Abundance and transferability of antibiotic resistance as related to the fate of sulfadiazine in maize rhizosphere and bulk soil. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
724501.0000Abundance and transferability of antibiotic resistance as related to the fate of sulfadiazine in maize rhizosphere and bulk soil. Veterinary antibiotics entering agricultural land with manure pose the risk of spreading antibiotic resistance. The fate of sulfadiazine (SDZ) introduced via manure and its effect on resistance gene levels in the rhizosphere were compared with that in bulk soil. Maize plants were grown for 9 weeks in soil fertilized with manure either from SDZ-treated pigs (SDZ treatment) or from untreated pigs (control). CaCl(2) -extractable concentrations of SDZ dissipated faster in the rhizosphere than in bulk soil, but SDZ remained detectable over the whole time. For bulk soil, the abundance of sul1 and sul2 relative to 16S rRNA gene copies was higher in the SDZ treatment than in the control, as revealed by quantitative PCR on days 14 and 63. In the rhizosphere, sampled on day 63, the relative sul gene abundances were also significantly increased in the SDZ treatment. The accumulated SDZ exposure (until day 63) of the bacteria significantly correlated with the log relative abundance of sul1 and sul2, so that these resistance genes were less abundant in the rhizosphere than in bulk soil. Plasmids conferring SDZ resistance, which were exogenously captured in Escherichia coli, mainly belonged to the LowGC group and carried a heterogeneous load of resistances to different classes of antibiotics.201322809094
724410.9999Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Manuring of arable soils may stimulate the spread of resistance genes by introduction of resistant populations and antibiotics. We investigated effects of pig manure and sulfadiazine (SDZ) on bacterial communities in soil microcosms. A silt loam and a loamy sand were mixed with manure containing SDZ (10 or 100 mg per kilogram of soil), and compared with untreated soil and manured soil without SDZ over a 2-month period. In both soils, manure and SDZ positively affected the quotients of total and SDZ-resistant culturable bacteria [most probable number (MPN)], and transfer frequencies of plasmids conferring SDZ resistance in filter matings of soil bacteria and an Escherichia coli recipient. Detection of sulfonamide resistance genes sul1, sul2 and sul3 in community DNA by polymerase chain reaction (PCR) and hybridization revealed a high prevalence of sul1 in manure and manured soils, while sul2 was mainly found in the loamy sand treated with manure and high SDZ amounts, and sul3 was not detected. By PCR quantification of sul1 and bacterial rrn genes, a transient effect of manure alone and a long-term effect of SDZ plus manure on absolute and relative sul1 abundance in soil was shown. The dynamics in soil of class 1 integrons, which are typically associated with sul1, was analysed by amplification of the gene cassette region. Integrons introduced by manure established in both soils. Soil type and SDZ affected the composition of integrons. The synergistic effects of manure and SDZ were still detectable after 2 months. The results suggest that manure from treated pigs enhances spread of antibiotic resistances in soil bacterial communities.200717298366
802520.9998Effect of temperature on sulfonamide antibiotics degradation, and on antibiotic resistance determinants and hosts in animal manures. Animal manure is a main reservoir of antibiotic residues and antibiotic resistance. Here, the effect of temperature on sulfonamide antibiotics (SAs), sulfonamide-resistant (SR) genes/bacteria was investigated by aerobically incubating swine and chicken manures at different temperatures. In swine manure, the SAs concentration declined with increasing temperature, with a minimum at 60°C. In chicken manure, the greatest degradation of SAs was noted at 30°C. The reduction of relative abundance of antibiotic resistance genes (ARGs) and sul-positive hosts in swine manure was more pronounced during thermophilic than mesospheric incubation; neither temperature conditions effectively reduced these parameters in chicken manure. The relationship between the residual levels/distribution profiles of SAs, ARGs (sul1, sul2 and intI1), cultivable SR bacteria and sul-positive hosts was further established. The antibiotic residual profile, rather than antibiotic concentration, acted as an important factor in the prevalence of ARGs and sul-positive hosts in manure. Corynebacterium and Leucobacter from the phylum Actinobacteria tend to be main carriers of sul1 and intI1; the relative abundance of sul2 was significantly correlated with the relative abundance of cultivable SR bacteria. Overall, differences in resistant bacterial communities also constitute a dominant factor affecting ARG variation. This study contributes to management options for reducing the pollution of antibiotics and antibiotic resistance within manure.201728711002
