The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
709901.0000The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water. The aim of this study was to assess the impact of a fish farm on the structure of antibiotic resistant bacteria and antibiotic resistance genes in water of Drwęca River. Samples of upstream river waters; post-production waters and treated post-production waters from fish farm; as well as downstream river waters were monitored for tetracycline resistant bacteria, tetracycline resistant genes, basic physico-chemical parameters and tetracyclines concentration. The river waters was characterized by low levels of pollution, which was determined based on water temperature, pH and concentrations of dissolved oxygen and tetracycline antibiotics. Culture-dependent (heterotrophic plate counts, counts of bacteria resistant to oxytetracycline (OTC(R)) and doxycycline (DOX(R)), minimum inhibitory concentrations for oxytetracycline and doxycycline, multidrug resistance of OTC(R) and DOX(R), qualitative composition of OTC(R) and DOX(R), prevalence of tet genes in resistant isolates) and culture-independent surveys (quantity of tet gene copies) revealed no significant differences in the abundance of antibiotic-resistant bacteria and antibiotic resistance genes between the studied samples. The only way in which the fish farm influenced water quality in the Drwęca River was by increasing the diversity of tetracycline-resistance genes. However, it should also be noted that the bacteria of the genera Aeromonas sp. and Acinetobacter sp. were able to transfer 6 out of 13 tested tet genes into Escherichiacoli, which can promote the spread of antibiotic resistance in the environment.201525698291
709810.9999Antibiotic resistance along an urban river impacted by treated wastewaters. Urban rivers are impacted ecosystems which may play an important role as reservoirs for antibiotic-resistant (AR) bacteria. The main objective of this study was to describe the prevalence of antibiotic resistance along a sewage-polluted urban river. Seven sites along the Zenne River (Belgium) were selected to study the prevalence of AR Escherichia coli and freshwater bacteria over a 1-year period. Culture-dependent methods were used to estimate E. coli and heterotrophic bacteria resistant to amoxicillin, sulfamethoxazole, nalidixic acid and tetracycline. The concentrations of these four antibiotics have been quantified in the studied river. The antibiotic resistance genes (ARGs), sul1, sul2, tetW, tetO, blaTEM and qnrS were also quantified in both particle-attached (PAB) and free-living (FLB) bacteria. Our results showed an effect of treated wastewaters release on the spread of antibiotic resistance along the river. Although an increase in the abundance of both AR E. coli and resistant heterotrophic bacteria was observed from upstream to downstream sites, the differences were only significant for AR E. coli. A significant positive regression was also found between AR E. coli and resistant heterotrophic bacteria. The concentration of ARGs increased from upstream to downstream sites for both particle-attached (PAB) and free-living bacteria (FLB). Particularly, a significant increase in the abundance of four among six ARGs analyzed was observed after crossing urban area. Although concentrations of tetracycline significantly correlated with tetracycline resistance genes, the antibiotic levels were likely too low to explain this correlation. The analysis of ARGs in different fractions revealed a significantly higher abundance in PAB compared to FLB for tetO and sul2 genes. This study demonstrated that urban activities may increase the spread of antibiotic resistance even in an already impacted river.201829453174
532520.9999Genes encoding tetracycline resistance in a full-scale municipal wastewater treatment plant investigated during one year. Tetracycline-resistant bacteria and genes encoding tetracycline resistance are common in anthropogenic environments. We studied how wastewater treatment affects the prevalence and concentration of two genes, tetA and tetB, that encode resistance to tetracycline. Using real-time polymerase chain reaction (PCR) we analysed wastewater samples collected monthly for one year at eight key-sites in a full-scale municipal wastewater treatment plant (WWTP). We detected tetA and tetB at each sampling site and the concentration of both genes, expressed per wastewater volume or per total-DNA, decreased over the treatment process. The reduction of tetA and tetB was partly the result of the sedimentation process. The ratio of tetA and tetB, respectively, to total DNA was lower in or after the biological processes. Taken together our data show that tetracycline resistance genes occur throughout the WWTP, and that the concentrations are reduced under conventional operational strategies.201020154388
