oilfield's water re-injection systems. The recent widespread increase in antibiotic resistance has become a real threat to both human and environmental ecosystem health. In oil reservoirs, an extreme environment potentially influenced by human activity such as water flooding, the distribution and abundance of antibiotic resistance genes (ARGs) remains poorly understood. Herein, we investigated the distribution of ARGs at different positions in a water-flooding oilfield in China, and found that ARGs were observed in all parts of the investigated system. The surface regions of the water re-injection system were more vulnerable to ARG pollution, and the final ARG concentration was up to 2.2 × 10(8) gene copies/L, and sulfonamide were the most abundant. However, ARG concentration decreased sharply in the samples from underground part of the re-injection system. The bacterial community composition was also varied with sampling position. The sample from production well, which was enriched in crude oil, contained more bacteria but the community richness was simpler. This study also indicated the wastewater-recycling process above ground, which proposed to reduce the discharge into environment directly, may pose a risk for ARGs spread. | 2020 | 31869712 |