Occurrence and diversity of tetracycline resistance genes in the agricultural soils of South Korea. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
711101.0000Occurrence and diversity of tetracycline resistance genes in the agricultural soils of South Korea. Reports on the occurrence and diversity of antibiotic-resistant bacteria and genes, which are considered to be emerging pollutants worldwide, have, to date, not been published on South Korean agricultural soils. This is the first study to investigate the persistence of tetracycline (oxytetracycline, tetracycline, and chlortetracycline)-resistant bacterial community and genes in natural and long-term fertilized (NPK, pig, and cattle manure composts) agricultural soils in South Korea. The results showed that oxytetracycline and chlortetracycline could be the dominant residues in animal manures; regular fertilization of manures, particularly pig manures, may be the prime cause for the spread and abundance of tetracycline resistance in South Korean agricultural soils. Both the country's natural and agricultural soils are reservoirs of antibiotic-resistant species. Of the 113 tetracycline-resistant isolates identified (19 typical bacterial genera and 36 distinct species), approximately 40 to 99 % belonged to Gram-positive bacteria and Bacillus constituted the predominant genera. Of the 24 tet genes targeted, tetG, tetH, tetK, tetY, tetO, tetS, tetW, and tetQ were detected in all soil samples, highlighting their predominance and robust adaptability in soils. Meanwhile, it is suggested that tetC, tetE, tetZ, tetM, tetT, and tetP(B) are the common residues in pig manures, and furthermore, the treatment of soils with pig manures may wield a different impact on the tet gene resistome in agricultural soils. This study thus highlights the necessity for regulating the usage of tetracyclines in South Korean animal farming. This must be followed by proper monitoring of the subsequent usage of animal manures especially that derived from pig farms located in agricultural soils.201627638788
710910.9998Explore the Contamination of Antibiotic Resistance Genes (ARGs) and Antibiotic-Resistant Bacteria (ARB) of the Processing Lines at Typical Broiler Slaughterhouse in China. Farms are a major source of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB), and previous research mainly focuses on polluted soils and breeding environments. However, slaughtering is an important link in the transmission of ARGs and ARB from farmland to dining table. In this study, we aim to reveal the pollution of ARGs and ARB in the slaughter process of broilers. First, by qualitative and quantitative analysis of ARGs in samples collected from the broiler slaughtering and processing production chain, the contamination level of ARGs was reflected; secondly, potential hosts for ARGs and microbial community were analyzed to reflect the possible transmission rules; thirdly, through the antibiotic susceptibility spectrum analysis of four typical food-borne pathogens, the distribution of ARB was revealed. The results showed that 24 types of ARGs were detected positive on the broiler slaughter production line, and tetracycline-resistance genes (20.45%) were the most frequently detected. The types of ARGs vary with sampling process, and all sampling links contain high levels of sul2 and intI1. The most abundant ARGs were detected in chicken surface in the scalding stage and entrails surface in the evisceration stage. There was a significant correlation between intI1 and tetM, suggesting that tetM might be able to enter the human food chain through class-1 integrons. The host range of the oqxB gene is the most extensive, including Sphingobacterium, Bacteroidia unclassified, Rothia, Microbacterium, Algoriella, etc. In the relevant links of the slaughter production line, the microbial community structure is similar. Removing viscera may cause diffusion of ARGs carried by intestinal microorganisms and contaminate chicken and following processing production. The four food-borne pathogens we tested are widely present in all aspects of the slaughter process, and most of them have multi-drug resistance and even have a high degree of resistance to some veterinary drugs banned by the Ministry of Agriculture. Our study preliminarily revealed the pollution of ARGs and ARB in the slaughter process of broilers, and these results are helpful to carry out food safety risk assessment and formulate corresponding control measures.202540232101
