# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7236 | 0 | 1.0000 | The variation of antibiotic resistance genes and their links with microbial communities during full-scale food waste leachate biotreatment processes. The prevalence of antibiotic resistance genes (ARGs) has been widely reported in various environments. However, little is known of them in food waste (FW) leachate with high organic content and how their distribution is influenced by biotreatment processes. Here, twelve ARGs, two integrase genes and bacterial communities were investigated during two full-scale FW biotreatment processes. High ARGs abundances (absolute: 1.03 × 10(7)-2.82 × 10(9)copies/mL; relative: 0.076-2.778copies/16S rRNA) were observed across all samples. Although biotreatment effectively reduced absolute abundance of ARGs, additional bacteria acquiring ARGs caused an increase in their relative abundance, which further increased the transmission risk of ARGs. mexF, blaCTX-M, sul1 played crucial roles and sul1 might be considered as an indicator for the prediction of total ARGs. It is worrying that the discharge (effluent and sludge) included highly abundant ARGs (5.09 × 10(14)-4.83 × 10(15)copies/d), integrons (1.11 × 10(14)-6.04 × 10(14)copies/d) and potential pathogens (such as Pseudomonas and Streptococcus), which should be given more attentions. blaCTX-M and tetQ possessed most potential hosts, Proteobacteria-L and Firmicutes-W were predominant contributors of ARGs-hosts at genus level. This study suggested FW leachate biotreatment systems could be reservoirs of ARGs and facilitated the proliferation of them. The exploration of effective removal methods and formulation of emission standard are necessary for future ARGs mitigation. | 2021 | 33862482 |
| 7238 | 1 | 0.9999 | Prevalence of antibiotic resistance genes in different drinking water treatment processes in a northwest Chinese city. Antibiotic resistance genes (ARGs) are an emerging issue which are receiving increasing concerns in drinking water safety. However, the factors (e.g. treatment processes and water quality) affecting the removal efficiency of ARGs in the drinking water treatment plants (DWTPs) is still unclear. This work investigated the ARG profiles in each treatment process of two DWTPs located in a northwest Chinese city. The results showed that tetracycline and sulfonamide resistance genes were predominant among the 14 targeted ARGs. After the treatment, the Z water treatment plant which demonstrated a higher removal rate of ARGs (ranging from 50 to 80%), compared to the S plant (50-75%). And the average removal rate of tetracycline resistance genes (tetA, tetG, tetQ, tetX) was about 49.18% (S plant) and 67.50% (Z plant), as well as the removal rate of 64.2% and 72.9% for sulfonamide resistance (sul1 and sul2) at S and Z water plants, respectively. It was found that the relative abundance of main microbial communities (such as Bacteroidota, Actinobacteria, Verrucomicrobiota, Roseomonas), α-diversity index, as well as the abundance of pathogenic bacteria were all significantly reduced after different treatment processes. Network co-occurrence analysis revealed that Methylocystis possibly was the potential host for most ARGs, and sul1 was found across a broad spectrum of microorganisms in the drinking water environment. Adonis analysis showed that heavy metals and microbial communities explain solely 44.1% and 35.7% of variances of ARGs within DWTPs. This study provides insights into the contamination status and removal efficiencies of ARGs in DWTPs, offering valuable references for future studies on ARG removal, propagation, and diffusion patterns in drinking water treatment. | 2024 | 39316241 |