724630.9998Tetracycline resistance genes are more prevalent in wet soils than in dry soils. This study aimed to reveal the effects of water content on the spread of tetracycline resistance genes (TRGs) in the soil. Amendments of four samples with different soil water contents, namely 16% (dry soil) and 25% (wet soil), and with or without pig manures (PM) were conducted under laboratory conditions. Quantitative polymerase chain reaction (q-PCR) results showed that the relative abundance of TRGs (tetB, tetC, tetM, tetO, tetT, and tetZ) in the wet soils was significantly higher than that in the dry soils whether under fertilization or non-fertilization conditions. Moreover, PM application enhanced the relative abundance of TRGs. The absolute copies of TRGs did not decline with the decrease in 16S rRNA genes in wet soils, implying that most TRGs were probably located in facultative anaerobic bacteria. However, cultivable tetracycline-resistant bacteria (TRB) in the wet soils were not in line with the q-PCR results, further indicating that aerobes might not account for the increases in the relative abundance of TRGs. Diversities of aerobic TRB were significantly higher in the wet soils than in the dry soils, especially on days 14 and 28. The patterns of community structures of aerobic TRB in the wet soils or dry soils containing PM were different from those in the dry soils. Together, this study showed that the variations in bacterial communities between the wet and dry soils, especially reflected in the diversity of aerobic TRB and/or community structure of facultative anaerobic TRB, might be an important reason behind the changes in the abundance of TRGs.201829573724
719240.9998Sulfamethoxazole and COD increase abundance of sulfonamide resistance genes and change bacterial community structures within sequencing batch reactors. The abundant microbial community in biological treatment processes in wastewater treatment plants (WWTPs) may potentially enhance the horizontal gene transfer of antibiotic resistance genes with the presence of antibiotics. A lab-scale sequencing batch reactor was designed to investigate response of sulfonamide resistance genes (sulI, sulII) and bacterial communities to various concentrations of sulfamethoxazole (SMX) and chemical oxygen demand (COD) of wastewater. The SMX concentrations (0.001 mg/L, 0.1 mg/L and 10 mg/L) decreased with treatment time and higher SMX level was more difficult to remove. The presence of SMX also significantly reduced the removal efficiency of ammonia nitrogen, affecting the normal function of WWTPs. All three concentrations of SMX raised both sulI and sulII genes with higher concentrations exhibiting greater increases. The abundance of sul genes was positive correlated with treatment time and followed the second-order reaction kinetic model. Interestingly, these two genes have rather similar activity. SulI and sulII gene abundance also performed similar response to COD. Simpson index and Shannon-Weiner index did not show changes in the microbial community diversity. However, the 16S rRNA gene cloning and sequencing results showed the bacterial community structures varied during different stages. The results demonstrated that influent antibiotics into WWTPs may facilitate selection of ARGs and affect the wastewater conventional treatment as well as the bacteria community structures.201728211331
