The formation mechanism of antibiotic-resistance genes associated with bacterial communities during biological decomposition of household garbage. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
704501.0000The formation mechanism of antibiotic-resistance genes associated with bacterial communities during biological decomposition of household garbage. Food wastes are significant reservoir of antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) available for exchange with clinical pathogens. However, food wastes-related changes of antibiotic resistance in long-period decomposition have been overlooked. Here, we evaluated the comprehensive ARG profile and its association with microbial communities, explained how this might vary with household garbage decomposition. Average of 128, 150 and 91 ARGs were detected in meat, vegetable and fruit wastes, respectively, with multidrug and tetracycline as the predominant ARG types. ARG abundance significantly increased at initial stage of waste fermentation and then decreased. High abundance of Eubacterium-coprostanoligenes, Sporanaerobacter, Peptoniphilus, Peptostreptococcus might be explained for the high relative abundance of ARGs in meat, while high abundance of Advenella, Prevotella, Solobacterium was attributed to the high diversity of ARGs in vegetables. Significant correlations were observed among volatile organic compounds, mobile genetic elements and ARGs, implying that they might contribute to transfer and transport of ARGs. Network analysis revealed that aph(2')-Id-01, acrA-05, tetO-1 were potential ARG indicators, while Hathewaya, Paraclostridium and Prevotellaceae were possible hosts of ARGs. Our work might unveil underlining mechanism of the effects of food wastes decomposition on development and spread of ARGs in environment and also clues to ARG mitigation.202032492618
807910.9999Response of antibiotic resistance to the co-exposure of sulfamethoxazole and copper during swine manure composting. Heavy metals driven co-selection of antibiotic resistance in soil and water bodies has been widely concerned, but the response of antibiotic resistance to co-existence of antibiotics and heavy metals in composting system is still unknown. Commonly used sulfamethoxazole and copper were individually and jointly added into four reactors to explore their effects on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), heavy metal resistance genes (MRGs) and bacterial community structure. The abundance of total ARGs and MGEs were notably decreased by 68.64%-84.95% and 91.27-97.38%, respectively, after the composting. Individual addition of sulfamethoxazole, individual addition of copper, simultaneously addition of sulfamethoxazole and copper increased the abundance of ARGs and MGEs throughout the composting period. Co-exposure of sulfamethoxazole and copper elevated the total abundance of ARGs by 1.17-1.51 times by the end of the composting compared to individual addition of sulfamethoxazole or copper. Network analysis indicated that the shifts in potential host bacteria determined the ARGs variation. Additionally, MGEs and MRGs had significant effects on ARGs, revealing that horizontal gene transfer and heavy metals induced co-resistance could promote ARGs dissemination.202234537705
714120.9999The fate of antibiotic resistance genes and their association with bacterial and archaeal communities during advanced treatment of pig farm wastewater. Advanced wastewater treatment plants are widely used in most large-scale pig farms in southern China. However, the fate of antibiotic resistance genes (ARGs) and their association with bacterial and archaeal communities during advanced wastewater treatment remain unclear. In this study, the profiles of ARGs in typical advanced wastewater treatment plants were surveyed using metagenomic analysis. The results showed that 279- 326 different subtypes of ARGs were detected in raw wastewater, with a total abundance of 5.98 ± 0.48 copies per bacterial cell. During the advanced wastewater treatment, the abundance and number of ARGs were significantly reduced. Microbial communities (bacteria and archaea) contributed the most to the variation in ARG abundance and composition (PCA axis_1), accounting for 10.8 % and 15.7 %, respectively, followed by mobile genetic elements (MGEs) and physicochemical factors. Special attention should be given to potential pathogenic bacteria such as Escherichia, Streptococcus, Enterococcus and Staphylococcus and archaea such as Methanocorpusculum, Candidatus Methanoplasma and Candidatus Methanomethylophilus, which were important potential ARG hosts. Bacterial communities may indirectly affect ARG variation by affecting archaeal communities. These findings indicated that ARG levels in pig farm wastewater can be effectively reduced during advanced treatment and highlighted the important role played by archaea, which should not be ignored.202236041618