367830.9999Abundance and dynamics of antibiotic resistance genes and integrons in lake sediment microcosms. Antibiotic resistance in bacteria causing disease is an ever growing threat to the world. Recently, environmental bacteria have become established as important both as sources of antibiotic resistance genes and in disseminating resistance genes. Low levels of antibiotics and other pharmaceuticals are regularly released into water environments via wastewater, and the concern is that such environmental contamination may serve to create hotspots for antibiotic resistance gene selection and dissemination. In this study, microcosms were created from water and sediments gathered from a lake in Sweden only lightly affected by human activities. The microcosms were exposed to a mixture of antibiotics of varying environmentally relevant concentrations (i.e., concentrations commonly encountered in wastewaters) in order to investigate the effect of low levels of antibiotics on antibiotic resistance gene abundances and dynamics in a previously uncontaminated environment. Antibiotic concentrations were measured using liquid chromatography-tandem mass spectrometry. Abundances of seven antibiotic resistance genes and the class 1 integron integrase gene, intI1, were quantified using real-time PCR. Resistance genes sulI and ermB were quantified in the microcosm sediments with mean abundances 5 and 15 gene copies/10(6) 16S rRNA gene copies, respectively. Class 1 integrons were determined in the sediments with a mean concentration of 3.8 × 10(4) copies/106 16S rRNA gene copies. The antibiotic treatment had no observable effect on antibiotic resistance gene or integron abundances.201425247418
712340.9999Presence and fate of antibiotic residues, antibiotic resistance genes and zoonotic bacteria during biological swine manure treatment. The presence and dissemination of antibiotic residues, antibiotic resistance genes and zoonotic bacteria in the environment is of growing concern worldwide. Manure management practices, such as biological removal of nitrogen from swine manure, may help to decrease levels of antibiotic residues, antibiotic resistance genes and zoonotic bacteria present in manure before fertilization, thereby reducing environmental contamination. Therefore, the aim of this study was to monitor the presence and fate of seven antibiotic residues (colistin, sulfadiazine, trimethoprim, doxycycline, oxytetracycline, ceftiofur and tylosin A), nine antibiotic resistance genes (tet(B), tet(L), tet(M), tet(O), tet(Q), tet(W), erm(B), erm(F) and sul2) and two zoonotic bacteria (Salmonella Typhimurium and Campylobacter coli) during biological nitrogen removal from swine manure over time. Samples from the raw manure, the solid fraction, the liquid fraction and the storage lagoon were analyzed on two farms at six time points with an interval of two weeks. Only the antibiotics which were used during the three months preceding the first sampling could be detected before and after biological nitrogen removal from swine manure. Of all the antibiotics studied, doxycycline was recovered in all of the samples and sulfadiazine was recovered in most samples on both farms. For both antibiotics, there appears to be a reduction of the amount of residues present in the storage lagoon compared to the liquid fraction, however, this reduction was not statistically significant. A significant reduction of the relative abundances of most of the antibiotic resistance genes studied was observed when comparing the liquid fraction and the storage lagoon. For tet(L), no differences were observed between the fractions sampled and for sul2 and erm(F), a significant increase in relative abundances was observed on the second farm sampled. For the zoonotic bacteria, a reduction of at least 1 log was observed after biological nitrogen removal from swine manure. The results indicate that the concentration of certain antibiotic residues and several antibiotic resistance genes and the amount of zoonotic bacteria present in the manure may be reduced in the end product of the biological nitrogen removal from swine manure.201930878661
341750.9999tet genes as indicators of changes in the water environment: relationships between culture-dependent and culture-independent approaches. The aim of this study was to identify tetracycline resistance determinants that could be used as molecular indicators of anthropogenic changes in aquatic environments. Two parallel approaches were used to examine the prevalence of tet genes: a culture-based method involving standard PCR and a method relying on quantitative PCR. The studied site was the Łyna River in Olsztyn (Poland). The culture-dependent method revealed that the concentrations of doxycycline-resistant bacteria harboring the tet(B) gene were higher in wastewater and downstream river samples than in upstream water samples. The tet(B) gene was transferred from environmental bacteria to Escherichia coli. The results generated by the culture-independent method validated statistically significant differences in tet(B) concentrations between upstream and downstream river sections, and revealed that tet(B) levels were correlated with the presence of other tetracycline resistance genes, dissolved oxygen concentrations, temperature and doxycycline concentrations in water. Our findings indicate that doxycycline-resistant bacteria, in particular E. coli harboring tet(B) or increased concentrations of tet(B), are potentially robust indicators of changes in water environments.201525461073