| 7237 | 2 | 0.9999 | Dominant denitrifying bacteria are important hosts of antibiotic resistance genes in pig farm anoxic-oxic wastewater treatment processes. The anoxic-oxic (A/O) wastewater treatment process that is widely used in pig farms in China is an important repository for antibiotic resistance genes (ARGs). However, the distribution of ARGs and their hosts in the A/O process has not been well characterized. In this study, the wastewaters in the anoxic and oxic tanks for A/O processes were collected from 38 pig farms. The concentrations of 20 subtypes of ARGs, 5 denitrification-related genes, 2 integrons, and bacterial community composition were investigated. Bacterial genome binning was performed using metagenome sequencing. In this study, 20 subtypes of ARGs and integrons were detected in all sampling sites. A total of 16 of the 20 subtypes of ARGs were detected with the highest abundance in anoxic tanks, and sul1 was detected with a maximum average abundance of 19.21 ± 0.24 log(10) (copies/mL). Cooccurrence patterns were observed for some genes in the pig farm A/O process, such as sul1 and intl1, sul1 and tetG, and tetO and tetW. There was a significant cooccurrence pattern between the dominant denitrifying bacteria and some ARGs (bla(TEM), ermB, tetC, tetH and tetQ), so the dominant denitrifying bacteria were considered to be potential ARG hosts. In addition, 170 highly abundant bacterial genome bins were assembled and further confirmed that the denitrifying bacteria Brachymonas, Candidatus Competibacter, Thiobacillus and Steroidobacter were the important ARG hosts in the pig farm A/O process, providing a useful reference for the surveillance and risk management of ARGs in pig farm wastewater. | 2020 | 32615347 |
| 6840 | 3 | 0.9998 | High-throughput profiling and analysis of antibiotic resistance genes in East Tiaoxi River, China. The rapid human activities and urbanization exacerbate the human health risks induced by antibiotic resistance genes (ARGs). In this study, the profiling of ARGs was investigated using high-throughput qPCR from water samples of 13 catchment areas in East Tiaoxi River, China. High prevalence of ARGs indicated significant antibiotic resistance pollution in the research area (absolute abundance: 6.1 × 10(8)-2.1 × 10(10) copies/L; relative abundance: 0.033-0.158 copies/cell). Conventional water qualities (COD, TN, TP, NH(3)-N), bacterial communities and mobile gene elements (MGEs) were detected and analyzed as factors of ARGs shift. Nutrient and MGEs showed positive correlation with most ARGs (P < 0.05) and bacteria community was identified as the key contributing factor driving ARGs alteration. With the land-use study and field investigation, country area, especially arable, was expected as a high spot for ARGs shift and pathogen breeding. Comparing to environmental background, promotion of ARGs and marked shift of bacterial community were observed in country and urban city areas, indicating that human activities may lead to the spread of ARGs. Analysis of factors affecting ARGs in this study may shed new light on the mechanism of the maintenance and propagation of ARGs in urban rivers. | 2017 | 28715769 |
| 7179 | 4 | 0.9998 | Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. The propagation of antibiotic resistance genes (ARGs) is an emerging health concern worldwide. Thus, it is important to understand and mitigate their occurrence in different systems. In this study, 30 ARGs that confer resistance to tetracyclines, sulfonamides, quinolones or macrolides were detected in two activated sludge wastewater treatment plants (WWTPs) in northern China. Bacteria harboring ARGs persisted through all treatment units, and survived disinfection by chlorination in greater percentages than total Bacteria (assessed by 16S rRNA genes). Although the absolute abundances of ARGs were reduced from the raw influent to the effluent by 89.0%-99.8%, considerable ARG levels [(1.0 ± 0.2) × 10(3) to (9.5 ± 1.8) × 10(5) copies/mL)] were found in WWTP effluent samples. ARGs were concentrated in the waste sludge (through settling of bacteria and sludge dewatering) at (1.5 ± 2.3) × 10(9) to (2.2 ± 2.8) × 10(11) copies/g dry weight. Twelve ARGs (tetA, tetB, tetE, tetG, tetH, tetS, tetT, tetX, sul1, sul2, qnrB, ermC) were discharged through the dewatered sludge and plant effluent at higher rates than influent values, indicating overall proliferation of resistant bacteria. Significant antibiotic concentrations (2%-50% of raw influent concentrations) remained throughout all treatment units. This apparently contributed selective pressure for ARG replication since the relative abundance of resistant bacteria (assessed by ARG/16S rRNA gene ratios) was significantly correlated to the corresponding effluent antibiotic concentrations. Similarly, the concentrations of various heavy metals (which induce a similar bacterial resistance mechanism as antibiotics - efflux pumps) were also correlated to the enrichment of some ARGs. Thus, curtailing the release of antibiotics and heavy metals to sewage systems (or enhancing their removal in pre-treatment units) may alleviate their selective pressure and mitigate ARG proliferation in WWTPs. | 2015 | 26372743 |
