# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7201 | 0 | 1.0000 | Evolution of microbial community and drug resistance during enrichment of tetracycline-degrading bacteria. Recently, the microbial degradation of tetracycline has been widely reported. However, its potential risks in treating wastewater containing high concentrations of tetracycline have not been fully evaluated. In this study, the evolution of the microbial community and drug resistance was traced during the enrichment of tetracycline-degrading bacteria. The results showed that some minor compositions such as Shewanella, Bacillus, and Pseudomonas in the seed sludge became the predominant genera in the enrichment cultures when continuously using tetracycline as the sole carbon source, especially some possible pathogenic bacteria increased significantly in this process. The abundances of most TRGs/16S rDNA were increased after enrichment, although the relative abundance of tetA and tetL genes decreased to some extent. From the enrichment culture, 7 predominant tetracycline-degrading strains were isolated, of which TD-1 (Bacillus) and TD-5 (Shewanella) presented high degradation efficiencies (6-day degradation rate > 95%, half-life period of tetracycline ≈ 24 h). In addition, multiple TRGs, mobile genetic elements (MGEs) and even gene cassettes were found in each tetracycline-degrading isolate. The findings suggested that some risks such as the pathogenicity of isolates and the spread of ARGs should be considered when the biodegradation method is used to treat wastewater polluted with high concentrations of tetracycline. | 2019 | 30660087 |
| 7202 | 1 | 0.9999 | Cyanobacterial extracellular antibacterial substances could promote the spread of antibiotic resistance: impacts and reasons. Many studies have shown that antibiotic resistance genes (ARGs) can be facilitated by a variety of antibacterial substances. Cyanobacteria are photosynthetic bacteria that are widely distributed in the ocean. Some extracellular substances produced by marine cyanobacteria have been found to possess antibacterial activity. However, the impact of these extracellular substances on ARGs is unclear. Therefore, we established groups of seawater microcosms that contained different concentrations (1000, 100, 10, 1, 0.1, 0.01, and 0 μg mL(-1)) of cyanobacterial extracellular substances (CES), and tracked the changes of 17 types of ARGs, the integron gene (intI1), as well as the bacterial community at different time points. The results showed that CES could enrich most ARGs (15/17) in the initial stage, particularly at low concentrations (10 and 100 μg mL(-1)). The correlation analysis showed a positive correlation between several ARGs and intI1. It is suggested that the abundance of intI1 increased with CES may contribute to the changes of these ARGs, and co-resistance of CES may be the underlying reason for the similar variation pattern of some ARGs. Moreover, the results of qPCR and high-throughput sequencing of 16S rRNA showed that CES had an inhibitory impact on the growth of bacterial communities. High concentrations of CES were found to alter the structure of bacterial communities. Co-occurrence networks showed that bacteria elevated in the high concentration group of CES and might serve as the potential hosts for a variety of ARGs. In general, marine cyanobacteria could play an important role in the global dissemination of ARGs and antibiotic-resistant bacteria (ARBs). | 2023 | 37947439 |
| 7190 | 2 | 0.9999 | Dynamics of microbial community and tetracycline resistance genes in biological nutrient removal process. The occurrence of antibiotics in wastewater has become a serious concern due to the possible development of antibiotic resistant bacteria in wastewater treatment process. In order to understand the dynamics of microbial community and tetracycline resistance genes in biological nutrient removal (BNR) process, three lab-scale sequencing batch reactors (SBRs) were operated under the stress of tetracycline. Results indicated that microbial community structure was altered, and tetracycline efflux pump genes were enhanced over 150-day operation in the presence of trace tetracycline of 20 and 50 μg L(-1), respectively. Furthermore, when the initial tetracycline concentrations were increased to 2 and 5 mg L(-1), substantial enhancement of tetracycline resistance was observed, accompanied with a sharp shift in microbial community structure. In this study, horizontal gene transfer was found to be the main mechanism for the development of tetracycline