# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7214 | 0 | 1.0000 | Long-term application of fresh and composted manure increase tetracycline resistance in the arable soil of eastern China. The aim of this study was to compare the occurrence, abundance, and diversity of tetracycline resistance genes (tet) in agricultural soils after 6 years' application of fresh or composted swine manure. Soil samples were collected from fresh or composted manure-treated farmland at three depths (0-5 cm, 5-10 cm, and 10-20 cm). Nine classes of tet genes [tetW, tetB(P), tetO, tetS, tetC, tetG, tetZ, tetL, and tetX] were detected; tetG, tetZ, tetL, and tetB(P) were predominant in the manure-treated soil. The abundances of tetB(P), tetW, tetC, and tetO were reduced, while tetG and tetL were increased by fertilizing with composted versus fresh manure; thus, the total abundance of tet genes was not significantly reduced by compost manuring. tetG was the most abundant gene in manure-treated soil; the predominant tetG genotypes shared high homology with pathogenic bacteria. The tetG isolates were more diverse in soils treated with fresh versus composted manure, although the residual tet genes in composted manure remain a pollutant and produce a different influence on the tet gene resistome in field soil. | 2015 | 25460961 |
| 8026 | 1 | 0.9998 | A comparison of antibiotics, antibiotic resistance genes, and bacterial community in broiler and layer manure following composting. Animal manure is an important source of antibiotics and antibiotic resistance genes (ARGs) in the environment. However, the difference of antibiotic residues and ARG profiles in layer and broiler manure as well as their compost remains unexplored. In this study, we investigated the profiles of twelve antibiotics, seventeen ARGs, and class 1 integrase gene (intI1) in layer and broiler manure, and the corresponding compost at large-scale. Compared with layer manure, broiler manure exhibited approximately six times more residual tetracyclines, especially chlortetracycline. The relative abundances of qnrS and ermA genes in broiler manure were significantly higher than those in layer manure. The concentration of tetracyclines not only had a significantly positive correlation with tetracycline resistance genes (tetA and tetC) but was also positively correlated with quinolone resistance (qepA, qnrB, and qnrS) and macrolide resistance (ermA and ermT). Most ARGs in manure were reduced after composting. However, the relative abundance of sulfonamide resistance gene sul1 increased up to 2.41% after composting, which was significantly higher than that of broiler (0.41%) and layer (0.62%) manure. The associated bacterial community was characterized by high-throughput 16S rRNA gene sequencing. The relative abundances of thermophilic bacteria had significant positive correlations with the abundance of sul1 in compost. The composting has a significant impact on the ARG-associated gut microbes in poultry manure. Variation partitioning analysis indicated that the change of bacterial community compositions and antibiotics contributed partially to the shift in ARG profiles. The results indicate that at industry-scale production broiler manure had more antibiotics and ARGs than layer manure did, and composting decreased most ARG abundances in poultry manure except for sulfonamide resistance genes. | 2021 | 33219508 |
| 7213 | 2 | 0.9998 | Distribution characteristics of antibiotic resistant bacteria and genes in fresh and composted manures of livestock farms. Livestock manure is a major reservoir of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). This study investigated the distribution characteristics of ARB, ARGs in fresh and composted manures of traditional breading industry in rural areas in China. Samples collected were naturally piled without professional composting, and will be applied to farmland. The real-time quantitative polymerase chain reaction (qPCR) results showed the presence of ten target ARGs and two mobile genetic elements (MGEs) in the tested manure samples. The relative abundance of tetracycline and sulfonamide resistance genes (TRGs and SRGs) was generally higher than that of macrolide resistance genes (MRGs), followed by quinolone resistance genes (QRGs). There were significant positive correlations between the abundance of sul1, sul2, tetW and MGEs (intl1, intl2). In addition, the distribution of target ARGs was associated with the residual concentrations of doxycycline (DOX), sulfamethazine (SM2), enrofloxacin (ENR) and tylosin (TYL). Overall, a total of 24 bacterial genera were identified. The resistance rates of ARB were 17.79%-83.70% for SM2, followed 0.40%-63.77% for TYL, 0.36%-43.90% for DOX and 0.00%-13.36% for ENR, which showed a significant dose-effect. This study also demonstrated that the abundance of clinically relevant ARB and ARGs in chicken, swine and cow fresh manures significantly greater than that in composted manures, and chicken and swine manures had higher proportion of ARB and higher abundance of ARGs than that in cow manures. | 2019 | 31756854 |