703330.9998Environmental drivers and interaction mechanisms of heavy metal and antibiotic resistome exposed to amoxicillin during aerobic composting. The environmental accumulation and spread of antibiotic resistance pose a major threat to global health. Aerobic composting has become an important hotspot of combined pollution [e.g., antibiotic resistance genes (ARGs) and heavy metals (HMs)] in the process of centralized treatment and resource utilization of manure. However, the interaction mechanisms and environmental drivers of HMs resistome (MRGs), antibiotic resistance (genotype and phenotype), and microbiome during aerobic composting under the widely used amoxicillin (AMX) selection pressure are still poorly understood. Here, we investigated the dynamics of HMs bioavailability and their MRGs, AMX-resistant bacteria (ARB) and antibiotic resistome (ARGs and intI1), and bacterial community to decipher the impact mechanism of AMX by conducting aerobic composting experiments. We detected higher exchangeable HMs and MRGs in the AMX group than the control group, especially for the czrC gene, indicating that AMX exposure may inhibit HMs passivation and promote some MRGs. The presence of AMX significantly altered bacterial community composition and AMX-resistant and -sensitive bacterial structures, elevating antibiotic resistome and its potential transmission risks, in which the proportions of ARB and intI1 were greatly increased to 148- and 11.6-fold compared to the control group. Proteobacteria and Actinobacteria were significant biomarkers of AMX exposure and may be critical in promoting bacterial resistance development. S0134_terrestrial_group was significantly negatively correlated with bla(TEM) and czrC genes, which might play a role in the elimination of some ARGs and MRGs. Except for the basic physicochemical (MC, C/N, and pH) and nutritional indicators (NO(3) (-)-N, NH(4) (+)-N), Bio-Cu may be an important environmental driver regulating bacterial resistance during composting. These findings suggested the importance of the interaction mechanism of combined pollution and its synergistic treatment during aerobic composting need to be emphasized.202236687604
807840.9998Responses of bacterial communities and resistance genes on microplastics to antibiotics and heavy metals in sewage environment. In present study, copper (Cu), zinc (Zn), tetracycline (TC) and ampicillin (AMP) were selected to study the individual and synergistic effects of antibiotics and heavy metals on the microbial communities and resistance genes on polyvinyl chloride microplastics (PVC MPs) and surrounding sewage after 28 and 84 days. The results indicated that PVC MPs enriched many microorganisms from surrounding sewage, especially pathogenic bacteria such as Mycobacterium and Aquabacterium. The resistance gene with the highest abundance enriched on PVC MPs was tnpA (average abundance of 1.0 × 10(7) copies/mL sewage). The single presence of Zn, TC and AMP inhibited these enrichments for a short period of time (28 days). But the single presence of Cu and the co-existence of antibiotics and heavy metals inhibited these enrichments for a long period of time (84 days), resulting in relatively low microbial diversities and resistance genes abundances. Transpose tnpA had significantly positive correlations (p < 0.05) with all other genes. Pathogenic bacteria Mycobacterium and Legionella were potential hosts harboring 5 and 1 resistance genes, respectively. Overall, PVC MPs played important roles in the distribution and transfer of pathogenic bacteria and resistance genes in sewage with the presence of antibiotics or (and) heavy metals.202133254740
695150.9998The vertical migration of antibiotic-resistant genes and pathogens in soil and vegetables after the application of different fertilizers. The prevalence of bacterial resistance caused by the application of animal manure has become an important environmental issue. Herein, the vertical migration of antibiotic resistance genes (ARGs) and pathogens in soil and vegetables after the application of different fertilizers was explored. The results showed that the application of composted manure considerably enhanced the abundance of most ARGs and pathogens, especially in surface soil and pakchoi roots. Moreover, the soil ARGs increased partially from log 1.93 to log 4.65 after the application of composted manure, and six pathogens were simultaneously detected. It was observed that the increase in soil depth decreased most ARGs and pathogens by log 1.04-2.24 and 53.98 %~85.54 %, respectively. This indicated that ARGs and pathogens still existed in the deep soil (80-100 cm). Moreover, total organic carbon had a significant influence on the pathogen distribution, whereas bacterial communities primarily drove the vertical migration of ARGs rather than environmental factors. Although most of the ARG-host associations observed in the surface soil were disappeared in deep soil as revealed by network analysis, some co-occurrence pattern still occurred in deep soil, suggesting that some ARGs might be carried to deep soil by their host bacteria. These results were novel in describing the vertical migration of ARGs in the environment after the application of different fertilizers, providing ideas for curbing their migration to crops.202234400159