711460.9999Antibiotic Resistance Genes in Freshwater Trout Farms in a Watershed in Chile. Point sources such as wastewater treatment plants, terrestrial agriculture, and aquaculture may release antibiotic residues, antibiotic resistant bacteria, and antibiotic resistance genes (ARGs) into aquatic ecosystems. However, there is a lack of quantitative studies attributing environmental ARG abundance to specific sources. The goal of this study was to evaluate the role of freshwater trout farms in the release and dissemination of ARGs into the environment. Sediment samples upstream and downstream from five rainbow trout farms were collected over time in southern Chile. A microfluidic quantitative polymerase chain reaction approach was used to quantify an ARG array covering different mechanisms of resistance, and data were analyzed using principal component analysis (PCA) and linear mixed regression models. Surveys were also conducted to obtain information about management practices, including antibiotic use, at the farms. Florfenicol and oxytetracycline were used at these farms, although at different rates. A total of 93 samples were analyzed. In the PCA, , , , , (A), (B), (C), (W), and grouped together. A statistically significant increase in abundance of , , , and several genes was found downstream from the farms compared with upstream sites, and retention ponds had the highest ARG abundance at each site. Antibiotic resistance gene levels returned to baseline at an average distance of 132.7 m downstream from the farms. Although results from this study indicate an influence of trout farms on the presence of ARGs in the immediate environment, the extent of their contribution to ARG dissemination is unknown and deserves further investigation.201931589726
709770.9998Markers Specific to Bacteroides fragilis Group Bacteria as Indicators of Anthropogenic Pollution of Surface Waters. The aim of this study was to evaluate the applicability of markers specific to Bacteroides fragilis group (BFG) bacteria as indicators of anthropogenic pollution of surface waters. In addition, the impact of wastewater treatment plants (WWTPs) on the spread of genes specific to fecal indicator bacteria and genes encoding antimicrobial resistance in water bodies was also determined. Samples of hospital wastewater (HWW), untreated wastewater (UWW), and treated wastewater (TWW) evacuated from a WWTP were collected, and samples of river water were taken upstream (URW) and downstream (DRW) from the wastewater discharge point to determine, by qPCR, the presence of genes specific to BFG, Escherichia coli and Enterococcus faecalis, and the abundance of 11 antibiotic resistance genes (ARGs) and two integrase genes. The total number of bacterial cells (TCN) in the examined samples was determined by fluorescence in situ hybridization (FISH). Genes specific to BFG predominated among the analyzed indicator microorganisms in HWW, and their copy numbers were similar to those of genes specific to E. coli and E. faecalis in the remaining samples. The abundance of genes specific to BFG was highly correlated with the abundance of genes characteristic of E. coli and E. faecalis, all analyzed ARGs and intI genes. The results of this study indicate that genes specific to BFG can be used in analyses of human fecal pollution, and as indicators of environmental contamination with ARGs. A significant increase in the copy numbers of genes specific to BFG, E. coli, and seven out of the 11 analyzed ARGs was noted in samples of river water collected downstream from the wastewater discharge point, which suggests that WWTPs are an important source of these genes in riparian environments.202033003501