| 7226 | 5 | 0.9998 | Seasonal variation in antibiotic resistance genes and bacterial phenotypes in swine wastewater during three-chamber anaerobic pond treatment. Antibiotic resistance is a global public health concern. Antibiotic usage in pigs makes swine wastewater (SW) a reservoir for antibiotic resistance genes (ARGs). SW is usually stored and treated in a three-chamber anaerobic pond (3-CAP) in medium and small pig farms in northern China. However, the yet unexplored presence of ARGs in SW during 3-CAP treatment may result in ARGs spreading into the environment if farmers apply SW to farmland as a liquid organic fertilizer. This study investigated the profiles of and changes in ARGs in SW during its treatment in 3-CAP over four seasons and analyzed the correlation between ARGs and bacterial phenotypes, along with the physicochemical parameters of the water. The results revealed that ARG abundance decreased considerably after 3-CAP treatment in April (47%), October (47%), and December (62%) but increased in May (43%) and August (73%). The ARG copies in the influent and other SW samples increased significantly from 10(7) copies/mL in April to 10(9) copies/mL in October and were maintained in December. The increase in ARG abundance was not as rapid as the growth of the bacterial population, resulting in lower relative abundance in October and December. Bacterial communities possessed more sul1 and tetM genes, which were also positively correlated with mobile genetic elements. After the 3-CAP treatment, 16% of antibiotics and 60% of heavy metals were removed, and both had a weak correlation with ARGs. Predicted phenotypes showed that gram-positive (G(+)) and gram-negative (G(-)) bacteria have different capacities for carrying ARGs. G(+) bacteria carry more ARGs than G(-) bacteria. This study revealed the persistence of ARGs in SW after 3-CAP treatment over different seasons. Applying SW in the proper month will mitigate ARG dissemination to the environment. | 2023 | 36208778 |
| 6870 | 6 | 0.9998 | Antibiotic resistome in landfill leachate and impact on groundwater. Landfill leachate is a hotspot in antibiotic resistance development. However, little is known about antibiotic resistome and host pathogens in leachate and their effects on surrounding groundwater. Here, metagenomic sequencing was used to explore profiles, host bacteria, environmental risks and influencing factors of antibiotic resistome in raw and treated leachate and surrounding groundwater of three landfills. Results showed detection of a total of 324 antibiotic resistance genes (ARGs). The ARGs conferring resistance to multidrug (8.8 %-25.7 %), aminoglycoside (13.1 %-39.2 %), sulfonamide (10.0 %-20.9 %), tetracycline (5.7 %-34.4 %) and macrolide-lincosamide-streptogramin (MLS, 5.3 %-29.5 %) were dominant in raw leachate, while multidrug resistance genes were the major ARGs in treated leachate (64.1 %-83.0 %) and groundwater (28.7 %-76.6 %). Source tracking analysis suggests non-negligible influence of leachate on the ARGs in groundwater. The pathogens including Acinetobacter pittii, Pseudomonas stutzeri and P. alcaligenes were the major ARG-carrying hosts. Variance partitioning analysis indicates that the microbial community, abiotic variables and their interaction contributed most to the antibiotic resistance development. Our results shed light on the dissemination and driving mechanisms of ARGs from leachate to the groundwater, indicating that a comprehensive risk assessment and efficient treatment approaches are needed to deal with ARGs in landfill leachate and nearby groundwater. ENVIRONMENTAL IMPLICATIONS: Antibiotic resistance genes are found abundant in the landfill sites, and these genes could be disseminated into groundwater via leaching of wastewater and infiltration of leachate. This results in deterioration of groundwater quality and human health risks posed by these ARGs and related pathogens. Thus measures should be taken to minimize potential negative impacts of landfills on the surrounding environment. | 2024 | 38547976 |