350920.9998Persistence and spatial variation of antibiotic resistance genes and bacterial populations change in reared shrimp in South China. More attention has been paid to the abundance and diversity of antibiotic resistance genes (ARGs) in aquatic environments. However, few studies have investigated the persistence and spatial variation of ARGs in aquatic organisms. This study investigated the occurrence and abundance of ARGs and the bacterial populations in shrimp intestinal tracts during the rearing period in different regions of Guangdong, South China. The results showed that sul1, sul2, qnrD, and floR were the predominant ARGs. Compared with those of juvenile shrimp, the total concentrations of ARGs in the intestinal tract of adult shrimp in three shrimp farms were 2.45-3.92 times higher (p < 0.05), and the bacterial populations in the adult shrimp intestinal tract changed considerably. Redundancy analysis (RDA) showed that the abundance of Proteobacteria, Firmicutes, and Verrucomicrobia in Farms A, B, and C, respectively, were strongly positively correlated with the most abundant and predominant genes (sul1 and qnrD for Farm A; floR and sul2 for Farm B; floR and sul2 for Farm C) in the shrimp intestinal tract. The results of this study indicated that ARGs gained persistence in the developmental stages of the reared shrimp. Different phyla of predominant bacteria were responsible for the increase of ARGs abundance in the shrimp intestinal tract in different regions. This study represents a case study of the persistence and spatial variation of ARGs in aquaculture and can be a reference for the determination of harmful impacts of ARGs on food safety and human health.201829990953
321330.9998Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas. Groundwater is an essential public and drinking water supply and its protection is a goal for global policies. Here, we investigated the presence and prevalence of antibiotic residues, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and microbial contamination in groundwater environments at various distances from urban areas. Antibiotic concentrations ranged from below detection limit to 917 ng/L, being trimethoprim, macrolide, and sulfonamide the most abundant antibiotic classes. A total of eleven ARGs (aminoglycoside, β-lactam, chloramphenicol, Macrolide-Lincosamide-Streptogramin B - MLSB, sulfonamide, and tetracycline), one antiseptic resistance gene, and two MGEs were detected by qPCR with relative abundances ranging from 6.61 × 10(-7) to 2.30 × 10(-1) copies/16S rRNA gene copies. ARGs and MGEs were widespread in the investigated groundwater environments, with increased abundances not only in urban, but also in remote areas. Distinct bacterial community profiles were observed, with a higher prevalence of Betaproteobacteria and Bacteroidetes in the less-impacted areas, and that of Firmicutes in the contaminated groundwater. The combined characteristics of increased species diversity, distinct phylogenetic composition, and the possible presence of fecal and/or pathogenic bacteria could indicate different types of contamination. Significant correlations between ARGs, MGEs and specific taxa within the groundwater bacterial community were identified, revealing the potential hosts of resistance types. Although no universal marker gene could be determined, a co-selection of int1, qacEΔ1 and sulI genes, a proxy group for anthropogenic pollution, with the tetC, tetO, tetW resistance genes was identified. As the tet group was observed to follow the pattern of environmental contamination for the groundwater samples investigated in this study, our results strongly support the proposal of this group of genes as an environmental tracer of human impact. Overall, the present study investigated several emerging contaminants in groundwater habitats that may be included in monitoring programs to enable further regulatory and protection measures.201829454283
313940.9998Sulfonamide-resistant bacteria and their resistance genes in soils fertilized with manures from Jiangsu Province, Southeastern China. Antibiotic-resistant bacteria and genes are recognized as new environmental pollutants that warrant special concern. There were few reports on veterinary antibiotic-resistant bacteria and genes in China. This work systematically analyzed the prevalence and distribution of sulfonamide resistance genes in soils from the environments around poultry and livestock farms in Jiangsu Province, Southeastern China. The results showed that the animal manure application made the spread and abundance of antibiotic resistance genes (ARGs) increasingly in the soil. The frequency of sulfonamide resistance genes was sul1 > sul2 > sul3 in pig-manured soil DNA and sul2 > sul1 > sul3 in chicken-manured soil DNA. Further analysis suggested that the frequency distribution of the sul genes in the genomic DNA and plasmids