| 7212 | 3 | 0.9998 | Simulated Winter Incubation of Soil With Swine Manure Differentially Affects Multiple Antimicrobial Resistance Elements. Gastrointestinal bacteria that harbor antibiotic resistance genes (ARG) become enriched with antibiotic use. Livestock manure application to cropland for soil fertility presents a concern that ARG and bacteria may proliferate and be transported in the environment. In the United States, manure applications typically occur during autumn with slow mineralization until spring planting season. A laboratory soil incubation study was conducted mimicking autumn swine manure application to soils with concentrations of selected ARG monitored during simulated 120-day winter incubation with multiple freeze-thaw events. Additionally, the effects of two soil moistures [10 and 30% water holding capacity (WHC)] and two manure treatments [raw versus hydrated lime alkaline stabilization (HLAS)] were assessed. Fourteen tetracycline resistance genes were evaluated; tet(D), tet(G), and tet(L) were detected in background soil while swine manure contained tet(A), tet(B), tet(C), tet(G), tet(M), tet(O), tet(Q), and tet(X). By day 120, the manure-borne tet(M) and tet(O) were still detected while tet(C), tet(D), tet(L), and tet(X) genes were detected less frequently. Other tet resistance genes were detected rarely, if at all. The sum of unique tet resistance genes among all treatments decreased during the incubation from an average of 8.9 to 3.8 unique tet resistance genes. Four resistance elements, intI1, bla (ctx-m-32), sul(I), erm(B), and 16s rRNA genes were measured using quantitative PCR. ARG abundances relative to 16S abundance were initially greater in the raw manure compared to background soil (-1.53 to -3.92 log abundance in manure; -4.02 to <-6.7 log abundance in soil). In the mixed manure/soil, relative abundance of the four resistance elements decreased (0.87 to 1.94 log abundance) during the incubation largely because 16S rRNA genes increased by 1.21 log abundance. Throughout the incubation, the abundance of intI1, bla (ctx-m-32), sul(I), and erm(B) per gram in soil amended with HLAS-treated manure was lower than in soil amended with raw manure. Under low initial soil moisture conditions, HLAS treatment reduced the abundance of intI1 and resulted in loss of bla (ctx-m-32), sul(I), and erm(B)] compared to other treatment-moisture combinations. Although one might expect antibiotic resistance to be relatively unchanged after simulated winter manure application to soil, a variety of changes in diversity and relative abundance can be expected. | 2020 | 33391241 |
| 7998 | 4 | 0.9998 | Seasonal variation and removal efficiency of antibiotic resistance genes during wastewater treatment of swine farms. The seasonal variation and removal efficiency of antibiotic resistance genes (ARGs), including tetracycline resistance genes (tetG, tetM, and tetX) and macrolide (ermB, ermF, ereA, and mefA), were investigated in two typical swine wastewater treatment systems in both winter and summer. ARGs, class 1 integron gene, and 16S rRNA gene were quantified using real-time polymerase chain reaction assays. There was a 0.31-3.52 log variation in ARGs in raw swine wastewater, and the abundance of ARGs in winter was higher than in summer. tetM, tetX, ermB, ermF, and mefA were highly abundant. The abundance of ARGs was effectively reduced by most individual treatment process and the removal efficiencies of ARGs were higher in winter than in summer. However, when examining relative abundance, the fate of ARGs was quite variable. Anaerobic digestion reduced the relative abundance of tetX, ermB, ermF, and mefA, while lagoon treatment decreased tetM, ermB, ermF, and mefA. Sequencing batch reactor (SBR) decreased tetM, ermB, and ermF, but biofilters and wetlands did not display consistent removal efficiency on ARGs in two sampling seasons. As far as the entire treatment system is concerned, ermB and mefA were effectively reduced in both winter and summer in both total and relative abundance. The relative abundances of tetG and ereA were significantly correlated with intI1 (p < 0.01), and both tetG and ereA increased after wastewater treatment. This may pose a great threat to public health. | 2017 | 26715413 |