| 7225 | 7 | 0.9998 | Risk assessment of the spread of antibiotic resistance genes from hospitals to the receiving environment via wastewater treatment plants. Antibiotics and antibiotic resistance genes (ARGs) enter the receiving environment from hospitals through wastewater treatment plants (WWTPs), increasing the presence of exogenous ARGs and conditional pathogens in the receiving environment, thereby elevating the risk of drug resistance. This study, based on metagenomics, investigated changes in risk across each node in the ARG transmission chain, from hospitals through WWTPs to downstream receiving water and sediments. The results showed that the total concentration of antibiotics decreased from 1467.80 ± 215.30 µg/L in hospital wastewater to 111.52 ± 18.70 µg/L in downstream receiving water, achieving a 92.40 % removal rate. However, the types of high ecological risk antibiotics in hospital wastewater were only reduced by 38.46 % after treatment by hospitals and sewage treatment plants. The abundance of Rank I ARGs was reduced by 37.03 % in hospital sewage treatment stations and 28.57 % in WWTPs, but these ARGs accounted for 81.8 % of the Rank I ARGs in receiving water. The potential host bacteria for these ARGs were mainly Proteobacteria, which carried bacitracin and multidrug resistance genes. While WWTPs removed 66.67 % of the conditional pathogens, bacteria such as Acinetobacter and Streptococcus still entered the receiving water. MetaCompare revealed that the potential transmission risk of ARGs decreased by 24.31 % after hospital wastewater treatment and by 20.71 % after WWTPs, with the risk of the receiving water being 7.01 times that in sediments. The potential risk assessment framework developed in this study for antibiotics and ARGs in the environment provides a theoretical guidance for antibiotic treatment and ARGs environmental risk control. | 2025 | 41161238 |
| 6854 | 8 | 0.9998 | Characteristics and driving factors of antibiotic resistance genes in aquaculture products from freshwater ponds in China Yangtze River Delta. Antibiotic resistance genes (ARGs) are widespread in aquaculture and pose a huge threat to aquaculture organisms and human health. In this study, occurrences and relative abundances of ARGs were analysed in the guts of products cultured in freshwater ponds in the Yangtze River Delta region in China. A total of 29 ARGs were found in the gut samples, with detection frequencies ranging from 4.8% to 81%, and the relative abundances (ARGs/16S rRNA) ranging from 10(-7) to 1. In addition, the human dietary intake of ARGs via aquaculture products was assessed, where the daily intake of most ARGs via aquaculture products was higher than those via PM2.5 and drinking water, but lower than that via vegetables. The relative abundances of MGE (IS613, Tp614, tnpA and int1) were significantly correlated with those of multiple ARGs, indicating the horizontal gene transfer (HGT) of ARGs among gut microorganisms. Proteobacteria, Firmicutes and Actinobacteria were the dominated microbial communities found in the guts of aquaculture products. In addition, significant correlations were found between Cyanobacteria and int1, between Nitrospira and tetE, and between sul2 and aadA2, indicating potential same hosts of these genes. In addition, results from co-correlation indicated both HGT (dominated by MGEs) of ARGs and the enrichment of ARGs in bacteria. MGEs, mostly int1, were more effective than bacteria in increasing the ARG abundance. This study could provide a better understanding of the transmission of ARGs in the aquaculture environment and improve the quality of aquaculture products and the ecology. | 2024 | 36756971 |