of the SR isolates from manured soil was sul2 > sul1 > sul3 overall (p<0.05). The combination of sul1 and sul2 was the most frequent, and the co-existence of sul1 and sul3 was not found either in the genomic DNA or plasmids. The sample type, animal type and sampling time can influence the prevalence and distribution pattern of sulfonamide resistance genes. The present study also indicated that Bacillus, Pseudomonas and Shigella were the most prevalent sul-positive genera in the soil, suggesting a potential human health risk. The above results could be important in the evaluation of antibiotic-resistant bacteria and genes from manure as sources of agricultural soil pollution; the results also demonstrate the necessity and urgency of the regulation and supervision of veterinary antibiotics in China.201425405870
712350.9998Presence and fate of antibiotic residues, antibiotic resistance genes and zoonotic bacteria during biological swine manure treatment. The presence and dissemination of antibiotic residues, antibiotic resistance genes and zoonotic bacteria in the environment is of growing concern worldwide. Manure management practices, such as biological removal of nitrogen from swine manure, may help to decrease levels of antibiotic residues, antibiotic resistance genes and zoonotic bacteria present in manure before fertilization, thereby reducing environmental contamination. Therefore, the aim of this study was to monitor the presence and fate of seven antibiotic residues (colistin, sulfadiazine, trimethoprim, doxycycline, oxytetracycline, ceftiofur and tylosin A), nine antibiotic resistance genes (tet(B), tet(L), tet(M), tet(O), tet(Q), tet(W), erm(B), erm(F) and sul2) and two zoonotic bacteria (Salmonella Typhimurium and Campylobacter coli) during biological nitrogen removal from swine manure over time. Samples from the raw manure, the solid fraction, the liquid fraction and the storage lagoon were analyzed on two farms at six time points with an interval of two weeks. Only the antibiotics which were used during the three months preceding the first sampling could be detected before and after biological nitrogen removal from swine manure. Of all the antibiotics studied, doxycycline was recovered in all of the samples and sulfadiazine was recovered in most samples on both farms. For both antibiotics, there appears to be a reduction of the amount of residues present in the storage lagoon compared to the liquid fraction, however, this reduction was not statistically significant. A significant reduction of the relative abundances of most of the antibiotic resistance genes studied was observed when comparing the liquid fraction and the storage lagoon. For tet(L), no differences were observed between the fractions sampled and for sul2 and erm(F), a significant increase in relative abundances was observed on the second farm sampled. For the zoonotic bacteria, a reduction of at least 1 log was observed after biological nitrogen removal from swine manure. The results indicate that the concentration of certain antibiotic residues and several antibiotic resistance genes and the amount of zoonotic bacteria present in the manure may be reduced in the end product of the biological nitrogen removal from swine manure.201930878661
321260.9998Distribution and driving factors of antibiotic resistance genes in treated wastewater from different types of livestock farms. Treated wastewater from livestock farms is an important reservoir for antibiotic resistance genes (ARGs), and is a main source of ARGs in the environment. However, the distribution and driving factors of ARGs in treated wastewater from different types of livestock farms are rarely reported. In this study, treated wastewater from 69 large-scale livestock farms of different types, including broiler, layer, and pig farms, was collected, and 11 subtypes of ARGs, 2 mobile genetic elements (MGEs) and bacterial community structure were analyzed. The results revealed detection rates of NDM-1 and mcr-1 of 90 % and 43 %, respectively, and the detection rates of other ARGs were 100 %. The relative abundance of ARGs, such as tetA, tetX and strB, in broiler farms was significantly higher than that in layer farms, but the bacterial α diversity was significantly lower than that in other farm types. Furthermore, although the treatment process had a greater impact on the physicochemical properties of the treated wastewater than the livestock type, livestock type was the main factor affecting the bacterial community in the treated wastewater. The analysis of potential host bacteria of ARGs revealed significant differences in the host bacteria of ARGs in treated wastewater from different types of livestock farms. The host bacteria of ARGs in broiler farms mainly belonged to Actinobacteria, layer farms mainly belonged to Proteobacteria, and pig farms mainly belonged to Firmicutes. Additionally, redundancy analysis showed that the distribution of ARGs may have resulted from the combination of multiple driving factors in different types of livestock farms, among which tnpA and NH(4)(+)-N were the main influencing factors. This study revealed multiple driving factors for the distribution of typical ARGs in treated wastewater from different types of livestock farms, providing basic data for the prevention and control of ARG pollution in agricultural environments.202235934031