resistance genes under the long-terms stress of trace tetracycline. About 90.34% of the observed variations in tetracycline resistance genes could be explained by the dynamics of potential hosts of tetracycline resistance genes and class 1 integron. It should be noticed that the functional bacteria (e.g. Nitrospira, Dechloromonas, Rhodobacter and Candidatus_Accumulibacter) responsible for nutrient removal were positively correlated with tetracycline resistance, which might promote the prevalence of tetracycline resistance during biological wastewater treatment. Consequently, this study provided in-depth insights into the occurrence and prevalence of tetracycline resistance genes and their microbial hosts in BNR process. | 2019 | 30849601 |
| 3432 | 3 | 0.9999 | Insights into the amplification of bacterial resistance to erythromycin in activated sludge. Wastewater treatment plants are significant reservoirs for antimicrobial resistance. However, little is known about wastewater treatment effects on the variation of antibiotic resistance. The shifts of bacterial resistance to erythromycin, a macrolide widely used in human medicine, on a lab-scale activated sludge system fed with real wastewater was investigated from levels of bacteria, community and genes, in this study. The resistance variation of total heterotrophic bacteria was studied during the biological treatment process, based on culture dependent method. The alterations of bacterial community resistant to erythromycin and nine typical erythromycin resistance genes were explored with molecular approaches, including high-throughput sequencing and quantitative polymerase chain reaction. The results revealed that the total heterotrophs tolerance level to erythromycin concentrations (higher than 32 mg/L) was significantly amplified during the activated sludge treatment, with the prevalence increased from 9.6% to 21.8%. High-throughput sequencing results demonstrated an obvious increase of the total heterotrophic bacterial diversity resistant to erythromycin. Proteobacteria and Bacteroidetes were the two dominant phyla in the influent and effluent of the bioreactor. However, the prevalence of Proteobacteria decreased from 76% to 59% while the total phyla number increased greatly from 18 to 29 through activated sludge treatment. The gene proportions of erm(A), mef(E) and erm(D) were greatly amplified after biological treatment. It is proposed that the transfer of antibiotic resistance genes through the variable mixtures of bacteria in the activated sludge might be the reason for the antibiotic resistance amplification. The amplified risk of antibiotic resistance in wastewater treatment needs to be paid more attention. | 2015 | 25957255 |
| 7123 | 4 | 0.9999 | Presence and fate of antibiotic residues, antibiotic resistance genes and zoonotic bacteria during biological swine manure treatment. The presence and dissemination of antibiotic residues, antibiotic resistance genes and zoonotic bacteria in the environment is of growing concern worldwide. Manure management practices, such as biological removal of nitrogen from swine manure, may help to decrease levels of antibiotic residues, antibiotic resistance genes and zoonotic bacteria present in manure before fertilization, thereby reducing environmental contamination. Therefore, the aim of this study was to monitor the presence and fate of seven antibiotic residues (colistin, sulfadiazine, trimethoprim, doxycycline, oxytetracycline, ceftiofur and tylosin A), nine antibiotic resistance genes (tet(B), tet(L), tet(M), tet(O), tet(Q), tet(W), erm(B), erm(F) and sul2) and two zoonotic bacteria (Salmonella Typhimurium and Campylobacter coli) during biological nitrogen removal from swine manure over time. Samples from the raw manure, the solid fraction, the liquid fraction and the storage lagoon were analyzed on two farms at six time points with an interval of two weeks. Only the antibiotics which were used during the three months preceding the first sampling could be detected before and after biological nitrogen removal from swine manure. Of all the antibiotics studied, doxycycline was recovered in all of the samples and sulfadiazine was recovered in most samples on both farms. For both antibiotics, there appears to be a reduction of the amount of residues present in the storage lagoon compared to the liquid fraction, however, this reduction was not statistically significant. A significant reduction of the relative abundances of most of the antibiotic resistance genes studied was observed when comparing the liquid fraction and the storage lagoon. For tet(L), no differences were observed between the fractions sampled and for sul2 and erm(F), a significant increase in relative abundances was observed on the second farm sampled. For the zoonotic bacteria, a reduction of at least 1 log was observed after biological nitrogen removal from swine manure. The results indicate that the concentration of certain antibiotic residues and several antibiotic resistance genes and the amount of zoonotic bacteria present in the manure may be reduced in the end product of the biological nitrogen removal from swine manure. | 2019 | 30878661 |