| 7248 | 5 | 0.9997 | Fate and transport of tylosin-resistant bacteria and macrolide resistance genes in artificially drained agricultural fields receiving swine manure. Application of manure from swine treated with antibiotics introduces antibiotics and antibiotic resistance genes to soil with the potential for further movement in drainage water, which may contribute to the increase in antibiotic resistance in non-agricultural settings. We compared losses of antibiotic-resistant Enterococcus and macrolide-resistance (erm and msrA) genes in water draining from plots with or without swine manure application under chisel plow and no till conditions. Concentrations of ermB, ermC and ermF were all >10(9)copies g(-1) in manure from tylosin-treated swine, and application of this manure resulted in short-term increases in the abundance of these genes in soil. Abundances of ermB, ermC and ermF in manured soil returned to levels identified in non-manured control plots by the spring following manure application. Tillage practices yielded no significant differences (p>0.10) in enterococci or erm gene concentrations in drainage water and were therefore combined for further analysis. While enterococci and tylosin-resistant enterococci concentrations in drainage water showed no effects of manure application, ermB and ermF concentrations in drainage water from manured plots were significantly higher (p<0.01) than concentrations coming from non-manured plots. ErmB and ermF were detected in 78% and 44%, respectively, of water samples draining from plots receiving manure. Although ermC had the highest concentrations of the three genes in drainage water, there was no effect of manure application on ermC abundance. MsrA was not detected in manure, soil or water. This study is the first to report significant increases in abundance of resistance genes in waters draining from agricultural land due to manure application. | 2016 | 26874610 |
| 7211 | 6 | 0.9997 | Contribution of Manure-Spreading Operations to Bioaerosols and Antibiotic Resistance Genes' Emission. Manure spreading from farm animals can release antibiotic-resistant bacteria (ARB) carrying antimicrobial resistance genes (ARGs) into the air, posing a potential threat to human and animal health due to the intensive use of antibiotics in the livestock industry. This study analyzed the effect of different manure types and spreading methods on airborne bacterial emissions and antibiotic resistance genes in a controlled setting. Cow, poultry manure, and pig slurry were spread in a confined environment using two types of spreaders (splash plate and dribble bar), and the resulting emissions were collected before, during, and after spreading using high-volume air samplers coupled to a particle counter. Total bacteria, fecal indicators, and a total of 38 different subtypes of ARGs were further quantified by qPCR. Spreading poultry manure resulted in the highest emission rates of total bacteria (10(11) 16S gene copies/kg manure spread), Archaea (10(6) 16S gene copies/kg manure), Enterococcus (10(5) 16S gene copies/kg manure), and E. coli (10(4) 16S gene copies/kg manure), followed by cow manure and pig slurry with splash plates and the dribble bar. Manure spreading was associated with the highest rates of airborne aminoglycoside genes for cow and poultry (10(6) gene copies/kg manure), followed by pig slurry (10(4) gene copies/kg manure). This study shows that the type of manure and spreading equipment can affect the emission rates of airborne bacteria, and ARGs. | 2023 | 37512969 |
| 7246 | 7 | 0.9996 | Tetracycline resistance genes are more prevalent in wet soils than in dry soils. This study aimed to reveal the effects of water content on the spread of tetracycline resistance genes (TRGs) in the soil. Amendments of four samples with different soil water contents, namely 16% (dry soil) and 25% (wet soil), and with or without pig manures (PM) were conducted under laboratory conditions. Quantitative polymerase chain reaction (q-PCR) results showed that the relative abundance of TRGs (tetB, tetC, tetM, tetO, tetT, and tetZ) in the wet soils was significantly higher than that in the dry soils whether under fertilization or non-fertilization conditions. Moreover, PM application enhanced the relative abundance of TRGs. The absolute copies of TRGs did not decline with the decrease in 16S rRNA genes in wet soils, implying that most TRGs were probably located in facultative anaerobic bacteria. However, cultivable tetracycline-resistant bacteria (TRB) in the wet soils were not in line with the q-PCR results, further indicating that aerobes might not account for the increases in the relative abundance of TRGs. Diversities of aerobic TRB were significantly higher in the wet soils than in the dry soils, especially on days 14 and 28. The patterns of community structures of aerobic TRB in the wet soils or dry soils containing PM were different from those in the dry soils. Together, this study showed that the variations in bacterial communities between the wet and dry soils, especially reflected in the diversity of aerobic TRB and/or community structure of facultative anaerobic TRB, might be an important reason behind the changes in the abundance of TRGs. | 2018 | 29573724 |