725760.9998Housefly Larva Vermicomposting Efficiently Attenuates Antibiotic Resistance Genes in Swine Manure, with Concomitant Bacterial Population Changes. Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days of full-scale manure vermicomposting. On day 6, the abundances of genes encoding tetracycline resistance [tet(M), tet(O), tet(Q), and tet(W)] were reduced (P < 0.05), while those of genes encoding sulfonamide resistance (sul1 and sul2) were increased (P < 0.05) when normalized to 16S rRNA. The abundances of tetracycline resistance genes were correlated (P < 0.05) with the changing concentrations of tetracyclines in the manure. The overall diversity and richness of the bacteria significantly decreased during vermicomposting, accompanied by a 100 times increase in the relative abundance of Flavobacteriaceae spp. Variations in the abundances of ARGs were correlated with the changing microbial community structure and the relative abundances of the family Ruminococcaceae, class Bacilli, or phylum Proteobacteria. Vermicomposting, as a waste management practice, can reduce the overall abundance of ARGs. More research is warranted to assess the use of this waste management practice as a measure to attenuate the dissemination of antimicrobial residues and ARGs from livestock production before vermicompost can be safely used as biofertilizer in agroecosystems.201526296728
695070.9998Ceftiofur in swine manure contributes to reducing pathogens and antibiotic resistance genes during composting. Aerobic composting is a common way for the disposal of feces produced in animal husbandry, and can reduce the release of antibiotic resistance genes (ARGs) from feces into the environment. In this study, we collected samples from two distinct treatments of swine manure compost with and without ceftiofur (CEF), and identified the ARGs, mobile genetic elements (MGEs), and bacterial community by metagenomic sequencing. The impacts of CEF on the bacterial community composition and fate of ARGs and MGEs were investigated. With increasing composting temperature and pH, the concentration of CEF in the manure decreased rapidly, with a degradation half-life of 1.12 d and a 100% removal rate after 10 d of aerobic composting. Metagenomics demonstrated that CEF in the manure might inhibit the growth of Firmicutes and Proteobacteria, thereby reducing some ARGs and MGEs hosted by these two bacteria, which was further confirmed by the variations of ARGs and MGEs. A further redundancy analysis suggested that pH and temperature are key environmental factors affecting ARG removal during composting, and intI1 and bacterial communities also have significant influence on ARG abundance. These results are of great significance for promoting the removal of some ARGs from animal manure by controlling some key environmental factors and the type of antibiotics used in animals.202438685300
684180.9998Deciphering key traits and dissemination of antibiotic resistance genes and degradation genes in pharmaceutical wastewater receiving environments. Discharge of pharmaceutical wastewater significantly affects the receiving environments. However, the development of antibiotic resistance and microbial enzymatic degradation in wastewater-receiving soils and rivers remains unclear. This study investigated a sulfonamide-producing factory to explore the distribution of antibiotic resistance genes (ARGs) in the receiving river and soil environments (0-100 cm depth), and the potential hosts of sadABC genes (sulfonamide-degrading genes) as well as their phylogenetic characterization. We identified plentiful ARGs (28 types and 1065 subtypes) and their hosts (30 phyla and 340 MAGs) in three media (surface water, sediment, and soil). Results indicated that the abundances of total resistome in water and sediment of receiving river (0-1.5 km) were higher than the global river resistome median levels. Wastewater significantly affected the soil resistome, leading to an average 5-fold increase in ARG abundance, and a 22-fold enrichment of sulfonamide ARGs. The abundance and diversity of soil resistome decreased significantly with depth, and the abundance was below the global soil resistome median level at the depth greater than 20 cm. The detection of 17 risk rank I ARGs and the enrichment of multidrug-resistant pathogenic bacteria in soil and river highlighted the resistance risks in the environments. Notably, 73 sadABC-carrying contigs were detected, which were mainly hosted by Microbacteriaceae and some other previously unreported bacteria, such as Mycobacteriaceae spp. The findings offer valuable insights into antimicrobial resistance (AMR) risk assessment and the bioremediation of sulfonamides pollution in the environment affected by pharmaceutical wastewater.202539914310