| 7414 | 5 | 0.9999 | Structure of the manure resistome and the associated mobilome for assessing the risk of antimicrobial resistance transmission to crops. In this study, the impact of bovine and poultry manure on the quantitative and qualitative composition of antibiotic resistance genes (ARGs) and the environmental mobilome associated with antimicrobial resistance in soil and crops was determined with the use of next generation sequencing methods. The aim of the study was to perform a metagenomic analysis of manure to estimate the risk of the transmission of ARGs and bacterial drug resistance carriers to fertilized soil and crops. The total copy number of ARGs was nearly four times higher in poultry manure (555 ppm) than in bovine manure (140 ppm), and this relationship was also noted in fertilized soil. Poultry manure induced a much greater increase in the concentrations of ARGs in the soil environment (196.4 ppm) than bovine manure (137.8 ppm) immediately after supplementation. The application of poultry manure led to the highest increase in the abundance of genes encoding resistance to tetracyclines (9%), aminoglycosides (3.5%), sulfonamides (3%), bacitracin (2%), chloramphenicol (2%), and macrolide-lincosamide-streptogramin antibiotics (1%). Heavy metals were stronger promoters of antibiotic resistance in the environment than antibiotics. Antibiotics exerted a greater influence on maintaining the diversity of ARGs than on increasing their abundance in soil. Large quantities of insertion sequences (IS), including those associated with the mobility of ARGs in the population of ESKAPEE pathogens, are introduced to soil with manure. These IS remain stable for up to several months, which indicates that manure, in particular poultry manure, significantly increases the risk of rapid ARG transfer to the environment. Manure also largely contributes to an increase in the diversity of the resistome and mobilome in the metagenome of bacteria isolated from crops. Bacteria of the phylum Proteobacteria appear to play a major role in the transmission of multiple ARGs in crops grown for human and animal consumption. | 2022 | 34864022 |
| 3680 | 6 | 0.9999 | Metagenomic Insights Into the Contribution of Phages to Antibiotic Resistance in Water Samples Related to Swine Feedlot Wastewater Treatment. In this study, we examined the types of antibiotic resistance genes (ARGs) possessed by bacteria and bacteriophages in swine feedlot wastewater before and after treatment using a metagenomics approach. We found that the relative abundance of ARGs in bacterial DNA in all water samples was significantly higher than that in phages DNA (>10.6-fold), and wastewater treatment did not significantly change the relative abundance of bacterial- or phage-associated ARGs. We further detected the distribution and diversity of the different types of ARGs according to the class of antibiotics to which they confer resistance, the tetracycline resistance genes were the most abundant resistance genes and phages were more likely to harbor ATP-binding cassette transporter family and ribosomal protection genes. Moreover, the colistin resistance gene mcr-1 was also detected in the phage population. When assessing the contribution of phages in spreading different groups of ARGs, β-lactamase resistance genes had a relatively high spreading ability even though the abundance was low. These findings possibly indicated that phages not only could serve as important reservoir of ARG but also carry particular ARGs in swine feedlot wastewater, and this phenomenon is independent of the environment. | 2018 | 30459724 |