367680.9998Diversity of antibiotic resistance genes and encoding ribosomal protection proteins gene in livestock waste polluted environment. The rapid development and increase of antibiotic resistance are global phenomena resulting from the extensive use of antibiotics in human clinics and animal feeding operations. Antibiotics can promote the occurrence of antibiotic resistance genes (ARGs), which can be transferred horizontally to humans and animals through water and the food chain. In this study, the presence and abundance of ARGs in livestock waste was monitored by quantitative PCR. A diverse set of bacteria and tetracycline resistance genes encoding ribosomal protection proteins (RPPs) from three livestock farms and a river were analyzed through denaturing gradient gel electrophoresis (DGGE). The abundance of sul(I) was 10(3) to 10(5) orders of magnitude higher than that of sul(II). Among 11 tet-ARGs, the most abundant was tet(O). The results regarding bacterial diversity indicated that the presence of antibiotics might have an evident impact on bacterial diversity at every site, particularly at the investigated swine producer. The effect of livestock waste on the bacterial diversity of soil was stronger than that of water. Furthermore, a sequencing analysis showed that tet(M) exhibited two genotypes, while the other RPPs-encoding genes exhibited at least three genotypes. This study showed that various ARGs and RPPs-encoding genes are particularly widespread among livestock.201829469609
709590.9998Who possesses drug resistance genes in the aquatic environment?: sulfamethoxazole (SMX) resistance genes among the bacterial community in water environment of Metro-Manila, Philippines. Recent evidence has shown that antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are ubiquitous in natural environments, including sites considered pristine. To understand the origin of ARGs and their dynamics, we must first define their actual presence in the natural bacterial assemblage. Here we found varying distribution profiles of sul genes in "colony forming bacterial assemblages" and "natural bacterial assemblages." Our monitoring for antibiotic contamination revealed that sulfamethoxazole (SMX) is a major contaminant in aquatic environments of Metro-Manila, which would have been derived from human and animal use, and subsequently decreased through the process of outflow from source to the sea. The SMX-resistant bacterial rate evaluated by the colony forming unit showed 10 to 86% of the total colony numbers showed higher rates from freshwater sites compared to marine sites. When sul genes were quantified by qPCR, colony-forming bacteria conveyed sul1 and sul2 genes in freshwater and seawater (10(-5)-10(-2) copy/16S) but not sul3. Among the natural bacterial assemblage, all sul1, sul2, and sul3 were detected (10(-5)-10(-3) copy/16S), whereas all sul genes were at an almost non-detectable level in the freshwater assemblage. This study suggests that sul1 and sul2 are main sul genes in culturable bacteria, whereas sul3 is conveyed by non-culturable bacteria in the sea. As a result marine bacteria possess sul1, sul2 and sul3 genes in the marine environment.201323641240
7115100.9998Antibiotics, antibiotic resistance and associated risk in natural springs from an agroecosystem environment. This study investigates the occurrence, transport, and risks associated to antibiotic residues, antibiotic resistance genes (ARGs) and antibiotic resistant Escherichia coli (AR-E. coli) in eleven natural springs in an agroecosystem environment with intense livestock production, where groundwater nitrate concentration usually sets above 50 mg L(-1). Out of 23 multiple-class antibiotics monitored, tetracycline and sulfonamide residues were the most ubiquitous, and they were detected at concentrations ranging from ng L(-1) to μg L(-1). Five ARGs were monitored, conferring resistance to the antibiotic classes of major use in livestock production. Thus, genes conferring resistance to sulfonamides (sul1 and sul2) and tetracyclines (tetW) as well as a gene proxy for anthropogenic pollution (intI1) were present in most springs. sul1 was the most abundant, with absolute concentrations ranging from 4 × 10(2) to 5.6 × 10(6) gene copies L(-1) water. AR-E. coli showing resistance to sulfonamides and tetracyclines was also detected, with a prevalence up to approximately 40 % in some sites but with poor correlations with the concentration of antibiotic residues and ARGs. The occurrence of antibiotics, ARGs and AR-E. coli was characterized by large seasonal variations which were mostly associated to both hydrological factors and reactive transport processes. Finally, a risk assessment approach pointed out towards low risk for both the groundwater environment and human health, when spring water is used for direct human consumption, associated with the occurrence of antibiotics, ARGs and AR-E. coli. However, long-term effects cannot be neglected, and proper actions must be taken to preserve groundwater quality.202336208750