350870.9998Prevalence and distribution of antibiotic resistance in marine fish farming areas in Hainan, China. Antibiotic resistance represents a global health crisis for humans, animals, and for the environment. Transmission of antibiotic resistance through environmental pathways is a cause of concern. In this study, quantitative PCR and culture-dependent bacteriological methods were used to detect the abundance of antibiotic resistance genes (ARGs) and the quantity of culturable heterotrophic antibiotic-resistant bacteria (ARB) in marine fish farming areas. The results indicated that sul and tet family genes were widely distributed in marine fish farming areas of Hainan during both rearing and harvesting periods. Specifically, sul1 and tetB were the most dominant ARGs. The total abundance of ARGs increased significantly from the rearing to the harvesting period. A total of 715 ARB strains were classified into 24 genera, within these genera Vibrio, Acinetobacter, Pseudoalteromonas, and Alteromonas are opportunistic pathogens. High bacterial resistance rate to oxytetracycline (OT) was observed. The numbers of OT- and enrofloxacin-resistant bacteria dropped significantly from rearing the period to the harvesting. The co-occurrence pattern showed that Ruegeria and tetB could be indicators of ARB and ARGs, respectively, which were found in the same module. Redundancy analysis indicated that salinity was positively correlated with the most dominant ARB, and was negatively correlated with the most dominant ARGs. These findings demonstrated the prevalence and persistence of ARGs and ARB in marine fish farming areas in China.201930414589
712280.9998Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Resistance to tetracycline, macrolides and streptomycin was measured for a period of 8 months in soil bacteria obtained from farmland treated with pig manure slurry. This was done by spread plating bacteria on selective media (Luria Bertani (LB) medium supplemented with antibiotics). To account for seasonal variations in numbers of soil bacteria, ratios of resistant bacteria divided by total count on nonselective plates were calculated. Soil samples were collected from four different farms and from a control soil on a fifth farm. The control soil was not amended with animal manure. The occurrence of tetracycline-resistant bacteria was elevated after spread of pig manure slurry but declined throughout the sampling period to a level corresponding to the control soil. Higher load of pig manure slurry yielded higher occurrence of tetracycline resistance after spreading; however, the tetracycline resistance declined to normal occurrence defined by the tetracycline resistance occurrence in the control soil. Concentrations of tetracycline in soil and in pig manure slurry were measured using HPLC. No tetracycline exceeding the detection limit was found in soil samples. Manure slurry concentrations of tetracycline for three of the farms were 42, 81 and 698 microg/l, respectively. For streptomycin and macrolides, only minor variations in resistance levels were detected. Results obtained in this study thus indicate that tetracycline resistance levels in soil are temporarily influenced by the addition of pig manure slurry. The results indicate also that increased amount of pig manure slurry amendment may result in increased levels of tetracycline resistance in the soil.200312504155