| 7200 | 7 | 0.9999 | Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure. Antibiotic contamination in agroecosystems may cause serious problems, such as the proliferation of various antibiotic resistant bacteria and the spreading of antibiotic resistance genes (ARGs) in the environment or even to human beings. However, it is unclear whether environmental antibiotics, antibiotic resistant bacteria, and ARGs can directly enter into, or occur in, the endophytic systems of plants exposed to pollutants. In this study, a hydroponic experiment exposing pakchoi (Brassica chinensis L.) to tetracycline, cephalexin, and sulfamethoxazole at 50% minimum inhibitory concentration (MIC) levels and MIC levels, respectively, was conducted to explore plant growth, antibiotic uptake, and the development of antibiotic resistance in endophytic systems. The three antibiotics promoted pakchoi growth at 50% MIC values. Target antibiotics at concentrations ranging from 6.9 to 48.1 µg·kg(-1) were detected in the treated vegetables. Additionally, the rates of antibiotic-resistant endophytic bacteria to total cultivable endophytic bacteria significantly increased as the antibiotics accumulated in the plants. The detection and quantification of ARGs indicated that four types, tetX, bla(CTX-M), and sul1 and sul2, which correspond to tetracycline, cephalexin, and sulfamethoxazole resistance, respectively, were present in the pakchoi endophytic system and increased with the antibiotic concentrations. The results highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophytic systems. | 2017 | 29099753 |
| 7124 | 8 | 0.9999 | Changes in diversity of cultured bacteria resistant to erythromycin and tetracycline in swine manure during simulated composting and lagoon storage. This study investigated the impact of composting and lagoon storage on survival and change in diversity of tetracycline-resistant (Tc(r) ) and erythromycin-resistant (Em(r) ) bacteria and the resistance genes they carry in swine manure. Treatments were arranged as a 2 × 2 factorial design: composting vs lagoon storage and 0 vs 1% Surround WP Crop Protectant (a clay product) in three replicates. After 48 days of treatments, resistant bacteria were enumerated by selective plating and identified by 16S rRNA gene sequencing. The erm and the tet gene(s) carried by the resistant isolates were screened using class-specific PCR assays. The plate counts of Tc(r) and Em(r) bacteria decreased by 4-7 logs by composting, but only by 1-2 logs by the lagoon treatment. During the treatments, Acinetobacter gave way to Pseudomonas and Providencia as the largest resistant genera. The clay product had little effect on survival or diversity of resistant bacteria. Of six classes of erm and seven classes of tet genes tested, changes in prevalence were also noted. The results indicate that composting can dramatically shift Tc(r) and Em(r) bacterial populations, and composting can be an effective and practical approach to decrease dissemination of antibiotic resistance from swine farms to the environment. SIGNIFICANCE AND IMPACT OF THE STUDY: The presented research provided evidence that composting is much more effective than lagoon storage in dramatically decreasing culturable bacteria resistant to erythromycin and tetracycline in swine manure. Considerable diversity changes of resistant bacteria were also demonstrated during composting or lagoon storage. Overall, Acinetobacter was the major resistant genus in untreated swine manure, but pseudomonads and Providencia became the major resistant genera after the treatments. This is the first study that investigated diversity changes of cultured bacteria resistant to these two antibiotics during composting and lagoon storage of swine manure. New genes encoding resistance to the two antibiotics were also implied in the cultured isolates. | 2015 | 26031793 |
| 7197 | 9 | 0.9999 | The response of copper resistance genes, antibiotic resistance genes, and intl1/2 to copper addition during anaerobic digestion in laboratory. Heavy metal pollution can serve as a selective pressure for antibiotic resistance genes in polluted environments. Anaerobic fermentation, as a recommended wastewater treatment method, is an effective mitigation measure of antibiotic resistance diffusion. To explore the influence of copper on anaerobic fermentation, we exposed the fermentation substrate to copper in a laboratory setup. We found that the relative abundance of 8 genes (pcoD, tetT, tetA, tetB, tetO, qnrS, ermA and ermB) increased at the late stage of fermentation and their abundance was linked to copper content. Corynebacterium and Streptococcus were significantly positively correlated with ermA, ermB, tetA and tetB (P < 0.05). The relative abundance of tetT was significantly positively correlated with Terrisporobacter, Clostridium_sensu_stricto_1 and Turicibacter (P < 0.05). We screened 90 strains of copper resistant bacteria from blank, medium and high copper test groups on days 25, 31 and 37. The number of fragments carried by a single strain increased with time while intl1, ermA and ermB existed in almost all combinations of the multiple fragments we identified. The relative abundance of these three genes were linearly correlated with Corynebacterium and Streptococcus. The antibiotic resistance genes carried by class 1 integrons gradually increased with time in the fermentation system and integrons carrying ermA and ermB most likely contributed to host survival through the late stages of fermentation. The genera Corynebacterium and Streptococcus may be the primary carriers of such integrated mobile gene element and this was most likely the reason for their rebound in relative abundance during the late fermentation stages. | 2021 | 33418156 |
| 7191 | 10 | 0.9999 | The impact of antimicrobials on the efficiency of methane fermentation of sewage sludge, changes in microbial biodiversity and the spread of antibiotic resistance. The study was designed to simultaneously evaluate the influence of high doses (512-1024 µg/g) the most commonly prescribed antimicrobials on the efficiency of anaerobic digestion of sewage sludge, qualitative and quantitative changes in microbial consortia responsible for the fermentation process, the presence of methanogenic microorganisms, and the fate of antibiotic resistance genes (ARGs). The efficiency of antibiotic degradation during anaerobic treatment was also determined. Metronidazole, amoxicillin and ciprofloxacin exerted the greatest effect on methane fermentation by decreasing its efficiency. Metronidazole, amoxicillin, cefuroxime and sulfamethoxazole were degraded in 100%, whereas ciprofloxacin and nalidixic acid were least susceptible to degradation. The most extensive changes in the structure of digestate microbiota were observed in sewage sludge exposed to metronidazole, where a decrease in the percentage of bacteria of the phylum Bacteroidetes led to an increase in the proportions of bacteria of the phyla Firmicutes and Proteobacteria. The results of the analysis examining changes in the concentration of the functional methanogen gene (mcrA) did not reflect the actual efficiency of methane fermentation. In sewage sludge exposed to antimicrobials, a significant increase was noted in the concentrations of β-lactam, tetracycline and fluoroquinolone ARGs and integrase genes, but selective pressure was not specific to the corresponding ARGs. | 2021 | 33831706 |
| 7302 | 11 | 0.9999 | Release of Antibiotic Resistant Bacteria by a Waste Treatment Plant from Romania. The occurrence and spread of bacterial antibiotic resistance are subjects of great interest, and the role of wastewater treatment plants has been attracting particular interest. These stations are a reservoir of bacteria, have a large range of organic and inorganic substances, and the amount of bacteria released into the environment is very high. The main purpose of the present study was to assess the removal degree of bacteria with resistance to antibiotics and identify the contribution of a wastewater treatment plant to the microbiota of Someşul Mic river water in Cluj county. The resistance to sulfamethoxazole and tetracycline and some of their representative resistance genes: sul1, tet(O), and tet(W) were assessed in this study. The results obtained showed that bacteria resistant to sulphonamides were more abundant than those resistant to tetracycline. The concentration of bacteria with antibiotic resistance changed after the treatment, namely, bacteria resistant to sulfamethoxazole. The removal of all bacteria and antibiotic-resistant bacteria was 98-99% and the degree of removal of bacteria resistant to tetracycline was higher than the bacteria resistant to sulfamethoxazole compared to total bacteria. The wastewater treatment plant not only contributed to elevating ARG concentrations, it also enhanced the possibility of horizontal gene transfer (HGT) by increasing the abundance of the intI1 gene. Even though the treatment process reduced the concentration of bacteria by two orders of magnitude, the wastewater treatment plant in Cluj-Napoca contributed to an increase in antibiotic-resistant bacteria concentrations up to 10 km downstream of its discharge in Someşul Mic river. | 2017 | 28781345 |