684690.9998Antibiotic resistance genes in an urban river as impacted by bacterial community and physicochemical parameters. Antibiotic resistance genes (ARGs) in urban rivers are a serious public health concern in regions with poorly planned, rapid development. To gain insights into the predominant factors affecting the fate of ARGs in a highly polluted urban river in eastern China, a total of 285 ARGs, microbial communities, and 20 physicochemical parameters were analyzed for 17 sites. A total of 258 unique ARGs were detected using high-throughput qPCR, and the absolute abundance of total ARGs was positively correlated with total organic carbon and total dissolved nitrogen concentrations (P < 0.01). ARG abundance and diversity were greatly altered by microbial community structure. Variation partitioning analysis showed that the combined effects of multiple factors contributed to the profile and dissemination of ARGs, and variation of microbial communities was the major factor affecting the distribution of ARGs. The disparate distribution of some bacteria, including Bacteroides from mammalian gastrointestinal flora, Burkholderia from zoonotic infectious diseases, and Zoogloea from wastewater treatment, indicates that the urban river was strongly influenced by point-source pollution. Results imply that microbial community shifts caused by changes in water quality may lead to the spread of ARGs, and point-source pollution in urban rivers requires greater attention to control the transfer of ARGs between environmental bacteria and pathogens.201728864929
8085100.9998Elevated CO(2) alleviated the dissemination of antibiotic resistance genes in sulfadiazine-contaminated soil: A free-air CO(2) enrichment study. Climate change affects soil microbial communities and their genetic exchange, and subsequently modifies the transfer of antibiotic resistance genes (ARGs) among bacteria. However, how elevated CO(2) impacts soil antibiotic resistome remains poorly characterized. Here, a free-air CO(2) enrichment system was used in the field to investigate the responses of ARGs profiles and bacterial communities to elevated CO(2) (+200 ppm) in soils amended with sulfadiazine (SDZ) at 0, 0.5 and 5 mg kg(-1). Results showed that SDZ exposure induced the co-occurrence of beta-lactamase and tetracycline resistance genes, and SDZ at 5 mg kg(-1) enhanced the abundance of aminoglycoside, sulfonamide and multidrug resistance genes. However, elevated CO(2) weakened the effects of SDZ at 0.5 mg kg(-1) following an observed reduction in the total abundance of ARGs and mobile genetic elements. Additionally, elevated CO(2) significantly decreased the abundance of vancomycin resistance genes and alleviated the stimulation of SDZ on the dissemination of aminoglycoside resistance genes. Correlation analysis and structural equation models revealed that elevated CO(2) could directly influence the spread of ARGs or impose indirect effects on ARGs by affecting soil properties and bacterial communities. Overall, our results furthered the knowledge of the dissemination risks of ARGs under future climate scenarios.202336857828
6838110.9998Seasonal variation characteristics of inhalable bacteria in bioaerosols and antibiotic resistance genes in Harbin. Bioaerosols have received extensive attention due to their impact on climate, ecological environment, and human health. This study aimed to reveal the driving factors that structure bacterial community composition and the transmission route of antibiotic resistance genes (ARGs) in PM(2.5). The results showed that the bacterial concentration in spring (8.76 × 10(5) copies/m(3)) was significantly higher than that in summer (1.03 × 10(5) copies/m(3)) and winter (4.74 × 10(4) copies/m(3)). Low temperatures and air pollution in winter negatively affected bacterial concentrations. Keystone taxa were identified by network analysis. Although about 50 % of the keystone taxa had low relative abundances, the strong impact of complex interactions between keystone taxa and other taxa on bacterial community structure deserved attention. The bacterial community assembly was dominated by stochastic processes (79.3 %). Interactions between bacteria and environmental filtering together affected bacterial community composition. Vertical gene transfer played an important role in the transmission of airborne ARGs. Given the potential integration and expression of ARGs in recipients, the human exposure risk due to high concentrations of ARGs and mobile genetic elements cannot be ignored. This study highlights human exposure to inhalable bacterial pathogens and ARGs in urban areas.202336584645