725990.9998Practical survey on antibiotic-resistant bacterial communities in livestock manure and manure-amended soil. Through livestock manure fertilization, antibiotics, antibiotic-resistant bacteria and genes are transferred to agricultural soils, resulting in a high prevalence of antibiotic-resistant bacteria in the soil. It is not clear, however, whether a correlation exists between resistant bacterial populations in manure and manure-amended soil. In this work, we demonstrate that the prevalence of cephalexin-, amoxicillin-, kanamycin- and gentamicin-resistant bacteria as well as bacteria simultaneously resistant to all four antibiotics was much higher in manure-amended soils than in manure-free soil. 454-pyrosequencing indicated that the ARB and multiple antibiotic-resistant bacteria (MARB) in swine or chicken manure and manure-amended soil were mainly distributed among Sphingobacterium, Myroides, Enterococcus, Comamonas and unclassified Flavobacteriaceae. The genus Sphingobacterium was highly prevalent among ARB from swine manure and manure-amended soil, and was also the most dominant genus among MARB from chicken manure and manure-amended soil. Other dominant genera among ARB or MARB populations in manure samples, including Myroides, Enterococcus and Comamonas, could not be detected or were detected at very low relative abundance in manure-amended soil. The present study suggests the possibility of transfer of ARBs from livestock manures to soils and persistence of ARB in these environments.201626513264
7100100.9998Spread of tetracycline resistance genes at a conventional dairy farm. The use of antibiotics in animal husbandry contributes to the worldwide problem of increasing antibiotic resistance in animal and human pathogens. Intensive animal production is considered an important source of antibiotic resistance genes released to the environment, while the contribution of smaller farms remains to be evaluated. Here we monitor the spread of tetracycline resistance (TC-r) genes at a middle-size conventional dairy farm, where chlortetracycline (CTC, as intrauterine suppository) is prophylactically used after each calving. Our study has shown that animals at the farm acquired the TC-r genes in their early age (1-2 weeks), likely due to colonization with TC-resistant bacteria from their mothers and/or the farm environment. The relative abundance of the TC-r genes tet(W), tet(Q), and tet(M) in fresh excrements of calves was about 1-2 orders of magnitude higher compared to heifers and dairy cows, possibly due to the presence of antibiotic residues in milk fed to calves. The occurrence and abundance of TC-r genes in fresh excrements of heifers and adult cows remained unaffected by intrauterine CTC applications, with tet(O), tet(Q), and tet(W) representing a "core TC-resistome" of the farm, and tet(A), tet(M), tet(Y), and tet(X) occurring occasionally. The genes tet(A), tet(M), tet(Y), and tet(X) were shown to be respectively harbored by Shigella, Lactobacillus and Clostridium, Acinetobacter, and Wautersiella. Soil in the farm proximity, as well as field soil to which manure from the farm was applied, was contaminated with TC-r genes occurring in the farm, and some of the TC-r genes persisted in the field over 3 months following the manure application. Concluding, our study shows that antibiotic resistance genes may be a stable part of the intestinal metagenome of cattle even if antibiotics are not used for growth stimulation, and that smaller dairy farms may also contribute to environmental pollution with antibiotic resistance genes.201526074912
7115110.9998Antibiotics, antibiotic resistance and associated risk in natural springs from an agroecosystem environment. This study investigates the occurrence, transport, and risks associated to antibiotic residues, antibiotic resistance genes (ARGs) and antibiotic resistant Escherichia coli (AR-E. coli) in eleven natural springs in an agroecosystem environment with intense livestock production, where groundwater nitrate concentration usually sets above 50 mg L(-1). Out of 23 multiple-class antibiotics monitored, tetracycline and sulfonamide residues were the most ubiquitous, and they were detected at concentrations ranging from ng L(-1) to μg L(-1). Five ARGs were monitored, conferring resistance to the antibiotic classes of major use in livestock production. Thus, genes conferring resistance to sulfonamides (sul1 and sul2) and tetracyclines (tetW) as well as a gene proxy for anthropogenic pollution (intI1) were present in most springs. sul1 was the most abundant, with absolute concentrations ranging from 4 × 10(2) to 5.6 × 10(6) gene copies L(-1) water. AR-E. coli showing resistance to sulfonamides and tetracyclines was also detected, with a prevalence up to approximately 40 % in some sites but with poor correlations with the concentration of antibiotic residues and ARGs. The occurrence of antibiotics, ARGs and AR-E. coli was characterized by large seasonal variations which were mostly associated to both hydrological factors and reactive transport processes. Finally, a risk assessment approach pointed out towards low risk for both the groundwater environment and human health, when spring water is used for direct human consumption, associated with the occurrence of antibiotics, ARGs and AR-E. coli. However, long-term effects cannot be neglected, and proper actions must be taken to preserve groundwater quality.202336208750
