Seasonality of antibiotic prescriptions for outpatients and resistance genes in sewers and wastewater treatment plant outflow. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
706601.0000Seasonality of antibiotic prescriptions for outpatients and resistance genes in sewers and wastewater treatment plant outflow. To test the hypothesis of a seasonal relationship of antibiotic prescriptions for outpatients and the abundance of antibiotic resistance genes (ARGs) in the wastewater, we investigated the distribution of prescriptions and different ARGs in the Dresden sewer system and wastewater treatment plant during a two-year sampling campaign. Based on quantitative PCR (qPCR), our results show a clear seasonal pattern for relative ARGs abundances. The higher ARGs levels in autumn and winter coincide with the higher rates of overall antibiotic prescriptions. While no significant differences of relative abundances were observed before and after the wastewater treatment for most of the relative ARGs, the treatment clearly influenced the microbial community composition and abundance. This indicates that the ARGs are probably not part of the dominant bacterial taxa, which are mainly influenced by the wastewater treatment processes, or that plasmid carrying bacteria remain constant, while plasmid free bacteria decrease. An exception was vancomycin (vanA), showing higher relative abundance in treated wastewater. It is likely that a positive selection or community changes during wastewater treatment lead to an enrichment of vanA. Our results demonstrate that in a medium-term study the combination of qPCR and next generation sequencing corroborated by drug-related health data is a suitable approach to characterize seasonal changes of ARGs in wastewater and treated wastewater.201627073234
731510.9999Seasonal variability of the correlation network of antibiotics, antibiotic resistance determinants, and bacteria in a wastewater treatment plant and receiving water. Sewage treatment plants are an essential source of antibiotics, antibiotic resistance determinants, and bacteria in environmental waters. However, it is still unclear whether they can maintain a relatively stable relationship in wastewater and environmental waters. This study analyzed the removal capacity of the above three pollutants in the sewage treatment plant in summer and their impact on environmental waters, and then examines the relationship between the three contaminants in the wastewater and environmental waters in summer and winter based on our previous study. The results found that the removal capacity of bacteria in summer was poor, the concentration of fluoroquinolone in the effluent was higher than that in influent, and the abundance of intI1, tetW, qnrB, and ermB increased after wastewater treatment. Proteobacteria and Bacteroides were the main bacteria that constitute the correlation network between bacteria, and they existed stably in summer and winter. However, fluoroquinolones occupied a significant position in the determinant network of antibiotics and antibiotic resistance in summer and winter. There are fewer correlation between antibiotics and antibiotics resistance determinants in winter. Interestingly, the relationship between bacteria, antibiotics, and antibiotic resistance determinants was a mainly positive correlation in summer and negative correlation in winter. This study analyzed the relationship between bacteria, antibiotics, and antibiotic resistance determinants that were stable in the wastewater and environmental waters and pointed out the direction for subsequent targeted seasonal control of novel pollutants in wastewater and environmental waters.202235642820
732820.9999Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water. The presence of pathogenic bacteria and the dissemination of antibiotic resistance genes (ARGs) may pose big risks to the rivers that receive the effluent from municipal wastewater treatment plants (WWTPs). In this study, we investigated the changes of bacterial community and ARGs along treatment processes of one WWTP, and examined the effects of the effluent discharge on the bacterial community and ARGs in the receiving river. Pyrosequencing was applied to reveal bacterial community composition including potential bacterial pathogen, and Illumina high-throughput sequencing was used for profiling ARGs. The results showed that the WWTP had good removal efficiency on potential pathogenic bacteria (especially Arcobacter butzleri) and ARGs. Moreover, the bacterial communities of downstream and upstream of the river showed no significant difference. However, the increase in the abundance of potential pathogens and ARGs at effluent outfall was observed, indicating that WWTP effluent might contribute to the dissemination of potential pathogenic bacteria and ARGs in the receiving river.201627340885