| 7997 | 8 | 0.9996 | Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters. Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene transfer between raw sludge bacteria and the digester microbial community. | 2016 | 27014196 |
| 7261 | 9 | 0.9996 | Inorganic and organic fertilizers impact the abundance and proportion of antibiotic resistance and integron-integrase genes in agricultural grassland soil. Soil fertilization with animal manure or its digestate may facilitate an important antibiotic resistance dissemination route from anthropogenic sources to the environment. This study examines the effect of mineral fertilizer (NH4NO3), cattle slurry and cattle slurry digestate amendment on the abundance and proportion dynamics of five antibiotic resistance genes (ARGs) and two classes of integron-integrase genes (intI1 and intI2) in agricultural grassland soil. Fertilization was performed thrice throughout one vegetation period. The targeted ARGs (sul1, tetA, blaCTX-M, blaOXA2 and qnrS) encode resistance to several major antibiotic classes used in veterinary medicine such as sulfonamides, tetracycline, cephalosporins, penicillin and fluoroquinolones, respectively. The non-fertilized grassland soil contained a stable background of tetA, blaCTX-M and sul1 genes. The type of applied fertilizer significantly affected ARGs and integron-integrase genes abundances and proportions in the bacterial community (p<0.001 in both cases), explaining 67.04% of the abundance and 42.95% of the proportion variations in the grassland soil. Both cattle slurry and cattle slurry digestate proved to be considerable sources of ARGs, especially sul1, as well as integron-integrases. Sul1, intI1 and intI2 levels in grassland soil were elevated in response to each organic fertilizer's application event, but this increase was followed by a stage of decrease, suggesting that microbes possessing these genes were predominantly entrained into soil via cattle slurry or its digestate application and had somewhat limited survival potential in a soil environment. However, the abundance of these three target genes did not decrease to a background level by the end of the study period. TetA was most abundant in mineral fertilizer treated soil and blaCTX-M in cattle slurry digestate amended soil. Despite significantly different abundances, the abundance dynamics of bacteria possessing these genes were similar (p<0.05 in all cases) in different treatments and resembled the dynamics of the whole bacterial community abundance in each soil treatment. | 2016 | 27115621 |
| 7117 | 10 | 0.9996 | Persistence of antibiotic resistance genes in beef cattle backgrounding environment over two years after cessation of operation. Confined animal feeding operations can facilitate the spread of genes associated with antibiotic resistance. It is not known how cattle removal from beef cattle backgrounding operation affects the persistence of antibiotic resistance genes (ARGs) in the environment. We investigated the effect of cessation of beef cattle backgrounding operation on the persistence and distribution of ARGs in the beef cattle backgrounding environment. The study was conducted at a pasture-feedlot type beef cattle backgrounding operation which consisted of feeding and grazing areas that were separated by a fence with an access gate. Backgrounding occurred for seven years before cattle were removed from the facility. Soil samples (n = 78) from 26 georeferenced locations were collected at the baseline before cattle were removed, and then one year and two years after cattle were removed. Metagenomic DNA was extracted from the soil samples and total bacterial population (16S rRNA), total Enterococcus species and class 1 integrons (intI1), and erythromycin (ermB and ermF), sulfonamide (sul1 and sul2) and tetracycline (tetO, tetW and tetQ) resistance genes were quantified. Concentrations of total bacteria, Enterococcus spp., class 1 integrons, and ARGs were higher in the feeding area and its immediate vicinity (around the fence and the gate) followed by a gradient decline along the grazing area. Although the concentrations of total bacteria, Enterococcus spp., class 1 integrons and ARGs in the feeding area significantly decreased two years after cattle removal, their concentrations were still higher than that observed in the grazing area. Higher concentrations over two years in the feeding area when compared to the grazing area suggest a lasting effect of confined beef cattle production system on the persistence of bacteria and ARGs in the soil. | 2019 | 30768641 |