725650.9998Impact of direct application of biogas slurry and residue in fields: In situ analysis of antibiotic resistance genes from pig manure to fields. Biogas slurry and residue contaminated with antibiotics are widely used as fertilizers in vegetable crop planting. However, their impact on the spreading of antibiotic resistance genes (ARGs) in vegetable fields is still largely unknown. In the present study, antibiotic resistant bacteria (ARB), ARGs and bacterial communities from pig manure to fields were monitored by using viable plate counts, high-throughput fluorescent quantitative PCR (HT-qPCR) and Illumina MiSeq sequencing. Eighty-three ARGs and 3 transposons genes were detected. Anaerobic digestion reduced relative abundance of tetracycline and Macrolide-Lincosamide-Streptogramin (MLSB) resistance genes. However, the number of ARB and the relative abundance of sulfa, aminoglycoside and florfenicol, chloramphenicol, and amphenicol (FCA) resistance genes, respectively, enriched up to 270 times and 52 times in biogas residue. Long-term application of biogas slurry and residue contaminated with antibiotics in fields increased the rate of ARB as well as relative abundance of ARGs and transposons genes. Additionally, bacterial communities significantly differed between the soil treated with biogas slurry and residue and the control sample, especially the phyla Bacteroidetes and Actinobacteria. Based on network analysis, 19 genera were identified as possible hosts of the detected ARGs. Our results provide an important significance for reasonable application of biogas slurry and residue.201829096257
725760.9998Housefly Larva Vermicomposting Efficiently Attenuates Antibiotic Resistance Genes in Swine Manure, with Concomitant Bacterial Population Changes. Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days of full-scale manure vermicomposting. On day 6, the abundances of genes encoding tetracycline resistance [tet(M), tet(O), tet(Q), and tet(W)] were reduced (P < 0.05), while those of genes encoding sulfonamide resistance (sul1 and sul2) were increased (P < 0.05) when normalized to 16S rRNA. The abundances of tetracycline resistance genes were correlated (P < 0.05) with the changing concentrations of tetracyclines in the manure. The overall diversity and richness of the bacteria significantly decreased during vermicomposting, accompanied by a 100 times increase in the relative abundance of Flavobacteriaceae spp. Variations in the abundances of ARGs were correlated with the changing microbial community structure and the relative abundances of the family Ruminococcaceae, class Bacilli, or phylum Proteobacteria. Vermicomposting, as a waste management practice, can reduce the overall abundance of ARGs. More research is warranted to assess the use of this waste management practice as a measure to attenuate the dissemination of antimicrobial residues and ARGs from livestock production before vermicompost can be safely used as biofertilizer in agroecosystems.201526296728
724770.9998Environmental analysis of typical antibiotic-resistant bacteria and ARGs in farmland soil chronically fertilized with chicken manure. Antibiotics and the corresponding resistant bacteria and resistance genes (ARGs) are generally considered emerging pollutants. To assess the impacts of tetracycline (TC) and sulfonamide (SA) antibiotics that are eliminated with fecaluria as drug prototypes, farmland soil used to research long-term fertilization with chicken manure was collected at four sites in Shandong Province. In this study, the rates of bacterial drug resistance to the same antibiotic decreased with an increase in the concentration of that antibiotic, and the resistance rates to TCs were lower than those to SAs. PCR of ARGs revealed that the ARGs detected at the highest frequency were the TC resistance genes tetW and tetO and the SA resistance genes sul1 and sul2. Real-time qPCR showed that the quantities of ARGs in farmland soil fertilized with chicken manure were significantly greater compared with the control soil. Moreover, significant correlations (R(2)=0.9525, p<0.05) between the number of sul ARGs and the total SA concentration were observed in all of the soil samples. In summary, this study showed that SAs can induce the appearance of ARGs and pollute the soil environment.201728340477
809080.9998Swine Manure Composting With Compound Microbial Inoculants: Removal of Antibiotic Resistance Genes and Their Associations With Microbial Community. In this study, compound microbial inoculants, including three Bacillus strains and one Yeast strain, were inoculated into swine manure composting to explore the effects on antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), microbial community structure, and pathogenic bacteria. The results indicated that the abundances of the detected ARGs ranged from 3.6 × 10(3) to 1.13 × 10(8) copies/g. The ARGs with the highest abundance was sul2, and the lowest was blaCTX. Composting removes most of the ARGs and MGEs by 22.8-99.7%. These ARGs were significantly reduced during the thermophilic phase of compost. The removal rate