731430.9999Microbial diversity and antibiotic resistance in a final effluent-receiving lake. Wastewater treatment plants have been recognised as hotspots for antibiotic resistance genes and antibiotic-resistant bacteria which enter the environment. However, the persistence of these genes and bacteria in receiving ecosystems remains poorly understood. The aim of the study was to evaluate the effect of final effluent release on microbial diversity and the antibiotic resistance gene pool in a final effluent-receiving lake. The numbers of total culturable heterotrophs and unculturable bacteria (represented as the 16S rRNA gene copy number) were significantly reduced during the treatment process. The number of ampicillin-resistant bacteria was higher in the sediment than in water samples, suggesting accumulation of ampicillin-resistant bacteria in freshwater sediments. Using an exogenous method, we captured 56 resistance plasmids which were further characterised. Next-generation sequencing revealed that the microbial phyla represented in the studied metagenomes were typical of corresponding environments. The highest relative abundance of antibiotic resistance genes was observed in the final effluent, suggesting that a considerable number of genes were released from the wastewater treatment plant. However, the lowest relative abundance and lowest diversity of the genes in the lake water, compared to the other studied metagenomes, suggest a negligible effect of treated sewage release on antibiotic resistance within water microbial communities of the lake. Furthermore, uncontrolled sewage dumping into this reservoir in the past as well as lower quality of the water upstream of the lake indicated that the wastewater treatment plant protected the studied ecosystem.201930373071
706740.9999Impact of the antibiotic doxycycline on the D. magna reproduction, associated microbiome and antibiotic resistance genes in treated wastewater conditions. Wastewater Treatment Plant (WWTP) effluents are important sources of antibiotics, antibiotic resistance genes (ARGs) and resistant bacteria that threaten aquatic biota and human heath. Antibiotic effects on host-associated microbiomes, spread of ARGs and the consequences for host health are still poorly described. This study investigated changes of the Daphnia magna associated microbiome exposed to the recalcitrant antibiotic doxycycline under artificial reconstituted lab water media (lab water) and treated wastewater media. D. magna individual juveniles were exposed for 10 days to treated wastewater with and without doxycycline, and similarly in lab water. We analysed 16 S rRNA gene sequences to assess changes in community structure, monitored Daphnia offspring production and quantified ARGs abundances by qPCR from both Daphnia and water (before and after the exposure). Results showed that doxycycline and media (lab water or wastewater) had a significant effect modulating Daphnia-associated microbiome composition and one of the most discriminant taxa was Enterococcus spp. Moreover, in lab water, doxycycline reduced the presence of Limnohabitans sp., which are dominant bacteria of the D. magna-associated microbiome and impaired Daphnia reproduction. Contrarily, treated wastewater increased diversity and richness of Daphnia-associated microbiome and promoted fecundity. In addition, the detected ARG genes in both lab water and treated wastewater medium included the qnrS1, sul1, and bla(TEM,) and the integron-related intI1 gene. The treated wastewater contained about 10 times more ARGs than lab water alone. Furthermore, there was an increase of sul1 in Daphnia cultured in treated wastewater compared to lab water. In addition, there were signs of a higher biodegradation of doxycycline by microbiomes of treated wastewater in comparison to lab water. Thus, results suggest that Daphnia-associated microbiomes are influenced by their environment, and that bacterial communities present in treated wastewater are better suited to cope with the effects of antibiotics.202337442322
689750.9999Occurrence of antibiotic resistance genes in an oilfield's water re-injection systems. The recent widespread increase in antibiotic resistance has become a real threat to both human and environmental ecosystem health. In oil reservoirs, an extreme environment potentially influenced by human activity such as water flooding, the distribution and abundance of antibiotic resistance genes (ARGs) remains poorly understood. Herein, we investigated the distribution of ARGs at different positions in a water-flooding oilfield in China, and found that ARGs were observed in all parts of the investigated system. The surface regions of the water re-injection system were more vulnerable to ARG pollution, and the final ARG concentration was up to 2.2 × 10(8) gene copies/L, and sulfonamide were the most abundant. However, ARG concentration decreased sharply in the samples from underground part of the re-injection system. The bacterial community composition was also varied with sampling position. The sample from production well, which was enriched in crude oil, contained more bacteria but the community richness was simpler. This study also indicated the wastewater-recycling process above ground, which proposed to reduce the discharge into environment directly, may pose a risk for ARGs spread.202031869712
