# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7022 | 0 | 1.0000 | Fate of antibiotics, antibiotic-resistant bacteria, and cell-free antibiotic-resistant genes in full-scale membrane bioreactor wastewater treatment plants. The removal of antibiotics, antibiotic-resistant bacteria (ARB), and cell-free antibiotic-resistant genes (ARGs) and the microbial community of ARB were investigated in detail to understand their fate and provide valuable information on the feasibility of full-scale membrane bioreactor (MBR). The potential risks of cell-free ARGs to the receiving environment were discovered. High influent antibiotic concentration could inhibit the microbial activity of MBR sludge, whereas good antibiotic removal could be maintained because of relatively long solid retention time and high biomass retention. Approximately 61.8%-77.5% of the total antibiotics were degraded, and 22.5%-38.2% of the total antibiotics were adsorbed by MBR sludge on average. The individual antibiotic removal presented intense discrepancy because of the chemical construction and distribution coefficient of antibiotics. Aeromonas exhibited specific antibiotic resistance to ampicillin and erythromycin, Escherichia became the predominant genera in kanamycin-ARB and tetracycline-ARB, and Klebsiella and Bacteroides were the particular genera that exhibited distinct antibiotic resistance to ciprofloxacin. A significant correlation was found between cell-free ARG abundance and ARB content, and relatively high effluent cell-free ARG abundance facilitated the proliferation and transmission of ARB. The impacts of the receiving environment to eliminate the ecological risks and severe threats to human health should be investigated because of the low decay ratio and long-term persistence of cell-free ARGs. | 2020 | 31986335 |
| 7021 | 1 | 0.9999 | Metagenomic insights into dissemination of antibiotic resistance across bacterial genera in wastewater treatment. The aim of this study was to evaluate the impacts of conventional wastewater treatment processes including secondary treatment and chlorination on the removal of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB), and to assess the association of ARGs with their potential hosts in each treatment process. The results showed chlorination with subinhibitory concentration (<8 mg/L) resulted in an increased ARB number in the disinfection effluent. qPCR analysis indicated secondary treatment increased relative abundance of ARGs in remaining bacteria whereas disinfection reduced the relative abundance of those genes effectively. Metagenomic analysis revealed a significant shift of dominating bacterial genera harboring ARGs. Along the treatment train, 48, 95 and 80 genera were identified to be the ARG carriers in primary effluent, secondary effluent, and disinfection effluent, respectively. It was also found that secondary treatment increased the diversity of potential ARG hosts while both secondary treatment and chlorination broadened the host range of some ARGs at the genus level, which may be attributed to the spread of antibiotic resistance across bacterial genera through horizontal transfer. This study highlights the growing concerns that wastewater treatment plants (WWTPs) may disseminate ARGs by associating this effect to specific treatment stages and by correlating ARGs with their bacterial hosts. | 2021 | 33453487 |
| 7195 | 2 | 0.9999 | Insight into effect of high-level cephalexin on fate and driver mechanism of antibiotics resistance genes in antibiotic wastewater treatment system. In the study, antibiotic resistance genes (ARGs) were examined in wastewater and sludge samples to explore the effect of cephalexin (CFX) on the spreading and removal of ARGs in the Expanded Granular Sludge Bed (EGSB) reactor treating antibiotics wastewater. The result showed that the addition of CFX in the wastewater affected the removal amount of β-lactam ARGs and other types ARGs. Besides, the addition of CFX in the wastewater had no obviously effect on total concentration of targeted ARGs in the sludge, but it was related to the accumulation of some typical ARGs. Based on gene cassette array libraries analysis, the diversity of gene cassettes carried by intI1 gene was increased by the addition of CFX in the wastewater. Furthermore, the co-occurrence patterns between ARGs and bacterial genus were also investigated. The results showed the CFX in the wastewater not only affected the number of potential host bacteria of ARGs, but also changed the types of potential host bacteria of ARGs. The correlation analysis of ARG in influent, effluent and sludge showed that, for blaCTX-M, sul2, qnrS and AmpC genes, their removal amount in EGSB reactor treating antibiotic wastewater system might be enhanced by reducing their concentration in the sludge. | 2020 | 32505047 |