| 7303 | 12 | 0.9999 | Stepwise impact of urban wastewater treatment on the bacterial community structure, antibiotic contents, and prevalence of antimicrobial resistance. Bacteria, antibiotics, and antibiotic resistance determinants are key biological pollutants in aquatic systems, which may lead to bacterial infections or prevent the cure of bacterial infections. In this study, we investigated how the wastewater treatment processes in wastewater treatment plants (WWTPs) affect these pollutants. We found that the addition of oxygen, polyaluminum chloride (PAC), and polyacrylamide (PAM), as well as ultraviolet (UV) disinfection could significantly alter the bacterial communities in the water samples. An overall shift from Gram-negative bacteria to Gram-positive bacteria was observed throughout the wastewater treatment steps, but the overall bacterial biomass was not reduced in the WWTP samples. The antibiotic contents were reduced by the WWTP, but the size of the reduction and the step when antibiotic degradation occurred differed among antibiotics. Ciprofloxacin, sulfamethoxazole and erythromycin could be removed completely by the WWTP, whereas cephalexin could not. The removal of ciprofloxacin, cephalexin, and erythromycin occurred in the anaerobic digester, whereas the removal of sulfamethoxazole occurred after the addition of PAC and PAM, and UV disinfection. Antimicrobial resistance determinants were highly prevalent in all of the samples analyzed, except for those targeting vancomycin and colistin. However, wastewater treatment was ineffective at removing antimicrobial resistance determinants from wastewater. There were strong correlations between intI1, floR, sul1, and ermB, thereby suggesting the importance of integrons for the spread of these antimicrobial resistance genes. In general, this study comprised a stepwise analysis of the impact of WWTPs on three biological pollutants: bacteria, antibiotics, and antimicrobial resistance determinants, where our results suggest that the design of WWTPs needs to be improved to address the threats due to these pollutants. | 2017 | 28967569 |
| 7183 | 13 | 0.9999 | Evaluation of five antibiotic resistance genes in wastewater treatment systems of swine farms by real-time PCR. Antibiotics are widely used in livestock for infection treatment and growth promotion. Wastes from animal husbandry are a potential environmental source of antibiotic-insensitive pathogens, and the removal efficiency of the resistance genotypes in current wastewater treatment plants (WWTPs) is unknown. In this study, quantitative PCR was used for evaluating antibiotic resistance genes in wastewater treatment processes. Six wastewater treatment plants in different swine farms were included in this study, and five antibiotic resistance genes (ARGs) were tested for each treatment procedure. All of the tested ARGs including tetA, tetW, sulI, sulII, and blaTEM genes were detected in six swine farms with considerable amounts. The results showed that antibiotic resistance is prevalent in livestock farming. The ARG levels were varied by wastewater treatment procedure, frequently with the highest level at anaerobic treatment tank and lowest in the activated sludge unit and the effluents. After normalizing the ARG levels to 16S rRNA gene copies, the results showed that ARGs in WWTP units fluctuated partly with the quantity of bacteria. Regardless of its importance in biodegradation, the anaerobic procedure may facilitate bacterial growth thus increasing the sustainability of the antibiotic resistance genotypes. After comparing the copy numbers in influx and efflux samples, the mean removal efficiency of ARGs ranged between 33.30 and 97.56%. The results suggested that treatments in the WWTP could partially reduce the spread of antibiotic-resistant bacteria, and additional procedures such as sedimentation may not critically affect the removal efficiency. | 2014 | 25064719 |
| 7119 | 14 | 0.9999 | Assessing the benefits of composting poultry manure in reducing antimicrobial residues, pathogenic bacteria, and antimicrobial resistance genes: a field-scale study. The poultry industry in the European Union produces 13 million tons of manure annually, which represents a major health and environmental challenge. Composting is an environmental-friendly technique for the management of manure, but there are few studies about antibiotic residues and antimicrobial resistances at a field scale. The goal of this study was to determine if the composting of poultry manure at a field scale would result in the reduction of antibiotic residues, pathogenic bacteria, and antibiotic resistance genes (ARGs) in the final fertilizer product. A 10-week composting of poultry