6948120.9998Fate of antibiotic resistance genes and metal resistance genes during the thermophilic fermentation of solid and liquid swine manures in an ectopic fermentation system. Environmental pollution due to resistance genes from livestock manure has become a serious issue that needs to be resolved. However, little studies focused on the removal of resistance genes in simultaneous processing of livestock feces and urine. This study investigated the fate of antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and class 1 integron-integrase gene (intI1) during thermophilic fermentation of swine manure in an ectopic fermentation system (EFS), which has been regarded as a novel system for efficiently treating both feces and urine. The abundances of MRGs and tetracycline resistance genes were 34.44-97.71% lower in the EFS. The supplementation of heavy metals significantly increased the abundance of intI1, with the enhancement effect of copper being more prominent than that of zinc. The highest abundances of resistance genes and intI1 were observed at high Cu levels (A2), indicating that Cu can increase the spreading of resistance genes through integrons. Network analysis revealed the co-occurrence of ARGs, MRGs, and intI1, and these genes potentially shared the same host bacteria. Redundancy analysis showed that the bacterial community explained most of the variations in ARGs, and environmental factors had influences on ARGs abundances by modulating the bacterial community composition. The decreased Sphingomonas, Comamonas, Acinetobacter, Lactobacillus, Bartonella, Rhizobium, and Bacteroides were mainly responsible for the reduced resistance genes. These results demonstrate that EFS can reduce resistance genes in simultaneous processing of livestock feces and urine.202133592372
6895130.9998Effects of heavy metals pollution on the co-selection of metal and antibiotic resistance in urban rivers in UK and India. Heavy metal pollution and the potential for co-selection of resistance to antibiotics in the environment is growing concern. However, clear associations between heavy metals and antibiotic resistance in river systems have not been developed. Here we investigated relationships between total and bioavailable heavy metals concentrations; metal resistance gene (MRG) and antibiotic resistance gene (ARG) abundances; mobile genetic elements; and the composition of local bacterial communities in low and high metal polluted rivers in UK and India. The results indicated that MRGs conferring resistance to cobalt (Co) and nickel (Ni) (rcnA), and Co, zinc (Zn), and cadmium (Cd) (czcA), and ARGs conferring resistance to carbapenem and erythromycin were the dominating resistant genes across the samples. The relative MRGs, ARGs, and integrons abundances tended to increase at high metal polluted environments, suggesting high metals concentrations have a strong potential to promote metal and antibiotic resistance by horizontal gene transmission and affecting bacterial communities, leading to the development of multi-metal and multi-antibiotic resistance. Network analysis demonstrated the positive and significant relationships between MRGs and ARGs as well as the potential for integrons playing a role in the co-transmission of MRGs and ARGs (r > 0.80, p < 0.05). Additionally, the major host bacteria of various MRGs and ARGs that could be accountable for greater MRGs and ARGs levels at high metal polluted environments were also identified by network analysis. Spearman's rank-order correlations and RDA analysis further confirm relationships between total and bioavailable heavy metals concentrations and the relative MRG, ARG, and integron abundances, as well as the composition of related bacterial communities (r > 0.80 (or < -0.80), p < 0.05). These findings are critical for assessing the possible human health concerns associated with metal-driven antibiotic resistance and highlight the need of considering metal pollution for developing appropriate measures to control ARG transmission.202235491000
7255140.9998Distribution of quinolone and macrolide resistance genes and their co-occurrence with heavy metal resistance genes in vegetable soils with long-term application of manure. The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has become an increasingly serious global public health issue. This study investigated the distribution characteristics and influencing factors of ARB and ARGs in greenhouse vegetable soils with long-term application of manure. Five typical ARGs, four heavy metal resistance genes (MRGs), and two mobile genetic elements (MGEs) were quantified by real-time quantitative polymerase chain reaction (qPCR). The amount of ARB in manure-improved soil greatly exceeded that in control soil, and the bacterial resistance rate decreased significantly with increases in antibiotic concentrations. In addition, the resistance rate of ARB to enrofloxacin (ENR) was