| 7194 | 3 | 0.9999 | Response of antibiotic resistance genes in constructed wetlands during treatment of livestock wastewater with different exogenous inducers: Antibiotic and antibiotic-resistant bacteria. This work aimed to study the behavior of antibiotic resistance genes (ARGs) in constructed wetlands with different exogenous inducers additions (oxytetracycline and its resistant bacteria) by high-throughput quantitative polymerase chain reaction. Results indicated that constructed wetlands have the potential to reduce ARGs relative abundances in wastewater, and the total ARGs removal efficiency could exceed 60%. ARGs profile in the effluent differed from that in the influent, and that did not directly reflect the export of dominant ARGs in wetland biofilms. Meanwhile, the highest levels of detected numbers and relative abundances of ARGs were 43 and 3.35 × 10(-1) for control system and 44 and 6.40 × 10(-1) for treatment system, respectively, which meant that ARGs generation in wetlands were inevitable, and antibiotic and antibiotic-resistant bacteria from wastewater could indeed promote ARGs abundance in the system. Compared to the single roles of inducers, their synergistic role had a more significant influence on ARGs relative abundance. | 2020 | 32652450 |
| 8082 | 4 | 0.9999 | Deciphering the toxic effects of antibiotics on denitrification: Process performance, microbial community and antibiotic resistance genes. The extensive application of antibiotics, and the occurrence and spread of antibiotic resistance genes (ARGs) shade health risks to human and animal. The long-term effects of sulfamethoxazole (SMX) and tetracycline (TC) on denitrification process were evaluated in this study, with the focus on nitrogen removal performance, microbial community and ARGs. Results showed that low-concentration SMX and TC (<0.2 mg L(-1)) initially caused a deterioration in nitrogen removal performance, while higher concentrations (0.4-20 mg L(-1)) of both antibiotics had no further inhibitory influences. The abundances of ARGs in both systems generally increased during the whole period, and most of them had significant correlations with intI1, especially efflux-pump genes. Castellaniella, which was the dominant genus under antibiotic pressure, might be potential resistant bacteria. These findings provide an insight into the toxic effects of different antibiotics on denitrification process, and guides future efforts to control antibiotics pollution in ecosystems. | 2020 | 32250829 |
| 7030 | 5 | 0.9999 | Metagenomic profiling of antibiotic resistance genes/bacteria removal in urban water: Algal-bacterial consortium treatment system. Antibiotic resistance genes (ARGs) have exhibited significant ecological concerns, especially in the urban water that are closely associated with human health. In this study, with presence of exogenous Chlorella vulgaris-Bacillus licheniformis consortium, most of the typical ARGs and MGEs were removed. Furthermore, the relative abundance of potential ARGs hosts has generally decreased by 1-4 orders of magnitude, revealing the role of algal-bacterial consortium in cutting the spread of ARGs in urban water. While some of ARGs such as macB increased, which may be due to the negative impact of algicidal bacteria and algal viruses in urban water on exogenous C. vulgaris and the suppression of exogenous B. licheniformis by indigenous microorganisms. A new algal-bacterial interaction might form between C. vulgaris and indigenous microorganisms. The interplay between C. vulgaris and bacteria has a significant impact on the fate of ARGs removal in urban water. | 2024 | 38801952 |
| 8083 | 6 | 0.9999 | Alteration of the migration trajectory of antibiotic resistance genes by microplastics in a leachate activated sludge system. The environmental behavior of emerging contaminants of microplastics (MPs), antibiotics and antibiotic resistance genes (ARGs) in the leachate activated sludge system has been monitored and analyzed comprehensively. The results suggested that MPs could effectively alter the migration trajectory of tetracycline resistance genes (tet genes) in the leachate activated sludge system under intermittent and continuous influent conditions. After adding MPs, the total average abundance of tet genes in leachate increased from 0.74 ± 0.07 to 0.78 ± 0.07 (log(10)tet genes/log(10) 16S rRNA) and that in sludge increased from 0.65 ± 0.08 to 