| 7230 | 9 | 0.9998 | Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water. As emerging contaminants, antibiotic resistance genes (ARGs) have become a public concern. This study aimed to investigate the occurrence and diversity of ARGs, and variation in the composition of bacterial communities in source water, drinking water treatment plants, and tap water in the Pearl River Delta region, South China. Various ARGs were present in the different types of water. Among the 27 target ARGs, floR and sul1 dominated in source water from three large rivers in the region. Pearson correlation analysis suggested that sul1, sul2, floR, and cmlA could be potential indicators for ARGs in water samples. The total abundance of the detected ARGs in tap water was much lower than that in source water. Sand filtration and sedimentation in drinking water treatment plants could effectively remove ARGs; in contrast, granular activated carbon filtration increased the abundance of ARGs. It was found that Pseudomonas may be involved in the proliferation and dissemination of ARGs in the studied drinking water treatment system. Bacteria and ARGs were still present in tap water after treatment, though they were significantly reduced. More research is needed to optimize the water treatment process for ARG removal. | 2018 | 29127799 |
| 3504 | 10 | 0.9998 | Distribution of antibiotic resistance genes and bacteria from six atmospheric environments: Exposure risk to human. Antibiotic resistance genes (ARGs), as an emerging environmental pollutant, have received widespread attention. There are many studies on ARGs in water and soil. However, there are few studies on airborne ARGs. We used qPCR to detect 19 ARG subtypes in six atmospheric environments. Among the different atmospheric environments including wastewater treatment plant (fine screens and sludge thickener), bathroom, laboratory, hospital and outdoor, the highest total concentration of ARGs is detected in the haze outdoor (9 × 10(5) copies/m(3)), while the lowest is in the bathroom atmosphere (4.2 × 10(4) copies/m(3)). Furthermore, β-lactam ARGs are found to be the dominant ARGs in these 6 atmospheric environments. Due to the large number and widespread use of antibiotics, the airborne ARGs in hospital have the highest diversity and equitability. The β-lactam ARGs are significantly positively correlated with sulfonamides ARGs, indicating the mechanism of co-resistance since these two ARGs may be on the same genetic elements and thus simultaneously exhibit both resistances. The network analysis provides potential host information between the airborne ARGs and the coexisted microbial taxa. Sphingomonas and Bradyhizoblum strains presumably host for tetracycline and β-lactam ARGs, respectively. The ADD(outdoor) of bla(TEM-1) was 7.8 × 10(5) copies/d/kg, more than the ADD (7.6 × 10(3) copies/d/kg) of bla(TEM-1) by drinking water. We can't ignore ARGs in the atmospheric environments. | 2019 | 31400672 |
| 7231 | 11 | 0.9998 | Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water. This study aimed to investigate the chlorination effects on microbial antibiotic resistance in a drinking water treatment plant. Biochemical identification, 16S rRNA gene cloning and metagenomic analysis consistently indicated that Proteobacteria were the main antibiotic resistant bacteria (ARB) dominating in the drinking water and chlorine disinfection greatly affected microbial community structure. After chlorination, higher proportion of the surviving bacteria was resistant to chloramphenicol, trimethoprim and cephalothin. Quantitative real-time PCRs revealed that sulI had the highest abundance among the antibiotic resistance genes (ARGs) detected in the drinking water, followed by tetA and tetG. Chlorination caused enrichment of ampC, aphA2, bla(TEM-1), tetA, tetG, ermA and ermB, but sulI was considerably removed (p < 0.05). Metagenomic analysis confirmed that drinking water chlorination could concentrate various ARGs, as well as of plasmids, insertion sequences and integrons involved in horizontal transfer of the ARGs. Water pipeline transportation tended to reduce the abundance of most ARGs, but various ARB and ARGs were still present in the tap water, which deserves more public health concerns. The results highlighted prevalence of ARB and ARGs in chlorinated drinking water and this study might be technologically useful for detecting the ARGs in water environments. | 2013 | 23084468 |