lower than that of tylosin (TYL). Real-time qPCR results showed that long-term application of manure enhanced the relative abundance of ARGs in vegetable soils, and the content and proportion of quinolone resistance genes were higher than those of macrolide resistance genes. Redundancy analysis (RDA) showed that qepA and qnrS significantly correlated with total and available amounts of Cu and Zn, highlighting that certain heavy metals can influence persistence of ARGs. Integrase gene intI1 correlated significantly with the relative abundance of qepA, qnrS, and ermF, suggesting that intI1 played an important role in the horizontal transfer of ARGs. Furthermore, there was a weakly but not significantly positive correlation between specific detected MRGs and ARGs and MGEs. The results of this study enhance understanding the potential for increasing ARGs in manure-applied soil, assessing ecological risk and reducing the spread of ARGs.202234559332
6847150.9998Nutrients, heavy metals and microbial communities co-driven distribution of antibiotic resistance genes in adjacent environment of mariculture. With the rapid development of aquaculture, the large amounts of pollutants were discharged into the aquatic environment, where the detected antibiotic resistance genes (ARGs) have drawn increasing attention due to their potential threats to ecological environment and human health. Thus, the impact of mariculture on ARGs was assessed and the underlying mechanism of their propagation was explained. Sediments from eight sampling sites were collected along a mariculture drainage ditch, and the sediment in Yellow River Delta National Park was used as a non-mariculture control. Microbial ARGs qPCR array and illumina sequencing of 16S rRNA gene were applied to examine the changing patterns of ARGs and bacterial communities. Results showed that 18 ARGs (3 fluoroquinolone, 1 aminoglycoside, 3 macrolide-lincosamide-streptogramin B, 2 tetracycline, and 9 beta-lactam resistance genes) were influenced by mariculture, and ARGs abundance and diversity were significantly increased in mariculture sediments (p < 0.05). A remarkable shift in bacterial community structure and composition was also observed. The abundance of most of ARGs were significantly decreased in the estuary samples, implying that seawater had a significant dilution effect on the ARGs emission from the mariculture sites. Partial redundancy analysis showed that nutrients, heavy metals, and bacteria communities might directly and indirectly contribute to ARGs propagation, suggesting that the profile and dissemination of ARGs were driven by the combined effects of multiple factors in mariculture-impacted sites.201727814984
7048160.9998Airborne antibiotics, antimicrobial resistance, and bacterial pathogens in a commercial composting facility: Transmission and exposure risk. Multiple elements associated with antimicrobial resistance in compost may escape into the air during the composting process, including antibiotic resistance genes (ARGs), human pathogenic bacteria (HPBs), and even antibiotics. Although antibiotics play a critical role in the evolution of resistance in HPBs, no information is available on airborne antibiotics in composting facilities. In this study, we systematically quantified airborne antibiotics, ARGs, and HPBs in comparison with those in compost. The burden of antibiotics in the air reached 4.17 ± 2.71 × 10(2) ng/g, significantly higher than that in compost. The concentration of ARGs (10(2) copies/g) in air also increased compared with that in compost. Concentrations of target contaminants in air were affected by temperature, organic matter, and heavy metals. Co-occurrence network analysis revealed the connectivity and complexity of antibiotics, ARGs, and HPBs were greater in air than in compost. The maximum daily antibiotic intake dose was up to 1.18 × 10(-1)ng/d/kg, accompanied by considerable inhalation levels of ARGs and HPBs. Our results reveal the severity of airborne antimicrobial resistance (AMR) elements in composting facilities, highlight the non-negligible amount of antibiotics and their co-existence with ARGs and HPBs, and shed light on the potential role of airborne antibiotics in the evolution of environmental AMR.202439442303