0.70 ± 0.06 (log(10)tet genes/log(10) 16S rRNA). Except for tetA, the abundance of tetB, tetO, tetM and tetQ on MPs increased with increasing TC concentration under both aerobic and anaerobic conditions. MPs not only significantly affect the abundance level and migration trajectory of ARGs in the leachate activated sludge system, but also remarkably improve the level of heavy metals in the ambient environment, indirectly promoting the selective effect of antibiotic-resistant bacteria (ARB) and promoting the development of antibiotic resistance (AR). In addition, MPs changed their physicochemical properties and released hazardous substances with aging to force tet genes to migrate from the leachate activated sludge system to the MPs, making AR more difficult to eliminate and persisted in wastewater treatment plants. Meanwhile, microorganisms played a driving role, making MPs serve as a niche for ARGs and ARB colonization. The co-occurrence network analysis indicated the specific distribution pattern of tet genes and microorganisms in different media, and the potential host was speculated. This study improves the understanding of the environmental behavior of emerging contaminants in leachate activated sludge system and lays a theoretical for protecting the ecological environment. | 2023 | 37321316 |
| 8086 | 7 | 0.9999 | Biofilm enhanced the mitigations of antibiotics and resistome in sulfadiazine and trimethoprim co-contaminated soils. Reducing antibiotic levels in soil ecosystems is vital to curb the dissemination of antimicrobial resistance genes (ARGs) and mitigate global health threats. However, gaps persist in understanding how antibiotic resistome can be suppressed during antibiotic degradation. Herein, we investigate the efficacy of a biochar biofilm incorporating antibiotics-degrading bacterial strain (Arthrobacter sp. D2) to mitigate antibiotic resistome in non-manured and manure-amended soils with sulfadiazine (SDZ) and trimethoprim (TMP) contamination. Results show that biofilm enhanced SDZ degradation by 83.0% within three days and increased TMP attenuation by 55.4% over 60 days in non-manured soils. In the non-manured black soil, the relative abundance of ARGs increased initially after biofilm inoculation. However, by day 30, it decreased by 20.5% compared to the controls. Moreover, after 7 days, biofilm reduced TMP by 38.5% in manured soils and decreased the total ARG abundance by 19.0%. Thus, while SDZ degradation did not increase sulfonamide resistance genes, TMP dissipation led to a proliferation of insertion sequences and related TMP resistance genes. This study underscores the importance of antibiotic degradation in reducing related ARGs while cautioning against the potential proliferation and various ARGs transfer by resistant microorganisms. | 2024 | 39255667 |
| 7510 | 8 | 0.9999 | Impacts of antibiotics on biofilm bacterial community and disinfection performance on simulated drinking water supply pipe wall. Overuse of antibiotics is accelerating the spread of resistance risk in the environment. In drinking water supply systems, the effect of antibiotics on the resistance of biofilm is unclear, and there have been few studies in disinfectant-containing systems. Here, we designed a series of drinking water supply reactors to investigate the effects of antibiotics on biofilm and bacteria in the water. At low concentrations, antibiotics could promote the growth of bacteria in biofilm; among the tested antibiotics (tetracycline, sulfadiazine and chloramphenicol), tetracycline had the strongest ability to promote this. And the antibiotic resistant bacteria (ARB) could inhibit the growth of bacteria in drinking water. Results have shown that antibiotics enhanced the bacterial chlorine resistance in the effluent, but reduced that in the biofilm. Furthermore, metagenomic analysis showed that antibiotics reduced the richness of biofilm communities. The dominant phyla in the biofilm were Proteobacteria, Planctomycetes, and Firmicutes. In tetracycline-treated biofilm, the dominant phylum was Planctomycetes. In sulfadiazine- and chloramphenicol-treated groups, bacteria with complex cell structures preferentially accumulated. The dominant class in biofilm in the ARB-added group was Gammaproteobacteria. The abundance of antibiotic resistant genes (ARGs) was correlated with biofilm community structure. This study shows that antibiotics make the biofilm community structure of drinking water more resistant to chlorine. ARGs may be selective for certain bacteria in the process, and there may ultimately be enhanced chlorine and antibiotic resistance of effluent bacteria in drinking water. | 2021 | 34256291 |