| 7227 | 12 | 0.9998 | High-risk antibiotics positively correlated with antibiotic resistance genes in five typical urban wastewater. Antibiotic resistance genes (ARGs) and antibiotic amount increased within close proximity to human dominated ecosystems. However, few studies assessed the distribution of antibiotics and ARGs in multiple ecosystems especially the different urban wastewater. In this study, the spatial distribution of ARGs and antibiotics across the urban wastewater included domestic, livestock, hospital, pharmaceutical wastewater, influent of the wastewater treatment plant (WWTP) in Northeast China. The q-PCR results showed that ARGs were most abundant in community wastewater and followed by WWTP influent, livestock wastewater, pharmaceutical wastewater and hospital wastewater. The ARG composition differed among the five ecotypes with qnrS was the dominant ARG subtypes in WWTP influent and community wastewater, while sul2 dominant in livestock, hospital, pharmaceutical wastewater. The concentration of antibiotics was closely related to the antibiotic usage and consumption data. In addition to the high concentration of azithromycin at all sampling points, more than half of the antibiotics in livestock wastewater were veterinary antibiotics. However, antibiotics that closely related to humankind such as roxithromycin and sulfamethoxazole accounted for a higher proportion in hospital wastewater (13.6%) and domestic sewage (33.6%), respectively. The ambiguous correlation between ARGs and their corresponding antibiotics was detected. However, antibiotics that exhibited high ecotoxic effects were closely and positively correlated with ARGs and the class 1 integrons (intI1), which indicated that high ecotoxic compounds might affect antimicrobial resistance of bacteria by mediating horizontal gene transfer of ARGs. The coupling mechanism between the ecological risk of antibiotics and bacterial resistance needed to be further studied, and thereby provided a new insight to study the impact of environmental pollutants on ARGs in various ecotypes. | 2023 | 37267763 |
| 7233 | 13 | 0.9998 | Distribution, sources, and potential risks of antibiotic resistance genes in wastewater treatment plant: A review. Irrational use of antibiotics produces a large number of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Wastewater treatment plants (WWTPs) act as important sources and sinks of ARGs, and play an important role in their generation, treatment, and dissemination. This study summarizes the types, concentrations, and factors of ARGs in WWTPs, investigates the sources of ARGs in wastewater, compares the removal efficiencies of different treatment processes on ARGs, and analyzes the potential risks of ARGs accumulation in effluent, sludge and their emission into the air. The results show that the main ARGs detected in the influent of WWTPs are the genes resistant to macrolides (ermB, ermF), tetracyclines (tetW, tetA, tetC), sulfonamides (sul1, sul2), and β-lactams (bla(OXA), bla(TEM)). The concentrations of ARGs in the influent of the WWTPs are 2.23 × 10(2)-3.90 × 10(9) copies/mL. Wastewater quality and microbial community are the dominant factors that affect the distribution characteristics of ARGs. The accumulation of ARGs in effluent, sludge, and aerosols pose potential risks to the regional ecological environment and human health. Based on these results, research trends with respect to ARGs in WWTPs are also prospected. | 2022 | 35921944 |
| 6838 | 14 | 0.9998 | Seasonal variation characteristics of inhalable bacteria in bioaerosols and antibiotic resistance genes in Harbin. Bioaerosols have received extensive attention due to their impact on climate, ecological environment, and human health. This study aimed to reveal the driving factors that structure bacterial community composition and the transmission route of antibiotic resistance genes (ARGs) in PM(2.5). The results showed that the bacterial concentration in spring (8.76 × 10(5) copies/m(3)) was significantly higher than that in summer (1.03 × 10(5) copies/m(3)) and winter (4.74 × 10(4) copies/m(3)). Low temperatures and air pollution in winter negatively affected bacterial concentrations. Keystone taxa were identified by network analysis. Although about 50 % of the keystone taxa had low relative abundances, the strong impact of complex interactions between keystone taxa and other taxa on bacterial community structure deserved attention. The bacterial community assembly was dominated by stochastic processes (79.3 %). Interactions between bacteria and environmental filtering together affected bacterial community composition. Vertical gene transfer played an important role in the transmission of airborne ARGs. Given the potential integration and expression of ARGs in recipients, the human exposure risk due to high concentrations of ARGs and mobile genetic elements cannot be ignored. This study highlights human exposure to inhalable bacterial pathogens and ARGs in urban areas. | 2023 | 36584645 |