manure spiked with enrofloxacin, doxycycline, and ciprofloxacin was performed. The determination of antibiotics residues and 22 selected ARGs was carried out together with the identification of bacteria by metagenomics. In the case of ciprofloxacin and doxycycline, a 90% decrease was observed after composting for 3 weeks. Sixteen ARGs were detected at the beginning of the experiment; 12 of them decreased from week 0 to week 10 (reduction of 73.7-99.99%). The presence of potentially pathogenic bacteria, such as, Campylobacter coli or commensal bacteria such as Escherichia coli decreases along the composting process. In conclusion, 10-week composting of poultry manure promotes the reduction of antibiotic residues and most of the ARGs and pathogenic bacteria. | 2020 | 32399873 |
| 7199 | 15 | 0.9999 | Minimum influent concentrations of oxytetracycline, streptomycin and spiramycin in selecting antibiotic resistance in biofilm type wastewater treatment systems. It has been demonstrated that antibiotic resistance could be induced and selected under high antibiotic concentrations in biological wastewater treatment systems. However, little is available regarding the minimum concentrations of antibiotics for selecting antibiotic resistance during wastewater treatment. Herein, the minimum influent concentrations of oxytetracycline, streptomycin, and spiramycin in selecting antibiotic resistance in biofilm type wastewater treatment systems were investigated by spiking respective antibiotic into wastewater with an antibiotic dose increasing from 0 to 0.1, 1, 5, 25, 50 mg/L stepwise over a period of 606 days. Significant increase (p < .01) in the total abundance of antibiotic resistance genes was observed for both streptomycin and oxytetracycline at a dose of 0.1 mg/L according to metagenomic sequencing, while the concentration levels leading to significant increases (p < .05) in resistant bacteria ratio were higher: 5 mg/L for streptomycin and 25 mg/L for oxytetracycline. Although resistome abundance increased with the increase of spiramycin dose, neither the corresponding Macrolide-Lincosamide-Streptogramin (MLS) resistance genes nor the resistant bacteria ratio showed perceptible increase. Partial canonical correspondence analysis showed that both bacterial community shift and mobile genetic elements alteration contributed to the enrichment of resistomes under the presence of streptomycin and oxytetracycline. Regarding spiramycin which is mainly targeting on Gram-positive bacteria, the dominance of the intrinsically resisting Gram-negative bacteria in the biofilm microbiota might be responsible for the vague change of MLS resistant determinants under the spiramycin stress. The results demonstrated that it is possible to prevent the development of antibiotic resistance during wastewater treatment by controlling the influent streptomycin and oxytetracyline concentrations below 0.1 mg/L. This work proposed an actionable approach for the management of antibiotic production wastewater. | 2020 | 32325576 |
| 7189 | 16 | 0.9999 | Comparative effects of different antibiotics on antibiotic resistance during swine manure composting. This study explored commonly-used antibiotics (lincomycin, chlorotetracycline, sulfamethoxazole, and ciprofloxacin) and their collective effects on antibiotic resistance during composting. In the first 7 days, ciprofloxacin showed the greatest influence on the physicochemical factors among the studied antibiotics; the removal of antibiotic resistance genes (ARGs) in the multiple-antibiotic treatment was significantly less than single-antibiotic treatments; especially, the largest removal of ribosomal protection genes (tetW and tetO) occurred in single ciprofloxacin treatment. In the end of composting, similar removal ratio (29.71-99.79%) of ARGs was achieved in different treatments (p greater than 0.05); Chloroflexi became the main phylum and it was closely associated with ARGs removal based on the network analysis. Potential host bacteria of ARGs varied with different antibiotics; in particular, the presence of multiple antibiotics increased potential host bacteria of ermA, sul1 and tetO. Above all, collective effects of different antibiotics led to the enrichment of antibiotic resistance in the composting. | 2020 | 32712514 |