| 7251 | 11 | 0.9996 | Effects of tetracycline antibiotics in chicken manure on soil microbes and antibiotic resistance genes (ARGs). China is the world's largest livestock and poultry breeding country, but also the largest use of veterinary antibiotics. When a large amount of chicken manure is applied to the soil, it will cause the number of antibiotic residues and resistant bacteria to increase, which will bring about the pollution of antibiotic resistance genes (ARGs) in the soil, and then increase the risk of environmental pollution and human health. Field experiments were conducted to study the changes of soil tetracycline antibiotic residues, resistant bacteria and resistance genes treated with different types and dosage of chicken manure (no chicken manure, (CK), low fresh chicken manure treatment (300 kg·667 m(-2)), high fresh chicken manure treatment (600 kg·667 m(-2)), low decomposed chicken manure treatment (300 kg·667 m(-2)) and high decomposed chicken manure treatment (600 kg·667 m(-2))). After one-year application of chicken manure, content of soil organic matter increased by 1.0%-3.2% compared with the control. The activity of soil catalase significantly increased by 84.3-91.5%, 81.9-102.9% in fresh and decomposed chicken manure treatments compared with the control, respectively. The amount of soil resistant bacteria under the same treatment was in the order of Anti-OTC > Anti-TC > Anti-CTC. After one-year application of chicken manure, the total tetracycline amount in the soil was increased by 168.5-217.9% compared with the control. The amount of antibiotic residue in soil treated with fresh chicken manure was 3.0-9.1% higher than that treated with decomposed chicken manure. The abundance of ARGs in the soil was in the order of that treated with high fresh chicken manure > low fresh chicken manure > high decomposed chicken manure > low decomposed chicken manure. The risk of tetracycline antibiotics to soil ecological environment may be greatly reduced after chicken manure decomposed. | 2022 | 34114159 |
| 7247 | 12 | 0.9996 | Environmental analysis of typical antibiotic-resistant bacteria and ARGs in farmland soil chronically fertilized with chicken manure. Antibiotics and the corresponding resistant bacteria and resistance genes (ARGs) are generally considered emerging pollutants. To assess the impacts of tetracycline (TC) and sulfonamide (SA) antibiotics that are eliminated with fecaluria as drug prototypes, farmland soil used to research long-term fertilization with chicken manure was collected at four sites in Shandong Province. In this study, the rates of bacterial drug resistance to the same antibiotic decreased with an increase in the concentration of that antibiotic, and the resistance rates to TCs were lower than those to SAs. PCR of ARGs revealed that the ARGs detected at the highest frequency were the TC resistance genes tetW and tetO and the SA resistance genes sul1 and sul2. Real-time qPCR showed that the quantities of ARGs in farmland soil fertilized with chicken manure were significantly greater compared with the control soil. Moreover, significant correlations (R(2)=0.9525, p<0.05) between the number of sul ARGs and the total SA concentration were observed in all of the soil samples. In summary, this study showed that SAs can induce the appearance of ARGs and pollute the soil environment. | 2017 | 28340477 |
| 7237 | 13 | 0.9996 | Dominant denitrifying bacteria are important hosts of antibiotic resistance genes in pig farm anoxic-oxic wastewater treatment processes. The anoxic-oxic (A/O) wastewater treatment process that is widely used in pig farms in China is an important repository for antibiotic resistance genes (ARGs). However, the distribution of ARGs and their hosts in the A/O process has not been well characterized. In this study, the wastewaters in the anoxic and oxic tanks for A/O processes were collected from 38 pig farms. The concentrations of 20 subtypes of ARGs, 5 denitrification-related genes, 2 integrons, and bacterial community composition were investigated. Bacterial genome binning was performed using metagenome sequencing. In this study, 20 subtypes of ARGs and integrons were detected in all sampling sites. A total of 16 of the 20 subtypes of ARGs were detected with the highest abundance in anoxic tanks, and sul1 was detected with a maximum average abundance of 19.21 ± 0.24 log(10) (copies/mL). Cooccurrence patterns were observed for some genes in the pig farm A/O process, such as sul1 and intl1, sul1 and tetG, and tetO and tetW. There was a significant cooccurrence pattern between the dominant denitrifying bacteria and some ARGs (bla(TEM), ermB, tetC, tetH and tetQ), so the dominant denitrifying bacteria were considered to be potential ARG hosts. In addition, 170 highly abundant bacterial genome bins were assembled and further confirmed that the denitrifying bacteria Brachymonas, Candidatus Competibacter, Thiobacillus and Steroidobacter were the important ARG hosts in the pig farm A/O process, providing a useful reference for the surveillance and risk management of ARGs in pig farm wastewater. | 2020 | 32615347 |