of ARGs at the different layers of compost pile was different as follows: middle layer > upper layer > lower layer. But some ARGs proliferated significantly in the maturation phase of compost, especially the sulfonamide resistance genes. Compound microbial inoculants increased the temperature of compost, accelerated water loss, nitrogen fixation, and increased the removal rate of β-lactamase resistance genes, the transposon gene tn916 and part of tetracycline resistance genes by 3.7-23.8% in compost. Compound microbial inoculants changed the community structure and increased the Bacillus abundance in the thermophilic phase of compost. And it was helpful for removing pathogens during composting. The addition of compound microbial inoculants causes the decrease of Firmicutes and the increase of Bacteroidetes, which may be related to the removal and proliferation of ARGs.202033250880
808590.9998Elevated CO(2) alleviated the dissemination of antibiotic resistance genes in sulfadiazine-contaminated soil: A free-air CO(2) enrichment study. Climate change affects soil microbial communities and their genetic exchange, and subsequently modifies the transfer of antibiotic resistance genes (ARGs) among bacteria. However, how elevated CO(2) impacts soil antibiotic resistome remains poorly characterized. Here, a free-air CO(2) enrichment system was used in the field to investigate the responses of ARGs profiles and bacterial communities to elevated CO(2) (+200 ppm) in soils amended with sulfadiazine (SDZ) at 0, 0.5 and 5 mg kg(-1). Results showed that SDZ exposure induced the co-occurrence of beta-lactamase and tetracycline resistance genes, and SDZ at 5 mg kg(-1) enhanced the abundance of aminoglycoside, sulfonamide and multidrug resistance genes. However, elevated CO(2) weakened the effects of SDZ at 0.5 mg kg(-1) following an observed reduction in the total abundance of ARGs and mobile genetic elements. Additionally, elevated CO(2) significantly decreased the abundance of vancomycin resistance genes and alleviated the stimulation of SDZ on the dissemination of aminoglycoside resistance genes. Correlation analysis and structural equation models revealed that elevated CO(2) could directly influence the spread of ARGs or impose indirect effects on ARGs by affecting soil properties and bacterial communities. Overall, our results furthered the knowledge of the dissemination risks of ARGs under future climate scenarios.202336857828
7194100.9998Response of antibiotic resistance genes in constructed wetlands during treatment of livestock wastewater with different exogenous inducers: Antibiotic and antibiotic-resistant bacteria. This work aimed to study the behavior of antibiotic resistance genes (ARGs) in constructed wetlands with different exogenous inducers additions (oxytetracycline and its resistant bacteria) by high-throughput quantitative polymerase chain reaction. Results indicated that constructed wetlands have the potential to reduce ARGs relative abundances in wastewater, and the total ARGs removal efficiency could exceed 60%. ARGs profile in the effluent differed from that in the influent, and that did not directly reflect the export of dominant ARGs in wetland biofilms. Meanwhile, the highest levels of detected numbers and relative abundances of ARGs were 43 and 3.35 × 10(-1) for control system and 44 and 6.40 × 10(-1) for treatment system, respectively, which meant that ARGs generation in wetlands were inevitable, and antibiotic and antibiotic-resistant bacteria from wastewater could indeed promote ARGs abundance in the system. Compared to the single roles of inducers, their synergistic role had a more significant influence on ARGs relative abundance.202032652450
7243110.9998Responses and successions of sulfonamides, tetracyclines and fluoroquinolones resistance genes and bacterial community during the short-term storage of biogas residue and organic manure under the incubator and natural conditions. Biogas residue and organic manure are frequently used for crop planting. However, the evaluation of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and bacterial community before their applications to fields is still lacking. This study monitored the variations of bacteria resistant to sulfadiazine, tetracycline and norfloxacin, 57 resistance genes for sulfonamides, tetracyclines and fluoroquinolones as well as the bacterial community during the 28-day aerobic storage of biogas residue and organic manure by using viable plate counts, high-throughput qPCR