| 6897 | 9 | 0.9999 | Occurrence of antibiotic resistance genes in an oilfield's water re-injection systems. The recent widespread increase in antibiotic resistance has become a real threat to both human and environmental ecosystem health. In oil reservoirs, an extreme environment potentially influenced by human activity such as water flooding, the distribution and abundance of antibiotic resistance genes (ARGs) remains poorly understood. Herein, we investigated the distribution of ARGs at different positions in a water-flooding oilfield in China, and found that ARGs were observed in all parts of the investigated system. The surface regions of the water re-injection system were more vulnerable to ARG pollution, and the final ARG concentration was up to 2.2 × 10(8) gene copies/L, and sulfonamide were the most abundant. However, ARG concentration decreased sharply in the samples from underground part of the re-injection system. The bacterial community composition was also varied with sampling position. The sample from production well, which was enriched in crude oil, contained more bacteria but the community richness was simpler. This study also indicated the wastewater-recycling process above ground, which proposed to reduce the discharge into environment directly, may pose a risk for ARGs spread. | 2020 | 31869712 |
| 7024 | 10 | 0.9999 | Fate of antibiotic resistant E. coli and antibiotic resistance genes during full scale conventional and advanced anaerobic digestion of sewage sludge. Antibiotic resistant bacteria (ARB) and their genes (ARGs) have become recognised as significant emerging environmental pollutants. ARB and ARGs in sewage sludge can be transmitted back to humans via the food chain when sludge is recycled to agricultural land, making sludge treatment key to control the release of ARB and ARGs to the environment. This study investigated the fate of antibiotic resistant Escherichia coli and a large set of antibiotic resistance genes (ARGs) during full scale anaerobic digestion (AD) of sewage sludge at two U.K. wastewater treatment plants and evaluated the impact of thermal hydrolysis (TH) pre-treatment on their abundance and diversity. Absolute abundance of 13 ARGs and the Class I integron gene intI1 was calculated using single gene quantitative (q) PCR. High through-put qPCR analysis was also used to determine the relative abundance of 370 ARGs and mobile genetic elements (MGEs). Results revealed that TH reduced the absolute abundance of all ARGs tested and intI1 by 10-12,000 fold. After subsequent AD, a rebound effect was seen in many ARGs. The fate of ARGs during AD without pre-treatment was variable. Relative abundance of most ARGs and MGEs decreased or fluctuated, with the exception of macrolide resistance genes, which were enriched at both plants, and tetracyline and glycopeptide resistance genes which were enriched in the plant employing TH. Diversity of ARGs and MGEs decreased in both plants during sludge treatment. Principal coordinates analysis revealed that ARGs are clearly distinguished according to treatment step, whereas MGEs in digested sludge cluster according to site. This study provides a comprehensive within-digestor analysis of the fate of ARGs, MGEs and antibiotic resistant E. coli and highlights the effectiveness of AD, particularly when TH is used as a pre-treatment, at reducing the abundance of most ARGs and MGEs in sludgeand preventing their release into the environment. | 2020 | 33259486 |
| 7533 | 11 | 0.9999 | NO(3)(-) as an electron acceptor elevates antibiotic resistance gene and human bacterial pathogen risks in managed aquifer recharge (MAR): A comparison with O(2). Managed aquifer recharge (MAR) stands out as a promising strategy for ensuring water resource sustainability. This study delves into the comparative impact of nitrate (NO(3)(-)) and oxygen (O(2)) as electron acceptors in MAR on water quality and safety. Notably, NO(3)(-), acting as an electron acceptor, has the potential to enrich denitrifying bacteria, serving as hosts for antibiotic resistance genes (ARGs) and enriching human bacterial pathogens (HBPs) compared to O(2). However, a direct comparison between NO(3)(-) and O(2) remains unexplored. This study assessed risks in MAR effluent induced by NO(3)(-) and O(2), alongside the presence of the typical refractory antibiotic sulfamethoxazole. Key findings reveal that NO(3)(-) as an electron acceptor resulted in a 2 times reduction in dissolved organic carbon content compared to O(2), primarily due to a decrease in soluble microbial product