3677110.9998Prevalence of sulfonamide-resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan. Antibiotics are commonly used in swine feed to treat and prevent disease, as well as to promote growth. Antibiotics released into the environment via wastewater could accelerate the emergence of antibiotic-resistant bacteria and resistance genes in the surrounding environment. In this study, we quantified the occurrence of sulfonamides, sulfonamide-resistant microorganisms and resistance genes in the wastewater from a swine farm in northern Taiwan and its surrounding natural water bodies and soils. Sulfonamide levels were similar in the receiving downstream and upstream river water. However, the prevalence of sulfonamide-resistant bacteria and resistance genes, as analyzed by cultivation-dependent and -independent molecular approaches, was significantly greater in the downstream compared to the upstream river water samples. Barcoded-pyrosequencing revealed a highly diverse bacterial community structure in each sample. However, the sequence identity of the sulfonamide resistance gene sul1 in the wastewater and downstream environment samples was nearly identical (99-100%). The sul1 gene, which is genetically linked to class 1 integrons, was dominant in the downstream water bodies and soils. In conclusion, the increased prevalence of sulfonamide resistance genes in the wastewater from a swine farm, independent of the persistent presence of sulfonamides, could be a potential source of resistant gene pools in the surrounding environment.201424637153
7094120.9998Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China. The occurrence and distribution of antibiotic resistance genes (ARGs) in drinking water treatment plants (DWTPs) and finished water are not well understood, and even less is known about the contribution of each treatment process to resistance gene reduction. The prevalence of ten commonly detected sulfonamide and tetracycline resistance genes, namely, sul I, sul II, tet(C), tet(G), tet(X), tet(A), tet(B), tet(O), tet(M) and tet(W) as well as 16S-rRNA genes, were surveyed in seven DWTPs in the Yangtze River Delta, China, with SYBR Green I-based real-time quantitative polymerase chain reaction. All of the investigated ARGs were detected in the source waters of the seven DWTPs, and sul I, sul II, tet(C) and tet(G) were the four most abundant ARGs. Total concentrations of ARGs belonging to either the sulfonamide or tetracycline resistance gene class were above 10(5) copies/mL. The effects of a treatment process on ARG removal varied depending on the overall treatment scheme of the DWTP. With combinations of the treatment procedures, however, the copy numbers of resistance genes were reduced effectively, but the proportions of ARGs to bacteria numbers increased in several cases. Among the treatment processes, the biological treatment tanks might serve as reservoirs of ARGs. ARGs were found in finished water of two plants, imposing a potential risk to human health. The results presented in this study not only provide information for the management of antibiotics and ARGs but also facilitate improvement of drinking water quality.201424984233
7093130.9998Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water. Wastewater treatment plants are considered hot spots for multiplication and dissemination of antibiotic-resistant bacteria and resistance genes. In this study, we determined the presence of class 1 integron integrase and genes conferring resistance to tetracyclines and sulfonamides in the genomes of culturable bacteria isolated from a wastewater treatment plant and the river that receives the treated wastewater. Moreover, using PCR-based metagenomic approach, we quantified intI1, tet and sul genes. Wastewater treatment caused the decrease in the total number of culturable heterotrophs and bacteria resistant to tetracycline and sulfonamides, along with the decrease in the number of intI1, sul and tet gene copies per ml, with significant reduction of tet(B). On the other hand, the treatment process increased both the frequency of tetracycline- and sulfonamide-resistant bacteria and intI1-positive strains, and the relative abundance of all quantified antibiotic resistance genes (ARGs) and intI1 gene; in the case of tet(A) and sul2 significantly. The discharge of treated wastewater increased the number of intI1, tet and sul genes in the receiving river water both in terms of copy number per ml and relative abundance. Hence, despite the reduction of the number of ARGs and ARBs, wastewater treatment selects for bacteria with ARGs in effluent.201626519797
5326140.9998The presence of antibiotic-resistant bacteria at four Norwegian wastewater treatment plants: seasonal and wastewater-source effects. Wastewater treatment plants receive low concentrations of antibiotics. Residual concentrations of antibiotics in the effluent may accelerate the development of antibiotic resistance in the receiving environments. Monitoring of antimicrobial resistance genes (ARGs) in countries with strict regulation of antibiotic use is important in gaining knowledge of how effective these policies are in preventing the emergence of ARGs or whether other strategies are required, for example, at-source treatment of hospital effluents. This study evaluates the presence of certain common resistance genes (bla (SHV-1), bla (TEM-1), msrA, ermA, ermC, tetM, tetL, tetA, vanA, and