and Illumina MiSeq sequencing methods. Then two storage conditions, incubator (25 °C) and natural environment, were used to assess the responses of ARB and ARGs to the environmental factors. Results showed that a total of 35 and 21 ARGs were detected in biogas residue and organic manure, respectively. ARB and ARGs were enriched up to 8.01-fold in biogas residue after the 28-day storage, but varied in a narrow range during the storage of organic manure. Compared with the incubator condition, the proliferation of ARB and ARGs in biogas residue under the natural condition was relatively inhibited by the varied and complicated environmental factors. However, we found that there was no significant difference of ARB and ARGs in organic manure between the incubator and natural conditions. Bacterial community was also shifted during the storage of biogas residue, especially Bacteroidetes_VC2.1_Bac22, Aequorivita, Luteimonas and Arenimonas. Network analysis revealed that the relationship in biogas residue was much more complicated than that in organic manure, which ultimately resulted in large successions of ARB and ARGs during the short-term storage of biogas residue. Therefore, we suggest that further measures should be taken before the application of biogas residue to fields.201830031308
8013120.9998New insight into fates of sulfonamide and tetracycline resistance genes and resistant bacteria during anaerobic digestion of manure at thermophilic and mesophilic temperatures. This study investigated the variations in antibiotic (sulfonamide and tetracycline) resistance genes (ARGs) and resistant bacteria (ARB) during manure anaerobic digestion (AD) at 35 ℃ and 55 ℃, and discussed the mechanisms of variations in ARGs. The AD lasted for 60 days, five ARGs and intI1 each decreased in abundance after AD at the thermophilic temperature, while only half decreased at the mesophilic temperature. On days 10, 30, and 60, sulfonamide and tetracycline ARB were screened on selective media. During thermophilic AD, ARB numbers reduced by 4-log CFUs per gram dry manure, but only by approximately 1-log CFU at the mesophilic temperature. However, ARB composition analysis showed that at either temperature, no significant reduction in identified ARB species was observed. Furthermore, 72 ARB clones were randomly selected to detect the ARGs they harbored, and the results showed that each ARG was harbored by various hosts, and no definitive link existed between ARGs and bacterial species. In addition, by comparison with the identified host by culture method, the host prediction results based on the correlation analysis between ARGs and the bacterial community was proven to be unreliable. Overall, these findings indicated that relationships between ARB and ARGs were intricate.202031685315
8014130.9998Contributions of the microbial community and environmental variables to antibiotic resistance genes during co-composting with swine manure and cotton stalks. Understanding the main drivers that affect the spread of antibiotic resistance genes (ARGs) during the composting process is important for the removal of ARGs. In this study, three levels of tylosin (25, 50, and 75 mg kg(-1) on a dry weight basis) were added to swine manure plus a control, which was composted with cotton stalks. Each treatment was repeated in triplicate and the ARG profiles were determined with different levels of tylosin. The top 35 genera and ARGs profiles were clustered together based on the composting time. Combined composting parameters (temperature, pH, NH(4)(+)-N, NO(3)-N, and moisture content) accounted for 78.4% of the total variation in the changes in the potential host bacteria. In addition, the selected five composting parameters and six phyla (including 25 potential host bacterial genera) explained 46.9% and 30.7% of the variation in the ARG profiles according to redundancy analysis, respectively. The variations in ARGs during the composting process were mainly affected by the dynamics of potential host bacteria rather than integrons and the selective pressure due to bio-Cu and bio-Zn.201829990821