| 7235 | 15 | 0.9998 | Unveiling the characteristics of free-living and particle-associated antibiotic resistance genes associated with bacterial communities along different processes in a full-scale drinking water treatment plant. Antibiotic resistance genes (ARGs) as emerging contaminants, often co-occur with mobile genetic elements (MGEs) and are prevalent in drinking water treatment plants (DWTPs). In this study, the characteristics of free-living (FL) and particle-associated (PA) ARGs associated with bacterial communities were investigated along two processes within a full-scale DWTP. A total of 13 ARGs and two MGEs were detected. FL-ARGs with diverse subtypes and PA-ARGs with high abundances displayed significantly different structures. PA-MGEs showed a strong positive correlation with PA-ARGs. Chlorine dioxide disinfection achieved 1.47-log reduction of FL-MGEs in process A and 0.24-log reduction of PA-MGEs in process B. Notably, PA-fraction virtually disappeared after treatment, while blaTEM, sul2, mexE, mexF and IntI1 of FL-fraction remained in the finished water. Moreover, Acinetobacter lwoffii (0.04 % ∼ 45.58 %) and Acinetobacter schindleri (0.00 % ∼ 18.54 %) dominated the 16 pathogens, which were more abundant in FL than PA bacterial communities. PA bacteria exhibited a more complex structure with more keystone species than FL bacteria. MGEs contributed 20.23 % and 19.31 % to the changes of FL-ARGs and PA-ARGs respectively, and water quality was a key driver (21.73 %) for PA-ARGs variation. This study provides novel insights into microbial risk control associated with size-fractionated ARGs in drinking water. | 2024 | 39003808 |
| 7143 | 16 | 0.9998 | Simulated discharge of treated landfill leachates reveals a fueled development of antibiotic resistance in receiving tidal river. Around 350 million tons of solid waste is disposed of in landfills every year globally, with millions of cubic meters of landfill leachates released into neighboring environment. However, to date, little is known about the variations of antimicrobial resistance (AMR) in on-site leachate treatment systems and its development in leachate-receiving water environment. Here, we quantified 7 subtypes of antibiotic resistance genes (ARGs), 3 types of culturable antibiotic resistant bacteria (ARB) and 6 subtypes of mobile genetic elements (MGEs) in the effluents from a combined leachate treatment process, including biological treatment (MBR), physical separation (UF), ultraviolet (UV) disinfection and advanced oxidation process (AOP). The contents of ARGs, ARB and MGEs were generally enriched by the MBR, but then decreased significantly along with the tertiary treatment process. However, in the effluent-receiving water samples, the abundance of dominant ARGs (i.e. ermB, sul1, bla(TEM)) increased by 1.5 orders of magnitude within 96 h, alongside a general increase of MGEs (~10.0 log(10)(copies/mL) and total ARB (~1100 CFU/mL). Structural correlation analyses reveal that target ARGs were closely associated with MGEs, particularly in effluent-receiving samples (Procrustes test; M(2) = 0.49, R = 0.71, P = 0.001); and occurrences of ARB were majorly affected by ARG's distribution and environmental conditions (e.g. nitrogen speciation) in effluent and recipient groups, respectively. This study indicates that current treatment technologies and operation protocols are not feasible in countering the development of AMR in effluent-receiving water environment, particularly in tidal rivers that are capable of retaining contaminants for a long residence time. | 2018 | 29501852 |