production. Furthermore, NO(3)(-) significantly enriched denitrifying bacteria, the primary hosts of major ARGs, by 747%, resulting in a 66% increase in the overall abundance of ARGs in the effluent of NO(3)(-) MAR compared to O(2). This escalation was predominantly attributed to horizontal gene transfer mechanisms, as evidenced by a notable 78% increase in the relative abundance of mobile ARGs, alongside a minor 27% rise in chromosomal ARGs. Additionally, the numerous denitrifying bacteria enriched under NO(3)(-) influence also belong to the HBP category, resulting in a significant 114% increase in the abundance of all HBPs. The co-occurrence of ARGs and HBPs was also observed to intensify under NO(3)(-) influence. Thus, NO(3)(-) as an electron acceptor in MAR elevates ARG and HBP risks compared to O(2), potentially compromising groundwater quality and safety. | 2024 | 38266895 |
| 7552 | 12 | 0.9999 | Effect of temperature on removal of antibiotic resistance genes by anaerobic digestion of activated sludge revealed by metagenomic approach. As antibiotic resistance continues to spread globally, there is growing interest in the potential to limit the spread of antibiotic resistance genes (ARGs) from wastewater sources. In particular, operational conditions during sludge digestion may serve to discourage selection of resistant bacteria, reduce horizontal transfer of ARGs, and aid in hydrolysis of DNA. This study applied metagenomic analysis to examine the removal efficiency of ARGs through thermophilic and mesophilic anaerobic digestion using bench-scale reactors. Although the relative abundance of various ARGs shifted from influent to effluent sludge, there was no measureable change in the abundance of total ARGs or their diversity in either the thermophilic or mesophilic treatment. Among the 35 major ARG subtypes detected in feed sludge, substantial reductions (removal efficiency >90%) of 8 and 13 ARGs were achieved by thermophilic and mesophilic digestion, respectively. However, resistance genes of aadA, macB, and sul1 were enriched during the thermophilic anaerobic digestion, while resistance genes of erythromycin esterase type I, sul1, and tetM were enriched during the mesophilic anaerobic digestion. Efflux pump remained to be the major antibiotic resistance mechanism in sludge samples, but the portion of ARGs encoding resistance via target modification increased in the anaerobically digested sludge relative to the feed. Metagenomic analysis provided insight into the potential for anaerobic digestion to mitigate a broad array of ARGs. | 2015 | 25994259 |
| 7311 | 13 | 0.9999 | Sludge as a potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions. The emergence and prevalence of antibiotic resistance genes (ARGs) in the environment is a serious global health concern. ARGs found in bacteria can become mobilized in bacteriophage particles in the environment. Sludge derived from secondary treatment in wastewater treatment plants (WWTPs) constitutes a concentrated pool of bacteria and phages that are removed during the treatment process. This study evaluates the prevalence of ARGs in the bacterial and phage fractions of anaerobic digested sludge; five ARGs (blaTEM, blaCTX-M, qnrA, qnrS, and sul1) are quantified by qPCR. Comparison between the wastewater and sludge revealed a shift in the prevalence of ARGs (blaTEM and sul1 became more prevalent in sludge), suggesting there is a change in the bacterial and phage populations from wastewater to those selected during the secondary treatment and the later anaerobic mesophilic digestion of the sludge. ARGs densities were higher in the bacterial than in the phage fraction, with high densities in both fractions; particularly for blaTEM and sul1 (5 and 8 log10 gene copies (GC)/g, respectively, in bacterial DNA; 5.5 and 4.4 log10 GC/g, respectively, in phage DNA). These results question the potential agricultural uses of treated sludge, as it could contribute to the spread of ARGs in the environment and have an impact on the bacterial communities of the receiving ecosystem. | 2014 | 24873655 |