vanC) in the influent, sludge, and effluent of four wastewater treatment plants (WWTPs) in the North Jæren region of Norway at two different sampling times (January and May). These WWTPs vary in drainage area and wastewater composition and were selected based on their differing wastewater characteristics. Randomly selected colonies from the activated sludge samples were used to determine the minimum inhibitory concentration (MIC) for ampicillin, vancomycin, and tetracycline. In addition, variations in the bacterial composition of the wastewater were characterized via 16S rRNA sequencing and were analyzed in terms of bacterial host taxa that explain the presence of the ARGs in wastewater. The MIC tests revealed MIC(90) values of >128 µg/mL for ampicillin, ≥128 µg/mL for vancomycin, and 32 µg/mL for tetracycline. In addition, the three resistance genes, ermB, tetA, and tetM, that were present in the influent and activated sludge were still present in the effluent. These results indicate that WWTPs represent a direct route into the environment for resistance genes and do not significantly reduce their abundance. Hence, the development of treatment methods for the removal of these genes from WWTPs in the future is of utmost importance.202439816252
3508150.9998Prevalence and distribution of antibiotic resistance in marine fish farming areas in Hainan, China. Antibiotic resistance represents a global health crisis for humans, animals, and for the environment. Transmission of antibiotic resistance through environmental pathways is a cause of concern. In this study, quantitative PCR and culture-dependent bacteriological methods were used to detect the abundance of antibiotic resistance genes (ARGs) and the quantity of culturable heterotrophic antibiotic-resistant bacteria (ARB) in marine fish farming areas. The results indicated that sul and tet family genes were widely distributed in marine fish farming areas of Hainan during both rearing and harvesting periods. Specifically, sul1 and tetB were the most dominant ARGs. The total abundance of ARGs increased significantly from the rearing to the harvesting period. A total of 715 ARB strains were classified into 24 genera, within these genera Vibrio, Acinetobacter, Pseudoalteromonas, and Alteromonas are opportunistic pathogens. High bacterial resistance rate to oxytetracycline (OT) was observed. The numbers of OT- and enrofloxacin-resistant bacteria dropped significantly from rearing the period to the harvesting. The co-occurrence pattern showed that Ruegeria and tetB could be indicators of ARB and ARGs, respectively, which were found in the same module. Redundancy analysis indicated that salinity was positively correlated with the most dominant ARB, and was negatively correlated with the most dominant ARGs. These findings demonstrated the prevalence and persistence of ARGs and ARB in marine fish farming areas in China.201930414589
3432160.9998Insights into the amplification of bacterial resistance to erythromycin in activated sludge. Wastewater treatment plants are significant reservoirs for antimicrobial resistance. However, little is known about wastewater treatment effects on the variation of antibiotic resistance. The shifts of bacterial resistance to erythromycin, a macrolide widely used in human medicine, on a lab-scale activated sludge system fed with real wastewater was investigated from levels of bacteria, community and genes, in this study. The resistance variation of total heterotrophic bacteria was studied during the biological treatment process, based on culture dependent method. The alterations of bacterial community resistant to erythromycin and nine typical erythromycin resistance genes were explored with molecular approaches, including high-throughput sequencing and quantitative polymerase chain reaction. The results revealed that the total heterotrophs tolerance level to erythromycin concentrations (higher than 32 mg/L) was significantly amplified during the activated sludge treatment, with the prevalence increased from 9.6% to 21.8%. High-throughput sequencing results demonstrated an obvious increase of the total heterotrophic bacterial diversity resistant to erythromycin. Proteobacteria and Bacteroidetes were the two dominant phyla in the influent and effluent of the bioreactor. However, the prevalence of Proteobacteria decreased from 76% to 59% while the total phyla number increased greatly from 18 to 29 through activated sludge treatment. The gene proportions of erm(A), mef(E) and erm(D) were greatly amplified after biological treatment. It is proposed that the transfer of antibiotic resistance genes through the variable mixtures of bacteria in the activated sludge might be the reason for the antibiotic resistance amplification. The amplified risk of antibiotic resistance in wastewater treatment needs to be paid more attention.201525957255