| 8019 | 14 | 0.9996 | In-feed antibiotic use changed the behaviors of oxytetracycline, sulfamerazine, and ciprofloxacin and related antibiotic resistance genes during swine manure composting. The dynamics of oxytetracycline (OTC), sulfamerazine (SM1), ciprofloxacin (CIP) and related antibiotic resistance genes (ARGs) during swine manure composting were compared between manure collected from swine fed a diet containing these three antibiotics (T(D)) and manure directly spiked with these drugs (T(S)). The composting removal efficiency of OTC (94.9 %) and CIP (87.8 %) in the T(D) treatment was significantly higher than that of OTC (83.8 %, P < 0.01) and CIP (83.9 %, P < 0.05) in the T(S) treatment, while SM1 exhibited no significant difference (P > 0.05) between the two treatments. Composting effectively reduced the majority of ARGs in both T(D) and T(S) types of manure, especially tetracycline resistance genes (TRGs). Compared with the T(S) treatment, the abundance of some ARGs, such as tetG, qepA, sul1 and sul2, increased dramatically up to 309-fold in the T(D) treatment. The microbial composition of the composting system changed significantly during composting due to antibiotic feeding. Redundancy analysis suggested that the abundance of ARGs had a considerable impact on alterations in the physicochemical parameters (C/N, pH and temperature) and bacterial communities (Actinobacteria, Proteobacteria and Firmicutes) during the composting of swine manure. | 2021 | 33254754 |
| 7179 | 15 | 0.9996 | Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. The propagation of antibiotic resistance genes (ARGs) is an emerging health concern worldwide. Thus, it is important to understand and mitigate their occurrence in different systems. In this study, 30 ARGs that confer resistance to tetracyclines, sulfonamides, quinolones or macrolides were detected in two activated sludge wastewater treatment plants (WWTPs) in northern China. Bacteria harboring ARGs persisted through all treatment units, and survived disinfection by chlorination in greater percentages than total Bacteria (assessed by 16S rRNA genes). Although the absolute abundances of ARGs were reduced from the raw influent to the effluent by 89.0%-99.8%, considerable ARG levels [(1.0 ± 0.2) × 10(3) to (9.5 ± 1.8) × 10(5) copies/mL)] were found in WWTP effluent samples. ARGs were concentrated in the waste sludge (through settling of bacteria and sludge dewatering) at (1.5 ± 2.3) × 10(9) to (2.2 ± 2.8) × 10(11) copies/g dry weight. Twelve ARGs (tetA, tetB, tetE, tetG, tetH, tetS, tetT, tetX, sul1, sul2, qnrB, ermC) were discharged through the dewatered sludge and plant effluent at higher rates than influent values, indicating overall proliferation of resistant bacteria. Significant antibiotic concentrations (2%-50% of raw influent concentrations) remained throughout all treatment units. This apparently contributed selective pressure for ARG replication since the relative abundance of resistant bacteria (assessed by ARG/16S rRNA gene ratios) was significantly correlated to the corresponding effluent antibiotic concentrations. Similarly, the concentrations of various heavy metals (which induce a similar bacterial resistance mechanism as antibiotics - efflux pumps) were also correlated to the enrichment of some ARGs. Thus, curtailing the release of antibiotics and heavy metals to sewage systems (or enhancing their removal in pre-treatment units) may alleviate their selective pressure and mitigate ARG proliferation in WWTPs. | 2015 | 26372743 |
| 7241 | 16 | 0.9996 | In situ analysis of antibiotic resistance genes in anaerobically digested dairy manure and its subsequent disposal facilities. The metagenomic and quantitative polymerase chain reaction approaches were combined to evaluate the profiles of ARGs and plasmids in anaerobically digested dairy manure in situ and reveal the persistence and elevation of typical ARGs and plasmids in its subsequent disposal facilities in CAFOs, respectively. Our results indicated that the typical ARGs and plasimd were mainly sul2, mefa, tetm-01, tetm-02, tetw, aph3iiia, and clostridioides difficile strain 12,038 plasmid unnamed in CAFOs, some of which greatly enriched in AD residue after its storage, especially sul1 and sul2. Meantime, the AD slurry recycling introduced the bacteria carrying ARGs into soil, especially Romboutsia genus, which greatly enriched sul2, tetm-01, tetm-02, aphiiia, and mefa. In the present study, ARGs occurrence, persistence and distribution were understood through in situ analysis of their profiles during dairy manure AD treatment and subsequent disposals in CAFOs, which are helpful for controlling the potential environmental risks from dairy manure recycling. | 2021 | 33894444 |