| 7630 | 14 | 0.9999 | Coexistence of silver ion and tetracycline at environmentally relevant concentrations greatly enhanced antibiotic resistance gene development in activated sludge bioreactor. Antibiotic resistance has become a global public health problem. Recently, various environmental pollutants have been reported to induce the proliferation of antibiotic resistance. However, the impact of multiple pollutants (e.g., heavy metals and antibiotics), which more frequently occur in practical environments, is poorly understood. Herein, one widely distributed heavy metal (Ag(+)) and one frequently detected antibiotic (tetracycline) were chosen to investigate their coexisting effect on the proliferation of antibiotic resistance in the activated sludge system. Results show that the co-occurrence of Ag(+) and tetracycline at environmentally relevant concentrations exhibited no distinct inhibition in reactor performances. However, they inhibited the respiratory activity by 42%, destroyed the membrane structure by 218%, and increased membrane permeability by 29% compared with the blank control bioreactor. Moreover, the relative abundances of target antibiotic resistance genes (ARGs) (e.g., tetA, bla(TEM-1), and sulII) in effluent after exposure of coexisting Ag(+) and tetracycline were increased by 92-1983% compared with those in control reactor, which were 1.1-4.3 folds higher than the sum of the sole ones. These were possibly attributed to the enrichments of antibiotic-resistant bacteria. The results would illumine the coexisting effect of heavy metals and antibiotics on the dissemination of ARGs in activated sludge system. | 2022 | 34482077 |
| 7574 | 15 | 0.9999 | Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. The emergence and spread of antibiotic resistance has posed a major threat to both human health and environmental ecosystem. Although the disinfection has been proved to be efficient to control the occurrence of pathogens, little effort is dedicated to revealing potential impacts of disinfection on transmission of antibiotic resistance genes (ARGs), particularly for free-living ARGs in final disinfected effluent of urban wastewater treatment plants (UWWTP). Here, we investigated the effects of chlorine disinfection on the occurrence and concentration of both extracellular ARGs (eARGs) and intracellular ARGs (iARGs) in a full-scale UWWTP over a year. We reported that the concentrations of both eARGs and iARGs would be increased by the disinfection with chlorine dioxide (ClO(2)). Specifically, chlorination preferentially increased the abundances of eARGs against macrolide (ermB), tetracycline (tetA, tetB and tetC), sulfonamide (sul1, sul2 and sul3), β-lactam (ampC), aminoglycosides (aph(2')-Id), rifampicin (katG) and vancomycin (vanA) up to 3.8 folds. Similarly, the abundances of iARGs were also increased up to 7.8 folds after chlorination. In terms of correlation analyses, the abundance of Escherichia coli before chlorination showed a strong positive correlation with the total eARG concentration, while lower temperature and higher ammonium concentration were assumed to be associated with the concentration of iARGs. This study suggests the chlorine disinfection could increase the abundances of both iARGs and eARGs, thereby posing risk of the dissemination of antibiotic resistance in environments. | 2018 | 29501757 |
| 7190 | 16 | 0.9999 | Dynamics of microbial community and tetracycline resistance genes in biological nutrient removal process. The occurrence of antibiotics in wastewater has become a serious concern due to the possible development of antibiotic resistant bacteria in wastewater treatment process. In order to understand the dynamics of microbial community and tetracycline resistance genes in biological nutrient removal (BNR) process, three lab-scale sequencing batch reactors (SBRs) were operated under the stress of tetracycline. Results indicated that microbial community structure was altered, and tetracycline efflux pump genes were enhanced over 150-day operation in the presence of trace tetracycline of 20 and 50 μg L(-1), respectively. Furthermore, when the initial tetracycline concentrations were increased to 2 and 5 mg L(-1), substantial enhancement of tetracycline resistance was observed, accompanied with a sharp shift in microbial community structure. In this study, horizontal gene transfer was found to be the main mechanism for the development of tetracycline resistance genes under the long-terms stress of trace tetracycline. About 90.34% of the observed variations in tetracycline resistance genes could be explained by the dynamics of potential hosts of tetracycline resistance genes and class 1 integron. It should be noticed that the functional bacteria (e.g. Nitrospira, Dechloromonas, Rhodobacter and Candidatus_Accumulibacter) responsible for nutrient removal were positively correlated with tetracycline resistance, which might promote the prevalence of tetracycline resistance during biological wastewater treatment. Consequently, this study provided in-depth insights into the occurrence and prevalence of tetracycline resistance genes and their microbial hosts in BNR process. | 2019 | 30849601 |