7189140.9998Comparative effects of different antibiotics on antibiotic resistance during swine manure composting. This study explored commonly-used antibiotics (lincomycin, chlorotetracycline, sulfamethoxazole, and ciprofloxacin) and their collective effects on antibiotic resistance during composting. In the first 7 days, ciprofloxacin showed the greatest influence on the physicochemical factors among the studied antibiotics; the removal of antibiotic resistance genes (ARGs) in the multiple-antibiotic treatment was significantly less than single-antibiotic treatments; especially, the largest removal of ribosomal protection genes (tetW and tetO) occurred in single ciprofloxacin treatment. In the end of composting, similar removal ratio (29.71-99.79%) of ARGs was achieved in different treatments (p greater than 0.05); Chloroflexi became the main phylum and it was closely associated with ARGs removal based on the network analysis. Potential host bacteria of ARGs varied with different antibiotics; in particular, the presence of multiple antibiotics increased potential host bacteria of ermA, sul1 and tetO. Above all, collective effects of different antibiotics led to the enrichment of antibiotic resistance in the composting.202032712514
7262150.9998Soil texture-depending effects of doxycycline and streptomycin applied with manure on the bacterial community composition and resistome. Veterinary antibiotics, bacteria carrying antibiotic resistance determinants located on mobile genetic elements and nutrients are spread on agricultural soil using manure as fertilizer. However, systematic quantitative studies linking antibiotic concentrations and antimicrobial resistance genes (ARGs) in manure and the environment are scarce but needed to assess environmental risks. In this microcosm study, a sandy and a loamy soil were mixed with manure spiked with streptomycin or doxycycline at five concentrations. Total-community DNA was extracted on days 28 and 92, and the abundances of ARGs (aadA, strA, tet(A), tet(M), tet(W), tet(Q), sul1, qacE/qacEΔ1) and class 1 and 2 integron integrase genes (intI1 and intI2) were determined by qPCR relative to 16S rRNA genes. Effects on the bacterial community composition were evaluated by denaturing gradient gel electrophoresis of 16S rRNA gene amplicons. Manure application to the soils strongly increased the relative abundance of most tested genes. Antibiotics caused further enrichments which decreased over time and were mostly seen at high concentrations. Strikingly, the effects on relative gene abundances and soil bacterial community composition were more pronounced in sandy soil. The concept of defining antibiotic threshold concentrations for environmental risk assessments remains challenging due to the various influencing factors.201829087461
8093160.9998Acidic conditions enhance the removal of sulfonamide antibiotics and antibiotic resistance determinants in swine manure. Manure pH may vary depending on its inherent composition or additive contents. However, the effect of pH on the fate of antibiotics and antibiotic resistance determinants in manure remains unclear. This work demonstrated that pH adjustment promoted the removal of different sulfonamide antibiotics (SAs) within swine manure under incubation conditions, which increased from 26-60.8% to 75.0-86.0% by adjusting the initial pH from neutral (7.4) to acidic (5.4-4.8). Acidification was also demonstrated to inhibit the accumulation of antibiotic resistance genes in manure during incubation. Acidified manure contained both lower absolute and relative abundances of sul1 and sul2 than those at a neutral pH like 7.4. Further investigation indicated that acidification promoted the reduction of sul genes in manure by restricting sulfonamide-resistant bacteria (SRB) proliferation and inhibiting IntI1 accumulation. Furthermore, pH adjustment significantly influenced the composition of the manure bacterial community after incubation, which increased Firmicutes and decreased Proteobacteria. Close relationships were observed between pH-induced enrichment of the Firmicutes bacterial phylum, enhanced SAs degradation, and the fates of antibiotic resistance determinants. Overall, lowering the pH of manure promotes the degradation of SAs, decreases sul genes and SRB, and inhibits horizontal sul gene transfer, which could be a simple yet highly-effective manure management option to reduce antibiotic resistance.202032302890