738960.9998Temporal changes of antibiotic-resistance genes and bacterial communities in two contrasting soils treated with cattle manure. The emerging environmental spread of antibiotic-resistance genes (ARGs) and their subsequent acquisition by clinically relevant microorganisms is a major threat to public health. Animal manure has been recognized as an important reservoir of ARGs; however, the dissemination of manure-derived ARGs and the impacts of manure application on the soil resistome remain obscure. Here, we conducted a microcosm study to assess the temporal succession of total bacteria and a broad spectrum of ARGs in two contrasting soils following manure application from cattle that had not been treated with antibiotics. High-capacity quantitative PCR detected 52 unique ARGs across all the samples, with β-lactamase as the most dominant ARG type. Several genes of soil indigenous bacteria conferring resistance to β-lactam, which could not be detected in manure, were found to be highly enriched in manure-treated soils, and the level of enrichment was maintained over the entire course of 140 days. The enriched β-lactam resistance genes had significantly positive relationships with the relative abundance of the integrase intI1 gene, suggesting an increasing mobility potential in manure-treated soils. The changes in ARG patterns were accompanied by a significant effect of cattle manure on the total bacterial community compositions. Our study indicates that even in the absence of selective pressure imposed by agricultural use of antibiotics, manure application could still strongly impact the abundance, diversity and mobility potential of a broad spectrum of soil ARGs. Our findings are important for reliable prediction of ARG behaviors in soil environment and development of appropriate strategies to minimize their dissemination.201626712351
731070.9998Metagenomic Analysis Reveals Changes in Bacterial Communities and Antibiotic Resistance Genes in an Eye Specialty Hospital and a General Hospital Before and After Wastewater Treatment. The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in hospital wastewater poses a great threat to public health, and wastewater treatment plants (WWTPs) play an important role in reducing the levels of ARB and ARGs. In this study, high-throughput metagenomic sequencing was used to analyze the bacterial community composition and ARGs in two hospitals exposed to different antibiotic use conditions (an eye specialty hospital and a general hospital) before and after wastewater treatment. The results showed that there were various potential pathogenic bacteria in the hospital wastewater, and the abundance and diversity of the influent ARGs in the general hospital were higher than those in the eye hospital. The influent of the eye hospital was mainly composed of Thauera and Pseudomonas, and sul1 (sulfonamide) was the most abundant ARG. The influent of the general hospital contained mainly Aeromonas and Acinetobacter, and tet39 (tetracycline) was the most abundant ARG. Furthermore, co-occurrence network analysis showed that the main bacteria carrying ARGs in hospital wastewater varied with hospital type; the same bacteria in wastewater from different hospitals could carry different ARGs, and the same ARG could also be carried by different bacteria. The changes in the bacterial community and ARG abundance in the effluent from the two hospitals showed that the activated sludge treatment and the direct chlorination disinfection can effectively remove some bacteria and ARGs in wastewater but have limitations. The species diversity increased significantly after the activated sludge treatment, while the direct chlorination disinfection did not increase the diversity. The activated sludge treatment has a better effect on the elimination of ARGs than the direct chlorination disinfection. In summary, we investigated the differences in bacterial communities and ARGs in wastewater from two hospitals exposed to different antibiotic usage conditions, evaluated the effects of different wastewater treatment methods on the bacterial communities and ARGs in hospital wastewater, and recommended appropriate methods for certain clinical environments.202235663906