3217120.9998Distribution and environmental dissemination of antibiotic resistance genes in poultry farms and surrounding ecosystems. Antibiotic resistance poses a significant threat to human and animal health worldwide, with farms serving as crucial reservoirs of Antibiotic Resistance Genes (ARGs) and Antibiotic-resistant bacteria. However, the distribution of ARGs in poultry farms and their transmission patterns in the environment remain poorly understood. This study collected samples of aerosol microorganisms, cloacal matter, soil, and vegetables from poultry farms and surrounding environments at three different distances. We used 16S rRNA gene sequencing and HT-qPCR to analyze the characteristics of aerosol microbial communities and the abundance of ARGs. At the phylum level, Proteobacteria, Firmicutes, and Bacteroidetes were dominant in cloacal samples, aerosol samples, and vegetable samples, while Proteobacteria Actinobacteriota and Acidobacteria dominated soil. Pseudomonas was dominant in cloacal samples at the genus level, whereas Fusobacterium was prevalent in soil. The diversity and richness of bacterial communities were more similar between cloacal samples than those observed between either sample type compared with soil. Our results showed that tetracycline and aminoglycoside ARG relative abundance was high across all sample types but significantly increased within feces/air compared to soils/vegetables. Association analysis revealed five potential host genera for ARG/MGE presence among various microbiota populations studied here. Our findings confirm that farms are important sources for the environmental dissemination of pathogens and ARGs.202539689477
7114130.9998Antibiotic Resistance Genes in Freshwater Trout Farms in a Watershed in Chile. Point sources such as wastewater treatment plants, terrestrial agriculture, and aquaculture may release antibiotic residues, antibiotic resistant bacteria, and antibiotic resistance genes (ARGs) into aquatic ecosystems. However, there is a lack of quantitative studies attributing environmental ARG abundance to specific sources. The goal of this study was to evaluate the role of freshwater trout farms in the release and dissemination of ARGs into the environment. Sediment samples upstream and downstream from five rainbow trout farms were collected over time in southern Chile. A microfluidic quantitative polymerase chain reaction approach was used to quantify an ARG array covering different mechanisms of resistance, and data were analyzed using principal component analysis (PCA) and linear mixed regression models. Surveys were also conducted to obtain information about management practices, including antibiotic use, at the farms. Florfenicol and oxytetracycline were used at these farms, although at different rates. A total of 93 samples were analyzed. In the PCA, , , , , (A), (B), (C), (W), and grouped together. A statistically significant increase in abundance of , , , and several genes was found downstream from the farms compared with upstream sites, and retention ponds had the highest ARG abundance at each site. Antibiotic resistance gene levels returned to baseline at an average distance of 132.7 m downstream from the farms. Although results from this study indicate an influence of trout farms on the presence of ARGs in the immediate environment, the extent of their contribution to ARG dissemination is unknown and deserves further investigation.201931589726
3676140.9998Diversity of antibiotic resistance genes and encoding ribosomal protection proteins gene in livestock waste polluted environment. The rapid development and increase of antibiotic resistance are global phenomena resulting from the extensive use of antibiotics in human clinics and animal feeding operations. Antibiotics can promote the occurrence of antibiotic resistance genes (ARGs), which can be transferred horizontally to humans and animals through water and the food chain. In this study, the presence and abundance of ARGs in livestock waste was monitored by quantitative PCR. A diverse set of bacteria and tetracycline resistance genes encoding ribosomal protection proteins (RPPs) from three livestock farms and a river were analyzed through denaturing gradient gel electrophoresis (DGGE). The abundance of sul(I) was 10(3) to 10(5) orders of magnitude higher than that of sul(II). Among 11 tet-ARGs, the most abundant was tet(O). The results regarding bacterial diversity indicated that the presence of antibiotics might have an evident impact on bacterial diversity at every site, particularly at the investigated swine producer. The effect of livestock waste on the bacterial diversity of soil was stronger than that of water. Furthermore, a sequencing analysis showed that tet(M) exhibited two genotypes, while the other RPPs-encoding genes exhibited at least three genotypes. This study showed that various ARGs and RPPs-encoding genes are particularly widespread among livestock.201829469609