| 7189 | 17 | 0.9999 | Comparative effects of different antibiotics on antibiotic resistance during swine manure composting. This study explored commonly-used antibiotics (lincomycin, chlorotetracycline, sulfamethoxazole, and ciprofloxacin) and their collective effects on antibiotic resistance during composting. In the first 7 days, ciprofloxacin showed the greatest influence on the physicochemical factors among the studied antibiotics; the removal of antibiotic resistance genes (ARGs) in the multiple-antibiotic treatment was significantly less than single-antibiotic treatments; especially, the largest removal of ribosomal protection genes (tetW and tetO) occurred in single ciprofloxacin treatment. In the end of composting, similar removal ratio (29.71-99.79%) of ARGs was achieved in different treatments (p greater than 0.05); Chloroflexi became the main phylum and it was closely associated with ARGs removal based on the network analysis. Potential host bacteria of ARGs varied with different antibiotics; in particular, the presence of multiple antibiotics increased potential host bacteria of ermA, sul1 and tetO. Above all, collective effects of different antibiotics led to the enrichment of antibiotic resistance in the composting. | 2020 | 32712514 |
| 7192 | 18 | 0.9998 | Sulfamethoxazole and COD increase abundance of sulfonamide resistance genes and change bacterial community structures within sequencing batch reactors. The abundant microbial community in biological treatment processes in wastewater treatment plants (WWTPs) may potentially enhance the horizontal gene transfer of antibiotic resistance genes with the presence of antibiotics. A lab-scale sequencing batch reactor was designed to investigate response of sulfonamide resistance genes (sulI, sulII) and bacterial communities to various concentrations of sulfamethoxazole (SMX) and chemical oxygen demand (COD) of wastewater. The SMX concentrations (0.001 mg/L, 0.1 mg/L and 10 mg/L) decreased with treatment time and higher SMX level was more difficult to remove. The presence of SMX also significantly reduced the removal efficiency of ammonia nitrogen, affecting the normal function of WWTPs. All three concentrations of SMX raised both sulI and sulII genes with higher concentrations exhibiting greater increases. The abundance of sul genes was positive correlated with treatment time and followed the second-order reaction kinetic model. Interestingly, these two genes have rather similar activity. SulI and sulII gene abundance also performed similar response to COD. Simpson index and Shannon-Weiner index did not show changes in the microbial community diversity. However, the 16S rRNA gene cloning and sequencing results showed the bacterial community structures varied during different stages. The results demonstrated that influent antibiotics into WWTPs may facilitate selection of ARGs and affect the wastewater conventional treatment as well as the bacteria community structures. | 2017 | 28211331 |
| 7032 | 19 | 0.9998 | Free Radicals on Aging Microplastics Regulated the Prevalence of Antibiotic Resistance Genes in the Aquatic Environment: New Insight into the Effect of Microplastics on the Spreading of Biofilm Resistomes. The spread of antibiotic resistance genes (ARGs) by microplastics has received a great concern in coexisting "hotspots". Despite most microplastics suffering from natural aging, little is known about the effect of aging microplastics (A-MPs) on ARGs dissemination. Here, we demonstrated significant suppression of A-MPs on ARGs dissemination in natural rivers. Although ARGs and mobile genetic elements (MGEs) were effectively enriched on A-MPs, the relative abundance of ARGs and MGEs on A-MPs as well as in receiving water decreased by approximately 21.4% to 42.3% during a period of 30 days of dissemination. Further investigation revealed that (•)OH was consistently generated on A-MPs with a maximum value of 0.2 μmol/g. Importantly, scavenging of (•)OH significantly increased the relative abundance of ARGs and MGEs both on A-MPs and in receiving water 1.4-29.1 times, indicating the vital role of (•)OH in suppressing ARGs dissemination. Microbial analysis revealed that (•)OH inhibited the potential antibiotic-resistant bacteria in surface biofilms, such as Pseudomonas and Acinetobacter (with a decrease of 68.8% and 89.3%). These results demonstrated that (•)OH was extensively produced on A-MPs, which greatly reduced both the vertical and horizontal gene transfer of ARGs. This study provided new insights into the dissemination of ARGs through microplastics in natural systems. | 2025 | 40359213 |