733580.9998Wastewater bypass is a major temporary point-source of antibiotic resistance genes and multi-resistance risk factors in a Swiss river. Untreated combined sewage (bypass) is often discharged by wastewater treatment plants to receiving rivers during stormwater events, where it may contribute to increased levels of antibiotic resistance genes (ARGs) and multi-resistance risk factors (multi-resistant bacteria and multi-resistance genomic determinants (MGDs)) in the receiving water. Other contamination sources, such as soil runoff and resuspended river sediment could also play a role during stormwater events. Here we report on stormwater event-based sampling campaigns to determine temporal dynamics of ARGs and multi-resistance risk factors in bypass, treated effluent, and the receiving river, as well as complimentary data on catchment soils and surface sediments. Both indicator ARGs (qPCR) and resistome (ARG profiles revealed by metagenomics) indicated bypass as the main contributor to the increased levels of ARGs in the river during stormwater events. Furthermore, we showed for the first time that the risk of exposure to bypass-borne multi-resistance risk factors increase under stormwater events and that many of these MGDs were plasmid associated and thus potentially mobile. In addition, elevated resistance risk factors persisted for some time (up to 22 h) in the receiving water after stormwater events, likely due to inputs from distributed overflows in the catchment. This indicates temporal dynamics should be considered when interpreting the risks of exposure to resistance from event-based contamination. We propose that reducing bypass from wastewater treatment plants may be an important intervention option for reducing dissemination of antibiotic resistance.202234794019
738290.9998Variation pattern of terrestrial antibiotic resistances and bacterial communities in seawater/freshwater mixed microcosms. The ocean is the final place where pollutants generated by human activities are deposited. As a result, the long-range transport of the ocean can facilitate the diffusion of terrestrial contaminants, including ARGs. However, to our knowledge, little research has been devoted to discussing the content change of terrestrial ARGs and the reason for the change in coastal area. This study established various microcosms, in which seawater and freshwater were mixed at different ratio to simulate the environmental conditions of different regions in coastal areas. Four ARGs were quantified, and 16S pyrosequencing was conducted. The results showed that the terrestrial ARGs influenced the concentration of the corresponding ARGs in coastal areas, and the content change pattern of each ARG was distinct. The influence of salinity on the ARG content was limited in most cases. Moreover, most dominant bacteria from freshwater had significant positive correlation (p < 0.05) with selected ARGs, except for bla(TEM). The dominant bacteria in freshwater diminished dramatically in microcosms with a high proportion of seawater. Freshwater may have a strong impact on the bacteria composition of seawater, and the materials from freshwater may prompt the growth of some bacteria (include potential hosts of ARGs) in coastal area.201829486359
7021100.9998Metagenomic insights into dissemination of antibiotic resistance across bacterial genera in wastewater treatment. The aim of this study was to evaluate the impacts of conventional wastewater treatment processes including secondary treatment and chlorination on the removal of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB), and to assess the association of ARGs with their potential hosts in each treatment process. The results showed chlorination with subinhibitory concentration (<8 mg/L) resulted in an increased ARB number in the disinfection effluent. qPCR analysis indicated secondary treatment increased relative abundance of ARGs in remaining bacteria whereas disinfection reduced the relative abundance of those genes effectively. Metagenomic analysis revealed a significant shift of dominating bacterial genera harboring ARGs. Along the treatment train, 48, 95 and 80 genera were identified to be the ARG carriers in primary effluent, secondary effluent, and disinfection effluent, respectively. It was also found that secondary treatment increased the diversity of potential ARG hosts while both secondary treatment and chlorination broadened the host range of some ARGs at the genus level, which may be attributed to the spread of antibiotic resistance across bacterial genera through horizontal transfer. This study highlights the growing concerns that wastewater treatment plants (WWTPs) may disseminate ARGs by associating this effect to specific treatment stages and by correlating ARGs with their bacterial hosts.202133453487