| 7253 | 17 | 0.9996 | Manure Compost Is a Potential Source of Tetracycline-Resistant Escherichia coli and Tetracycline Resistance Genes in Japanese Farms. Manure compost has been thought of as a potential important route of transmission of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) from livestock to humans. To clarify the abundance of ARB and ARGs, ARB and ARGs were quantitatively determined in tetracycline-resistant Escherichia coli (harboring the tetA gene)-spiked feces in simulated composts. In the simulated composts, the concentration of spiked E. coli decreased below the detection limit at day 7. The tetA gene remained in manure compost for 20 days, although the levels of the gene decreased. Next, to clarify the field conditions of manure compost in Japan, the quantities of tetracycline-resistant bacteria, tetracycline resistance genes, and residual tetracyclines were determined using field-manure-matured composts in livestock farms. Tetracycline-resistant bacteria were detected in 54.5% of tested matured compost (6/11 farms). The copy number of the tetA gene and the concentrations of residual tetracyclines in field manure compost were significantly correlated. These results suggest that the use of antimicrobials in livestock constitutes a selective pressure, not only in livestock feces but also in manure compost. The appropriate use of antimicrobials in livestock and treatment of manure compost are important for avoiding the spread of ARB and ARGs. | 2020 | 32054107 |
| 7262 | 18 | 0.9996 | Soil texture-depending effects of doxycycline and streptomycin applied with manure on the bacterial community composition and resistome. Veterinary antibiotics, bacteria carrying antibiotic resistance determinants located on mobile genetic elements and nutrients are spread on agricultural soil using manure as fertilizer. However, systematic quantitative studies linking antibiotic concentrations and antimicrobial resistance genes (ARGs) in manure and the environment are scarce but needed to assess environmental risks. In this microcosm study, a sandy and a loamy soil were mixed with manure spiked with streptomycin or doxycycline at five concentrations. Total-community DNA was extracted on days 28 and 92, and the abundances of ARGs (aadA, strA, tet(A), tet(M), tet(W), tet(Q), sul1, qacE/qacEΔ1) and class 1 and 2 integron integrase genes (intI1 and intI2) were determined by qPCR relative to 16S rRNA genes. Effects on the bacterial community composition were evaluated by denaturing gradient gel electrophoresis of 16S rRNA gene amplicons. Manure application to the soils strongly increased the relative abundance of most tested genes. Antibiotics caused further enrichments which decreased over time and were mostly seen at high concentrations. Strikingly, the effects on relative gene abundances and soil bacterial community composition were more pronounced in sandy soil. The concept of defining antibiotic threshold concentrations for environmental risk assessments remains challenging due to the various influencing factors. | 2018 | 29087461 |
| 7249 | 19 | 0.9996 | Modeling the fate of antibiotic resistance genes and class 1 integrons during thermophilic anaerobic digestion of municipal wastewater solids. This study investigated the use of thermophilic anaerobic digestion for removing antibiotic resistance genes (ARGs) from residual municipal wastewater solids. Four laboratory-scale anaerobic digesters were operated in 8-day batch cycles at temperatures of 40, 56, 60, and 63 °C. Two tetracycline resistance genes (tet(W) and tet(X)), a fluoroquinolone resistance gene (qnrA), the integrase gene of class 1 integrons (intI1), 16S rRNA genes of all Bacteria, and 16S rRNA genes of methanogens were quantified using real-time quantitative PCR. ARG and intI1 quantities decreased at all temperatures and were described well by a modified form of the Collins-Selleck disinfection kinetic model. The magnitudes of Collins-Selleck kinetic parameters were significantly greater at thermophilic temperatures compared to 40 °C, but few statistically significant differences were observed among these parameters for the thermophilic anaerobic digesters. This model allows for the direct comparison of different operating conditions (e.g., temperature) on anaerobic digestion performance in mitigating the quantity of ARGs in wastewater solids and could be used to design full-scale anaerobic digesters to specifically treat for ARGs as a "pollutant" of concern. | 2016 | 26481624 |