7126150.9998Longitudinal characterization of antimicrobial resistance genes in feces shed from cattle fed different subtherapeutic antibiotics. BACKGROUND: Environmental transmission of antimicrobial-resistant bacteria and resistance gene determinants originating from livestock is affected by their persistence in agricultural-related matrices. This study investigated the effects of administering subtherapeutic concentrations of antimicrobials to beef cattle on the abundance and persistence of resistance genes within the microbial community of fecal deposits. Cattle (three pens per treatment, 10 steers per pen) were administered chlortetracycline, chlortetracycline plus sulfamethazine, tylosin, or no antimicrobials (control). Model fecal deposits (n = 3) were prepared by mixing fresh feces from each pen into a single composite sample. Real-time PCR was used to measure concentrations of tet, sul and erm resistance genes in DNA extracted from composites over 175 days of environmental exposure in the field. The microbial communities were analyzed by quantification and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S-rRNA. RESULTS: The concentrations of 16S-rRNA in feces were similar across treatments and increased by day 56, declining thereafter. DGGE profiles of 16S-rRNA differed amongst treatments and with time, illustrating temporal shifts in microbial communities. All measured resistance gene determinants were quantifiable in feces after 175 days. Antimicrobial treatment differentially affected the abundance of certain resistance genes but generally not their persistence. In the first 56 days, concentrations of tet(B), tet(C), sul1, sul2, erm(A) tended to increase, and decline thereafter, whereas tet(M) and tet(W) gradually declined over 175 days. At day 7, the concentration of erm(X) was greatest in feces from cattle fed tylosin, compared to all other treatments. CONCLUSION: The abundance of genes coding for antimicrobial resistance in bovine feces can be affected by inclusion of antibiotics in the feed. Resistance genes can persist in feces from cattle beyond 175 days with concentrations of some genes increasing with time. Management practices that accelerate DNA degradation such as frequent land application or composting of manure may reduce the extent to which bovine feces serves as a reservoir of antimicrobial resistance.201121261985
7262160.9998Soil texture-depending effects of doxycycline and streptomycin applied with manure on the bacterial community composition and resistome. Veterinary antibiotics, bacteria carrying antibiotic resistance determinants located on mobile genetic elements and nutrients are spread on agricultural soil using manure as fertilizer. However, systematic quantitative studies linking antibiotic concentrations and antimicrobial resistance genes (ARGs) in manure and the environment are scarce but needed to assess environmental risks. In this microcosm study, a sandy and a loamy soil were mixed with manure spiked with streptomycin or doxycycline at five concentrations. Total-community DNA was extracted on days 28 and 92, and the abundances of ARGs (aadA, strA, tet(A), tet(M), tet(W), tet(Q), sul1, qacE/qacEΔ1) and class 1 and 2 integron integrase genes (intI1 and intI2) were determined by qPCR relative to 16S rRNA genes. Effects on the bacterial community composition were evaluated by denaturing gradient gel electrophoresis of 16S rRNA gene amplicons. Manure application to the soils strongly increased the relative abundance of most tested genes. Antibiotics caused further enrichments which decreased over time and were mostly seen at high concentrations. Strikingly, the effects on relative gene abundances and soil bacterial community composition were more pronounced in sandy soil. The concept of defining antibiotic threshold concentrations for environmental risk assessments remains challenging due to the various influencing factors.201829087461