7258110.9998Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China. Non-irrigated and wastewater-irrigated soils were collected from five wastewater irrigation areas in Beijing and Tianjin, China. The concentrations of sulfadiazine, sulfamethoxazole, oxytetracycline and chlortetracycline in the soils were determined. Abundances of antibiotic resistant bacteria and corresponding resistance genes were also measured to examine the impact of wastewater irrigation. No significant difference in antibiotic resistance bacteria was observed between irrigated and non-irrigated soils. However, the concentrations of antibiotics and abundances of resistance genes were significantly greater in irrigated soils, indicating that agricultural activities enhanced the occurrence of antibiotics and resistance genes in the soils. In addition, no significant difference was observed between previously and currently wastewater-irrigated soils. Therefore, cessation of wastewater irrigation did not significantly reduce the levels of antibiotic concentrations and resistance gene abundances. Other factors, e.g., manure application, may explain the lack of significant difference in the occurrence of antibiotics and resistance genes between previously and currently wastewater-irrigated soils.201425016103
7390120.9998Tracking Enterobacteria, microbiomes, and antibiotic resistance genes from waste to soil with repeated compost applications. The dissemination of antibiotic resistant bacteria (ARB) and genes is one factor responsible for the increasing antibiotic resistance and the environment plays a role in resistance spread. Animal excreta can contribute to the contamination of the environment with ARBs and antibiotics and in some cases, environmental bacteria under antibiotic pressure may acquire antibiotic resistance genes (ARGs) from ARBs by horizontal gene transfer. In Guadeloupe, a French overseas department, organic amendments derived from human and animal waste are widely used in soil fertilization, but their contribution to antibiotic resistance remains unknown. The objective of this study was to evaluate the impact of composting animal and human raw waste and the repeated application of their derived-composts, on the fate of ARGs and antibiotic resistant Enterobacteria, for the first time, in tropical soils of Guadeloupe used for vegetable production. An unculturable approach was used to characterize the bacterial community composition and ARG content from raw waste to composts. A cultivable approach was used to enumerate Enterobacteria, and resistant isolates were further characterized phenotypically and genotypically. Based on this original approach, we demonstrated that the raw poultry droppings exhibited a depletion of Escherichia and Shigella populations during the composting treatment, which was corroborated by the results on the culturable resistant Enterobacteria. Significant differences in the abundance of ARGs were also observed, with some gene levels increasing or decreasing after composting. In addition, other bacterial genera potentially involved in the spread of antimicrobial resistance were identified. Taken together, these results demonstrate that successive applications of raw waste-derived-composts from green waste, sewage sludge, and poultry droppings reshape the Enterobacterial community and influences the abundance of ARGs, with some gene levels increasing or decreasing, in Guadeloupe's tropical vegetable production soils.202540802789
7342130.9998Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment plant. The increased antibiotic resistance among microorganisms has resulted into growing interest for investigating the wastewater treatment plants (WWTPs) as they are reported to be the major source in the dissemination of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in the environment. In this study, we investigated the prevalence and persistence of ARGs and HMRGs as well as bacterial diversity and mobile genetic elements (MGEs) in influent and effluent at the WWTP in Gwangju, South Korea, using high-throughput sequencing based metagenomic approach. A good number of broad-spectrum of resistance genes (both ARG and HMRG) were prevalent and likely persistent, although large portion of them were successfully removed at the wastewater treatment process. The relative abundance of ARGs and MGEs was higher in effluent as compared to that of influent. Our results suggest that the resistance genes with high abundance and bacteria harbouring ARGs and MGEs are likely to persist more through the treatment process. On analyzing the microbial community, the phylum Proteobacteria, especially potentially pathogenic species belonging to the genus Acinetobacter, dominated in WWTP. Overall, our study demonstrates that many ARGs and HMRGs may persist the treatment processes in WWTPs and their association to MGEs may contribute to the dissemination of resistance genes among microorganisms in the environment.201829858829