| 3684 | 17 | 0.9998 | Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms. Selection pressure generated by antibiotics released into the environment could enrich for antibiotic resistance genes and antibiotic resistant bacteria, thereby increasing the risk for transmission to humans and animals. Tetracyclines comprise an antibiotic class of great importance to both human and animal health. Accordingly, residues of tetracycline are commonly detected in aquatic environments. To assess if tetracycline pollution in aquatic environments promotes development of resistance, we determined minimal selective concentrations (MSCs) in biofilms of complex aquatic bacterial communities using both phenotypic and genotypic assays. Tetracycline significantly increased the relative abundance of resistant bacteria at 10 μg/L, while specific tet genes (tetA and tetG) increased significantly at the lowest concentration tested (1 μg/L). Taxonomic composition of the biofilm communities was altered with increasing tetracycline concentrations. Metagenomic analysis revealed a concurrent increase of several tet genes and a range of other genes providing resistance to different classes of antibiotics (e.g. cmlA, floR, sul1, and mphA), indicating potential for co-selection. Consequently, MSCs for the tet genes of ≤ 1 μg/L suggests that current exposure levels in e.g. sewage treatment plants could be sufficient to promote resistance. The methodology used here to assess MSCs could be applied in risk assessment of other antibiotics as well. | 2016 | 26938321 |
| 3433 | 18 | 0.9998 | Effect of subinhibitory concentrations on the spreading of the ampicillin resistance gene bla(CMY-2) in an activated sludge microcosm. As the problem of multi-resistant bacteria grows a better understanding of the spread of antibiotic resistance genes is of utmost importance for society. Wastewater treatment plants contain subinhibitory concentrations of antibiotics and are thought to be hotspots for antibiotic resistance gene propagation. Here we evaluate the influence of sub-minimum inhibitory concentrations of antibiotics on the spread of resistance genes within the bacterial community in activated sludge laboratory-scale sequencing batch reactors. The mixed communities were fed two different ampicillin concentrations (500 and 5000 µg/L) and the reactors were run and monitored for 30 days. During the experiment the β-lactamase resistance gene bla(CMY-2) was monitored via qPCR and DNA samples were taken to monitor the effect of ampicillin on the microbial community. The relative copy number of bla(CMY-2) in the reactor fed with the sub-minimum inhibitory concentration of 500 µg/L ampicillin was spread out over a wider range of values than the control and 5000 µg/L ampicillin reactors indicating more variability of gene number in the 500 µg/L reactor. This result emphasises the problem of sub-minimum inhibitory concentrations of antibiotics in wastewater. High-throughput sequencing showed that continuous exposure to ampicillin caused a shift from a Bacteroidetes to Proteobacteria in the bacterial community. The combined use of qPCR and high-throughput sequencing showed that ampicillin stimulates the spread of resistance genes and leads to the propagation of microbial populations which are resistant to it. | 2025 | 39215485 |
| 7311 | 19 | 0.9998 | Sludge as a potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions. The emergence and prevalence of antibiotic resistance genes (ARGs) in the environment is a serious global health concern. ARGs found in bacteria can become mobilized in bacteriophage particles in the environment. Sludge derived from secondary treatment in wastewater treatment plants (WWTPs) constitutes a concentrated pool of bacteria and phages that are removed during the treatment process. This study evaluates the prevalence of ARGs in the bacterial and phage fractions of anaerobic digested sludge; five ARGs (blaTEM, blaCTX-M, qnrA, qnrS, and sul1) are quantified by qPCR. Comparison between the wastewater and sludge revealed a shift in the prevalence of ARGs (blaTEM and sul1 became more prevalent in sludge), suggesting there is a change in the bacterial and phage populations from wastewater to those selected during the secondary treatment and the later anaerobic mesophilic digestion of the sludge. ARGs densities were higher in the bacterial than in the phage fraction, with high densities in both fractions; particularly for blaTEM and sul1 (5 and 8 log10 gene copies (GC)/g, respectively, in bacterial DNA; 5.5 and 4.4 log10 GC/g, respectively, in phage DNA). These results question the potential agricultural uses of treated sludge, as it could contribute to the spread of ARGs in the environment and have an impact on the bacterial communities of the receiving ecosystem. | 2014 | 24873655 |