7121170.9998Fate of fluoroquinolones in field soil environment after incorporation of poultry litter from a farm with enrofloxacin administration via drinking water. The practice of incorporating animal manure into soil is supported within the European Circular economy as a possible substitute for mineral fertilizers and will become crucial for the sustainability of agriculture. However, this practice may indirectly contribute to the dissemination of antibiotics, resistance bacteria, and resistance genes. In this study, medicated drinking water and poultry litter samples were obtained from a broiler-chick farm. The obtained poultry litter was incorporated into the soil at the experimental field site. The objectives of this research project were first to develop analytical methods able to quantify fluoroquinolones (FQs) in medicated drinking water, poultry litter, and soil samples by LC-MS; second to study the fate of these FQs in the soil environment after incorporation of poultry litter from flock medicated by enrofloxacin (ENR); and third to screen the occurrence of selected fluoroquinolone resistance encoding genes in poultry litter and soil samples (PCR analysis). FQs were quantified in the broiler farm's medicated drinking water (41.0 ± 0.3 mg∙L(-1) of ENR) and poultry litter (up to 70 mg∙kg(-1) of FQs). The persistence of FQs in the soil environment over 112 days was monitored and evaluated (ENR concentrations ranged from 36 μg∙kg(-1) to 9 μg∙kg(-1) after 100 days). The presence of resistance genes was confirmed in both poultry litter and soil samples, in agreement with the risk assessment for the selection of AMR in soil based on ENR concentrations. This work provides a new, comprehensive perspective on the entry and long-term fate of antimicrobials in the terrestrial environment and their consequences after the incorporation of poultry litter into agricultural fields.202438367114
7106180.9998The swine waste resistome: Spreading and transfer of antibiotic resistance genes in Escherichia coli strains and the associated microbial communities. The overuse of antimicrobials in livestock farming has led to the development of resistant bacteria and the spread of antibiotic-resistant genes (ARGs) among animals. When manure containing these antibiotics is applied to agricultural fields, it creates a selective pressure that promotes the acquisition of ARGs by bacteria, primarily through horizontal gene transfer. Most research on ARGs focuses on their role in clinical antibiotic resistance and their transfer from environmental sources to bacteria associated with humans, such as Escherichia coli. The study investigates the spread of antibiotic-resistant genes (ARGs) through class 1 integrons in 27 Escherichia coli strains from pig manure. It focuses on six common ARGs (ermB, cmlA, floR, qnrS, tetA, and TEM) and the class 1 integron gene, assessing their prevalence in manure samples from three pig farms. The study found correlations and anticorrelations among these genes, indicating a predisposition of the integron in spreading certain ARGs. Specifically, cmlA and tetA genes were positively correlated with each other and negatively with int1, suggesting they are not transferred via Int1. Farm B had the highest int1 counts and a higher abundance of the TEM gene, but lower levels of cmlA and tetA genes. The results underscore the complexity of predicting ARG spread in agricultural environments and the associated health risks to humans through the food chain. The study's results offer valuable insights into the antibiotic-resistant genes (ARGs) profile in swine livestock, potentially aiding in the development of methods to trace ARGs in the environment.202439053184
7104190.9998Antibiotic resistance genes load in an antibiotic free organic broiler farm. Antibiotic resistance is a serious concern for public health. Farm environments are relevant reservoirs of antibiotic resistant bacteria and antibiotic resistance genes (ARGs), thus strategies to limit the spread of ARGs from farms to the environment are needed. In this study a broiler farm, where antibiotics have never been used for any purpose, was selected to evaluate if this measure is effective in reducing the ARGs load in farm environment (FE) and in meat processing environment (MPE). Faecal samples from FE and MPE were processed for DNA extraction. Detection and quantification of the 16S rRNA gene and selected ARGs (bla(TEM), qnrS, sul2, and tetA) were carried out by PCR and digital droplet PCR (ddPCR), respectively. Generally, the relative abundance of the quantified ARGs in FE was similar or higher than that measured in intensive farms. Furthermore, apart for tetA, no differences in relative abundances of the other ARGs between FE and MPE were determined. These results suggest that the choice to not use antibiotics in broiler farming is not so effective to limit the ARGs spread in MPE and that further sources of ARGs should be considered including the preceding production phase with particular reference to the breeding stage.202235091251