7255170.9998Distribution of quinolone and macrolide resistance genes and their co-occurrence with heavy metal resistance genes in vegetable soils with long-term application of manure. The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has become an increasingly serious global public health issue. This study investigated the distribution characteristics and influencing factors of ARB and ARGs in greenhouse vegetable soils with long-term application of manure. Five typical ARGs, four heavy metal resistance genes (MRGs), and two mobile genetic elements (MGEs) were quantified by real-time quantitative polymerase chain reaction (qPCR). The amount of ARB in manure-improved soil greatly exceeded that in control soil, and the bacterial resistance rate decreased significantly with increases in antibiotic concentrations. In addition, the resistance rate of ARB to enrofloxacin (ENR) was lower than that of tylosin (TYL). Real-time qPCR results showed that long-term application of manure enhanced the relative abundance of ARGs in vegetable soils, and the content and proportion of quinolone resistance genes were higher than those of macrolide resistance genes. Redundancy analysis (RDA) showed that qepA and qnrS significantly correlated with total and available amounts of Cu and Zn, highlighting that certain heavy metals can influence persistence of ARGs. Integrase gene intI1 correlated significantly with the relative abundance of qepA, qnrS, and ermF, suggesting that intI1 played an important role in the horizontal transfer of ARGs. Furthermore, there was a weakly but not significantly positive correlation between specific detected MRGs and ARGs and MGEs. The results of this study enhance understanding the potential for increasing ARGs in manure-applied soil, assessing ecological risk and reducing the spread of ARGs.202234559332
7065180.9998Exploring the immediate and long-term impact on bacterial communities in soil amended with animal and urban organic waste fertilizers using pyrosequencing and screening for horizontal transfer of antibiotic resistance. We investigated immediate and long-term effects on bacterial populations of soil amended with cattle manure, sewage sludge or municipal solid waste compost in an ongoing agricultural field trial. Soils were sampled in weeks 0, 3, 9 and 29 after fertilizer application. Pseudomonas isolates were enumerated, and the impact on soil bacterial community structure was investigated using 16S rRNA amplicon pyrosequencing. Bacterial community structure at phylum level remained mostly unaffected. Actinobacteria, Proteobacteria and Chloroflexi were the most prevalent phyla significantly responding to sampling time. Seasonal changes seemed to prevail with decreasing bacterial richness in week 9 followed by a significant increase in week 29 (springtime). The Pseudomonas population richness seemed temporarily affected by fertilizer treatments, especially in sludge- and compost-amended soils. To explain these changes, prevalence of antibiotic- and mercury-resistant pseudomonads was investigated. Fertilizer amendment had a transient impact on the resistance profile of the soil community; abundance of resistant isolates decreased with time after fertilizer application, but persistent strains appeared multiresistant, also in unfertilized soil. Finally, the ability of a P. putida strain to take up resistance genes from indigenous soil bacteria by horizontal gene transfer was present only in week 0, indicating a temporary increase in prevalence of transferable antibiotic resistance genes.201425087596
6949190.9998Tracing the transfer characteristics of antibiotic resistance genes from swine manure to biogas residue and then to soil. Based on laboratory simulation experiments and metagenomic analysis, this study tracked the transmission of antibiotic resistance genes (ARGs) from swine manure (SM) to biogas residue and then to soil (biogas residue as organic fertilizer (OF) application). ARGs were abundant in SM and they were assigned to 11 categories of antibiotics. Among the 383 ARG subtypes in SM, 43 % ARG subtypes were absent after anaerobic digestion (AD), which avoided the transfer of these ARGs from SM to soil. Furthermore, 9 % of the ARG subtypes in SM were introduced into soil after amendment with OF. Moreover, 43 % of the ARG subtypes in SM were present in OF and soil, and their abundances increased slightly in the soil amended with OF. The bacterial community in the soil treated with OF was restored to its original state within 60 to 90 days, probably because the abundances of ARGs were elevated but not significantly in the soil. Network analysis identified 31 potential co-host bacteria of ARGs based on the relationships between the bacteria community members, where they mainly belonged to Firmicutes, followed by Bacteroidetes, Actinobacteria, and Proteobacteria. This study provides a basis for objectively evaluating pollution by ARGs in livestock manure for agricultural use.202438072280