7339140.9998Host range of antibiotic resistance genes in wastewater treatment plant influent and effluent. Wastewater treatment plants (WWTPs) collect wastewater from various sources for a multi-step treatment process. By mixing a large variety of bacteria and promoting their proximity, WWTPs constitute potential hotspots for the emergence of antibiotic resistant bacteria. Concerns have been expressed regarding the potential of WWTPs to spread antibiotic resistance genes (ARGs) from environmental reservoirs to human pathogens. We utilized epicPCR (Emulsion, Paired Isolation and Concatenation PCR) to detect the bacterial hosts of ARGs in two WWTPs. We identified the host distribution of four resistance-associated genes (tetM, int1, qacEΔ1and blaOXA-58) in influent and effluent. The bacterial hosts of these resistance genes varied between the WWTP influent and effluent, with a generally decreasing host range in the effluent. Through 16S rRNA gene sequencing, it was determined that the resistance gene carrying bacteria include both abundant and rare taxa. Our results suggest that the studied WWTPs mostly succeed in decreasing the host range of the resistance genes during the treatment process. Still, there were instances where effluent contained resistance genes in bacterial groups not carrying these genes in the influent. By permitting exhaustive profiling of resistance-associated gene hosts in WWTP bacterial communities, the application of epicPCR provides a new level of precision to our resistance gene risk estimates.201829514229
7340150.9998High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant. Antibiotic resistance among bacteria is a growing problem worldwide, and wastewater treatment plants have been considered as one of the major contributors to the dissemination of antibiotic resistance to the environment. There is a lack of comprehensive quantitative molecular data on extensive numbers of antibiotic resistance genes (ARGs) in different seasons with a sampling strategy that would cover both incoming and outgoing water together with the excess sludge that is removed from the process. In order to fill that gap we present a highly parallel quantitative analysis of ARGs and horizontal gene transfer potential over four seasons at an urban wastewater treatment plant using a high-throughput qPCR array. All analysed transposases and two-thirds of primer sets targeting ARGs were detected in the wastewater. The relative abundance of most of the genes was highest in influent and lower in effluent water and sludge. The resistance profiles of the samples cluster by sample location with a shift from raw influent through the final effluents and dried sludge to the sediments. Wastewater discharge enriched only a few genes, namely Tn25 type transposase gene and clinical class 1 integrons, in the sediment near the discharge pipe, but those enriched genes may indicate a potential for horizontal gene transfer.201626832203
7452160.9998Elevation of antibiotic resistance genes at cold temperatures: implications for winter storage of sludge and biosolids. Prior research suggests that cold temperatures may stimulate the proliferation of certain antibiotic resistance genes (ARGs) and gene transfer elements during storage of biosolids. This could have important implications on cold weather storage of biosolids, as often required in northern climates until a time suitable for land application. In this study, levels of an integron-associated gene (intI1) and an ARG (sul1) were monitored in biosolids subject to storage at 4, 10 and 20°C. Both intI1 and sul1 were observed to increase during short-term storage (<2 months), but the concentrations returned to background within 4 months. The increases in concentration were more pronounced at lower temperatures than ambient temperatures. Overall, the results suggest that cold stress may induce horizontal gene transfer of integron-associated ARGs and that biosolids storage conditions should be considered prior to land application. SIGNIFICANCE AND IMPACT OF THE STUDY: Wastewater treatment plants have been identified as the hot spots for the proliferation and dissemination of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) to the environment through discharge of treated effluent to water bodies as well as application of biosolids to land. Identifying critical control points within the treatment process may aid in the development of solutions for the reduction of ARGs and ARB and curbing the spread of antibiotic resistance. This study found increases in ARGs during biosolids storage and identifies changes in operational protocols that could help reduce ARG loading to the environment when biosolids are land-applied.201425196177