8024170.9998High Concentrations of Tilmicosin Promote the Spread of Multidrug Resistance Gene tolC in the Pig Gut Microbiome Through Mobile Genetic Elements. The impact of antibiotic therapy on the spread of antibiotic resistance genes (ARGs) and its relationship to gut microbiota remains unclear. This study investigated changes in ARGs, mobile genetic elements (MGEs), and gut microbial composition following tilmicosin administration in pigs. Thirty pigs were randomly divided into control (CK), low-concentration (0.2 g/kg; L), and high-concentration (0.4 g/kg; H) groups. Tilmicosin concentration in manure peaked on day 16 of dosing and dropped below detectable levels by day 13 of the withdrawal period. While tilmicosin did not significantly affect the total abundance of macrolide resistance genes (MRGs) (p > 0.05), it significantly increased the abundance of the multidrug resistance gene tolC in the H group compared with the L and CK groups during the withdrawal period (p < 0.05). This increase was associated with a coincidental rise in the abundance of MGEs (e.g., int1 and int2) and the growth of potential tolC-hosting bacteria such as Paenalcaligenes and Proteiniclasticum. Redundancy analysis showed gut microbial composition as the primary driver of MRG abundance, with MGEs, tilmicosin concentration, and manure physicochemical properties playing secondary roles. These findings suggest that high-dose tilmicosin may alter the gut microbiota and promote ARG spread via MGE-mediated transfer.202439795013
8089180.9998Reductions in abundances of intracellular and extracellular antibiotic resistance genes by SiO(2) nanoparticles during composting driven by mobile genetic elements. Applying exogenous additives during the aerobic composting of livestock manure is effective for slowing down the spread of antibiotic resistance genes (ARGs) in the environment. Nanomaterials have received much attention because only low amounts need to be added and they have a high capacity for adsorbing pollutants. Intracellular ARGs (i-ARGs) and extracellular ARGs (e-ARGs) comprise the resistome in livestock manure but the effects of nanomaterials on the fates of these different fractions during composting are still unclear. Thus, we investigated the effects of adding SiO(2) nanoparticles (SiO(2)NPs) at four levels (0 (CK), 0.5 (L), 1 (M), and 2 g/kg (H)) on i-ARGs, e-ARGs, and the bacterial community during composting. The results showed that i-ARGs represented the main fraction of ARGs during aerobic composting of swine manure, and their abundance was lowest under M. Compared with CK, M increased the removal rates of i-ARGs and e-ARGs by 17.9% and 100%, respectively. SiO(2)NPs enhanced the competition between ARGs hosts and non-hosts. M optimized the bacterial community by reducing the abundances of co-hosts (Clostridium_sensu_stricto_1, Terrisporobacter, and Turicibacter) of i-ARGs and e-ARGs (by 96.0% and 99.3%, respectively) and killing 49.9% of antibiotic-resistant bacteria. Horizontal gene transfer dominated by mobile genetic elements (MGEs) played a key role in the changes in the abundances of ARGs. i-intI1 and e-Tn916/1545 were key MGEs related closely to ARGs, and the maximum decreases of 52.8% and 100%, respectively, occurred under M, which mainly explained the decreased abundances of i-ARGs and e-ARGs. Our findings provide new insights into the distribution and main drivers of i-ARGs and e-ARGs, as well as demonstrating the possibility of adding 1 g/kg SiO(2)NPs to reduce the propagation of ARGs.202337148762
7140190.9998Metagenomic insight into the prevalence and driving forces of antibiotic resistance genes in the whole process of three full-scale wastewater treatment plants. The spread of antibiotic resistance genes (ARGs) is an emerging global health concern, and wastewater treatment plants (WWTPs), as an essential carrier for the occurrence and transmission of ARGs, deserves more attention. Based on the Illumina NovaSeq high-throughput sequencing platform, this study conducted a metagenomic analysis of 18 samples from three full-scale WWTPs to explore the fate of ARGs in the whole process (influent, biochemical treatment, advanced treatment, and effluent) of wastewater treatment. Total 70 ARG subtypes were detected, among which multidrug, aminoglycoside, tetracycline, and macrolide ARGs were most abundant. The different treatment processes used for three WWTPs were capable of reducing ARG diversity, but did not significantly reduce ARG abundance. Compared to that by denitrification filters, the membrane bioreactor (MBR) process was advantageous in controlling the prevalence of multidrug ARGs in WWTPs. Linear discriminant analysis Effect Size (LEfSe) suggested g_Nitrospira, g_Curvibacter, and g_Mycobacterium as the key bacteria responsible for differential ARG prevalence among different WWTPs. Meanwhile, adeF, sul1, and mtrA were the persistent antibiotic resistance genes (PARGs) and played dominant roles in the prevalence of ARGs. Proteobacteria and Actinobacteria were the host bacteria of majority ARGs in WWTPs, while Pseudomonas and Nitrospira were the most crucial host bacteria influencing the dissemination of critical ARGs (e.g., adeF). In addition, microbial richness was determined to be the decisive factor affecting the diversity and abundance of ARGs in wastewater treatment processes. Overall, regulating the abundance of microorganisms and key host bacteria by selecting processes with microbial interception, such as MBR process, may be beneficial to control the prevalence of ARGs in WWTPs.202337356328