3520170.9998Influence of tetracycline on tetracycline-resistant heterotrophs and tet genes in activated sludge process. The concentrations of tetracycline-intermediate resistant, tetracycline-resistant heterotrophic bacteria, and total heterotrophic bacteria were examined to assess the influence of tetracycline on tetracycline-resistant heterotrophs by the R2A agar cultivation method in the tetracycline fortified activated sludge process and in the natural background. Results showed that the percentages of both tetracycline-intermediate resistant and tetracycline-resistant heterotrophic bacteria in total heterotrophic bacteria were significantly increased, after tetracycline was fed to activated sludge for a 3 months period under four different operating conditions, as compared with the background. In order to investigate the mechanism of activated sludge resistance to tetracycline, polymerase chain reaction experiments were carried out to analyze the existence and evolution of tet genes in the presence of tetracycline. Results revealed that only tet A and tet B genes out of the 11 target tet genes were observed in tetracycline treated activated sludge while no tet gene was detected in background. This indicated that tet A gene could accumulate in activated sludge with slower and continuous influent, while the accumulation of tet B gene could be attributed to shorter hydraulic retention time. Therefore, it was proposed in this study that tetracycline-resistant genes created by efflux pumps spread earlier and quicker to encode resistance to tetracycline, which facilitated the increase in tetracycline-resistance.201525424345
7121180.9998Fate of fluoroquinolones in field soil environment after incorporation of poultry litter from a farm with enrofloxacin administration via drinking water. The practice of incorporating animal manure into soil is supported within the European Circular economy as a possible substitute for mineral fertilizers and will become crucial for the sustainability of agriculture. However, this practice may indirectly contribute to the dissemination of antibiotics, resistance bacteria, and resistance genes. In this study, medicated drinking water and poultry litter samples were obtained from a broiler-chick farm. The obtained poultry litter was incorporated into the soil at the experimental field site. The objectives of this research project were first to develop analytical methods able to quantify fluoroquinolones (FQs) in medicated drinking water, poultry litter, and soil samples by LC-MS; second to study the fate of these FQs in the soil environment after incorporation of poultry litter from flock medicated by enrofloxacin (ENR); and third to screen the occurrence of selected fluoroquinolone resistance encoding genes in poultry litter and soil samples (PCR analysis). FQs were quantified in the broiler farm's medicated drinking water (41.0 ± 0.3 mg∙L(-1) of ENR) and poultry litter (up to 70 mg∙kg(-1) of FQs). The persistence of FQs in the soil environment over 112 days was monitored and evaluated (ENR concentrations ranged from 36 μg∙kg(-1) to 9 μg∙kg(-1) after 100 days). The presence of resistance genes was confirmed in both poultry litter and soil samples, in agreement with the risk assessment for the selection of AMR in soil based on ENR concentrations. This work provides a new, comprehensive perspective on the entry and long-term fate of antimicrobials in the terrestrial environment and their consequences after the incorporation of poultry litter into agricultural fields.202438367114
5293190.9998Tetracycline-Resistant Bacteria Selected from Water and Zebrafish after Antibiotic Exposure. The emergence of antibiotic-resistant pathogens due to worldwide antibiotic use is raising concern in several settings, including aquaculture. In this work, the selection of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) was evaluated after exposure of zebrafish to oxytetracycline (OTC) for two months, followed by a recovery period. The selection of ARB in water and fish was determined using selective media. The abundance of tetA genes was estimated through qPCR. Higher prevalence of ARB was measured in all samples exposed to the antibiotic when compared to control samples, although statistical significance was only achieved five days after exposure. Isolates recovered from samples exposed to the antibiotic were affiliated with Pseudomonas and Stenotrophomonas. Various antibiotic susceptibility profiles were detected and 37% of the isolates displayed multidrug resistance (MDR). The selection of the tetA gene was confirmed by qPCR at the highest OTC concentration tested. Two MDR isolates, tested using zebrafish embryos, caused significant mortality, indicating a potential impact on fish health and survival. Overall, our work highlights the potential impact of antibiotic contamination in the selection of potential pathogenic ARB and ARGS.202133804606