6846170.9998Antibiotic resistance genes in an urban river as impacted by bacterial community and physicochemical parameters. Antibiotic resistance genes (ARGs) in urban rivers are a serious public health concern in regions with poorly planned, rapid development. To gain insights into the predominant factors affecting the fate of ARGs in a highly polluted urban river in eastern China, a total of 285 ARGs, microbial communities, and 20 physicochemical parameters were analyzed for 17 sites. A total of 258 unique ARGs were detected using high-throughput qPCR, and the absolute abundance of total ARGs was positively correlated with total organic carbon and total dissolved nitrogen concentrations (P < 0.01). ARG abundance and diversity were greatly altered by microbial community structure. Variation partitioning analysis showed that the combined effects of multiple factors contributed to the profile and dissemination of ARGs, and variation of microbial communities was the major factor affecting the distribution of ARGs. The disparate distribution of some bacteria, including Bacteroides from mammalian gastrointestinal flora, Burkholderia from zoonotic infectious diseases, and Zoogloea from wastewater treatment, indicates that the urban river was strongly influenced by point-source pollution. Results imply that microbial community shifts caused by changes in water quality may lead to the spread of ARGs, and point-source pollution in urban rivers requires greater attention to control the transfer of ARGs between environmental bacteria and pathogens.201728864929
7327180.9998Exploring the microbiome, antibiotic resistance genes, mobile genetic element, and potential resistant pathogens in municipal wastewater treatment plants in Brazil. Wastewater treatment plants (WWTPs) have been widely investigated in Europe, Asia and North America regarding the occurrence and fate of antibiotic resistance (AR) elements, such as antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and antibiotic resistant bacteria and pathogens. However, monitoring data about AR elements in municipal WWTPs in Brazil are scarce. This study investigated the abundance of intI1, five ARGs (sul1, tetA, blaTEM, ermB and qnrB) and 16S rRNA in raw and treated wastewater of three WWTPs, using different sewage treatments named CAS (Conventional activated sludge), UASB/BTF (UASB followed by biological trickling filter) and MAS/UV (modified activated sludge with UV disinfection stage). Bacterial diversity and the presence of potentially pathogenic groups were also evaluated, and associations between genetic markers and the bacterial populations were presented. All WWTPs decreased the loads of genetic markers finally discharged to receiving water bodies and showed no evidence of being hotspots for antimicrobial resistance amplification in wastewater, since the abundances of intI1 and ARGs within the bacterial population were not increased in the treated effluents. UASB/BTF showed a similar performance to that of the CAS and MAS/UV, reinforcing the sanitary and environmental advantages of this biological treatment, widely applied for wastewater treatment in warm climate regions. Bacterial diversity and richness increased after treatments, and bacterial communities in wastewater samples differed due to catchment areas and treatment typologies. Potential pathogenic population underwent considerable decrease after the treatments; however, strong significant correlations with intI1 and ARGs revealed potential multidrug-resistant pathogenic bacteria (Aeromonas, Arcobacter, Enterobacter, Escherichia-Shigella, Stenotrophomonas and Streptococcus) in the treated effluents, although in reduced relative abundances. These are contributive results for understanding the fate of ARGs, MGEs and potential pathogenic bacteria after wastewater treatments, which might support actions to mitigate their release into Brazilian aquatic environments in the near future.202235724791
7513190.9998Contribution of microplastic particles to the spread of resistances and pathogenic bacteria in treated wastewaters. Microplastic Particles (MPs) are ubiquitous pollutants widely found in aquatic ecosystems. Although MPs are mostly retained in wastewater treatment plants (WWTPs), a high number of MPs reaches the open waters potentially contributing to the spread of pathogenic bacteria and antibiotic resistance genes in the environment. Nowadays, a limited number of studies have focused on the role of MPs as carriers of potentially pathogenic and antibiotic resistant bacteria in WWTPs. Thus, an investigation on the community composition (by 16S rRNA gene amplicon sequencing) and the abundance of antibiotic and metal resistance genes (by qPCR) of the biofilm on MPs (the plastisphere) and of planktonic bacteria in treated (pre- and post-disinfection) wastewaters was performed. MPs resulted to be very similar in terms of type, color, size, and chemical composition, before and after the disinfection. The bacterial community on MPs differed from the planktonic community in terms of richness, composition, and structure of the community network. Potentially pathogenic bacteria generally showed higher abundances in treated wastewater than in the biofilm on MPs. Furthermore, among the tested resistance genes, only sul2 (a common resistance gene against sulfonamides) resulted to be more abundant in the plastisphere than in the planktonic bacterial community. Our results suggest that the wastewater plastisphere could promote the spread of pathogenic bacteria and resistance genes in aquatic environment although with a relatively lower contribution than the wastewater planktonic bacterial community.202134186288