| 6839 | 17 | 0.9998 | Bioaerosol is an important transmission route of antibiotic resistance genes in pig farms. Although pig farms are hotspots of antibiotic resistance due to intensive use of antibiotics, little is known about the abundance, diversity and transmission of airborne antibiotic resistance genes (ARGs). This study reports that bioaerosol is an important spread route of ARGs in pig farms. ARGs, mobile genetic elements (MGEs), and bacterial communities were investigated in both air and feces samples during winter and summer. The average concentration of airborne ARGs and MGEs during winter is higher than that during summer when using the ventilation system. The tetM is identified as the predominant airborne ARG with abundance of 6.3 ± 1.2 log copies/m(3). Clostridium and Streptococcus are two dominant bacteria and several opportunistic pathogens are detected in air samples. High temperature is favorable for more diverse bacterial communities, but relative humidity has negative effects. The wind speed promotes the spread of airborne ARGs. The network analysis results show the average fecal contribution to airborne bacteria is 19.9% and 59.4% during summer and winter, respectively. Horizontal gene transfer plays an important role in the dissemination of airborne ARGs during winter (77.8% possibility), while a lower possibility of 12.0% in summer. | 2021 | 33864959 |
| 7232 | 18 | 0.9998 | Occurrence and prevalence of antibiotic resistance in landfill leachate. Antibiotic resistance (AR) is extensively present in various environments, posing emerging threat to public and environmental health. Landfill receives unused and unwanted antibiotics through household waste and AR within waste (e.g., activated sludge and illegal clinical waste) and is supposed to serve as an important AR reservoir. In this study, we used culture-dependent methods and quantitative molecular techniques to detect and quantify antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in 12 landfill leachate samples from six geographic different landfills, China. Five tested ARGs (tetO, tetW, bla(TEM), sulI, and sulII) and seven kinds of antibiotic-resistant heterotrophic ARB were extensively detected in all samples, demonstrating their occurrence in landfill. The detected high ratio (10(-2) to 10(-5)) of ARGs to 16S ribosomal RNA (rRNA) gene copies implied that ARGs are prevalent in landfill. Correlation analysis showed that ARGs (tetO, tetW, sulI, and sulII) significantly correlated to ambient bacterial 16S rRNA gene copies, suggesting that the abundance of bacteria in landfill leachate may play an important role in the horizontal spread of ARGs. | 2015 | 25903180 |
| 6841 | 19 | 0.9998 | Deciphering key traits and dissemination of antibiotic resistance genes and degradation genes in pharmaceutical wastewater receiving environments. Discharge of pharmaceutical wastewater significantly affects the receiving environments. However, the development of antibiotic resistance and microbial enzymatic degradation in wastewater-receiving soils and rivers remains unclear. This study investigated a sulfonamide-producing factory to explore the distribution of antibiotic resistance genes (ARGs) in the receiving river and soil environments (0-100 cm depth), and the potential hosts of sadABC genes (sulfonamide-degrading genes) as well as their phylogenetic characterization. We identified plentiful ARGs (28 types and 1065 subtypes) and their hosts (30 phyla and 340 MAGs) in three media (surface water, sediment, and soil). Results indicated that the abundances of total resistome in water and sediment of receiving river (0-1.5 km) were higher than the global river resistome median levels. Wastewater significantly affected the soil resistome, leading to an average 5-fold increase in ARG abundance, and a 22-fold enrichment of sulfonamide ARGs. The abundance and diversity of soil resistome decreased significantly with depth, and the abundance was below the global soil resistome median level at the depth greater than 20 cm. The detection of 17 risk rank I ARGs and the enrichment of multidrug-resistant pathogenic bacteria in soil and river highlighted the resistance risks in the environments. Notably, 73 sadABC-carrying contigs were detected, which were mainly hosted by Microbacteriaceae and some other previously unreported bacteria, such as Mycobacteriaceae spp. The findings offer valuable insights into antimicrobial resistance (AMR) risk assessment and the bioremediation of sulfonamides pollution in the environment affected by pharmaceutical wastewater. | 2025 | 39914310 |