Bacterial communities, metabolic functions and resistance genes to antibiotics and metals in two saline seafood wastewater treatment systems. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
701201.0000Bacterial communities, metabolic functions and resistance genes to antibiotics and metals in two saline seafood wastewater treatment systems. This study investigated the bacterial communities, metabolic functions, antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) in two alternating anaerobic/aerobic biological filters (A/O-BFs) treating saline seafood wastewater (SSW). Firmicutes was the most abundant phylum in both systems, and halophilic and alkaliphilic bacteria were largely enriched. 15 potential pathogens were obtained. Metabolism was the predominant bacterial function. 49 ARGs and 7 MRGs were detected, and the total abundance of ARGs increased while that of MRGs decreased. Clear shifts in bacterial structure and function, ARGs and MRGs were observed in both systems and at different heights. Co-occurrence of ARGs and MRGs and their hosts were identified. ARGs and MRGs mainly negatively correlated with bacterial functions, which were also the important contributors to shifts in bacterial communities and functions. This study highlights the importance of investigating ARGs and MRGs in SSW treatment systems and their complex interactions with bacterial communities and functions.201931121446
756110.9997Deciphering antibiotic resistome variations during nitrogen removal process transition under mixed antibiotics stress: Assembly process and driving factors. Antibiotic resistome, which encompasses all types of antibiotic resistance genes (ARGs) in a given environment, has received increasing attention in research on different wastewater treatment processes. However, the variation in antibiotic resistome during the transition from the full nitrification-denitrification to the shortcut nitrification-denitrification process remains unclear. In this study, a total of 269 targeted gene subtypes were identified, along with 108 genes were consistently present in all samples. The introduction of mixed antibioticsrapidly increased the abundance of corresponding and non-corresponding ARGs, as well as that of mobile genetic elements.The variations in of the antibiotic resistome were primarily driven by dissolved oxygen and nitrite accumulation rate. Moreover, 34 bacterial genera were identified as potential ARG hosts, with most denitrifiers considered as potential antibiotic-resistant bacteria, including Branchymonas, Rhodobacter, and Thauera. This study provides a method for controlling antibiotic resistance by regulating the changes in environmental variables and bacterial communities.202339492537
698220.9997Viral Communities Suppress the Earthworm Gut Antibiotic Resistome by Lysing Bacteria on a National Scale. Earthworms are critical in regulating soil processes and act as filters for antibiotic resistance genes (ARGs). Yet, the geographic patterns and main drivers of earthworm gut ARGs remain largely unknown. We collected 52 earthworm and soil samples from arable and forest ecosystems along a 3000 km transect across China, analyzing the diversity and abundance of ARGs using shotgun metagenomics. Earthworm guts harbored a lower diversity and abundance of ARGs compared to soil, resulting in a stronger distance-decay rate of ARGs in the gut. Greater deterministic assembly processes of ARGs were found in the gut than in soil. The earthworm gut had a lower frequency of co-occurrence patterns between ARGs and mobile genetic elements (MGEs) in forest than in arable systems. Viral diversity was higher in the gut compared to soil and was negatively correlated with bacterial diversity. Bacteria such as Streptomyces and Pseudomonas were potential hosts of both viruses and ARGs. Viruses had negative effects on the diversity and abundance of ARGs, likely due to the lysis on ARG-bearing bacteria. These findings provide new insights into the variations of ARGs in the earthworm gut and highlight the vital role of viruses in the regulation of ARGs in the soil ecosystem.202439037720
701030.9997Dynamics of metal(loid) resistance genes driven by succession of bacterial community during manure composting. Metal(loid) resistance genes (MRGs) play important roles in conferring resistance to metal(loid)s in bacterial communities. How MRGs respond to bacterial succession during manure composting remains largely unknown. Metagenomics was used in the present study to investigate the compositional changes of MRGs, their candidate hosts and association with integrons during thermophilic composting of chicken manures. MRGs conferring resistance to 20 metal(loid)s were detected, and their diversity and abundance (normalized to the abundance of 16S rRNA genes) were significantly reduced during composting. MRGs associated with integron were exclusively observed in proteobacterial species. Class 1 integron likely played an important role in maintaining mercury-resistance mer operon genes in composts. Escherichia coli harbored the most abundant MRGs in the original composting material, whereas species of Actinobacteria and Bacilli became more important in carrying MRGs during the late phases. There were significant linear relationships between the relative abundance of some specific bacterial species (E. coli, Actinobacteria species and Enterococcus faecium) and the abundance of MRGs they potentially harbored. The succession of these bacteria contributed to an overall linear regression between the relative abundance of all predicted candidate hosts and the abundance of total MRGs. Our results suggest that the succession of bacterial community was the main driver of MRG dynamics during thermophilic composting.201931563779
701340.9997Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination. For comprehensive insights into the effects of chlorination, a widely used disinfection technology, on bacterial community and antibiotic resistome in drinking water, this study applied high-throughput sequencing and metagenomic approaches to investigate the changing patterns of antibiotic resistance genes (ARGs) and bacterial community in a drinking water treatment and distribution system. At genus level, chlorination could effectively remove Methylophilus, Methylotenera, Limnobacter, and Polynucleobacter, while increase the relative abundance of Pseudomonas, Acidovorax, Sphingomonas, Pleomonas, and Undibacterium in the drinking water. A total of 151 ARGs within 15 types were detectable in the drinking water, and chlorination evidently increased their total relative abundance while reduced their diversity in the opportunistic bacteria (p < 0.05). Residual chlorine was identified as the key contributing factor driving the bacterial community shift and resistome alteration. As the dominant persistent ARGs in the treatment and distribution system, multidrug resistance genes (mainly encoding resistance-nodulation-cell division transportation system) and bacitracin resistance gene bacA were mainly carried by chlorine-resistant bacteria Pseudomonas and Acidovorax, which mainly contributed to the ARGs abundance increase. The strong correlation between bacterial community shift and antibiotic resistome alteration observed in this study may shed new light on the mechanism behind the chlorination effects on antibiotic resistance.201526397118
704250.9997Response of antibiotic resistance genes abundance by graphene oxide during the anaerobic digestion of swine manure with copper pollution. The pollution of various environments with antibiotic resistance genes (ARGs) is an urgent problem that needs to be addressed, especially in heavy metal-polluted environments. This study investigated the responses of ARGs and mobile genetic elements (MGEs) to the addition of graphene oxide (GO) to swine manure containing a high concentration copper during anaerobic digestion. The total copy numbers of ARGs and MGEs were significantly enhanced by the pressure due to Cu. GO significantly decreased the ARG and MGE copy numbers, where the low GO concentration performed better than the high GO concentration. Network analysis showed that most of the ARGs and MGEs co-occurred and they shared the same major potential host bacteria. The contributions of different factors to ARG abundances were assessed by redundancy analysis and MGEs had the most important effect on the fate of ARGs. Thus, GO may reduce the abundance of ARGs mainly by removing MGEs.201930445329
704160.9997Antibiotic and heavy metal resistance genes in sewage sludge survive during aerobic composting. Municipal sewage sludge has been generated in increasing amounts with the acceleration of urbanization and economic development. The nutrient rich sewage sludge can be recycled by composting that has a great potential to produce stabilized organic fertilizer and substrate for plant cultivation. However, little is known about the metals, pathogens and antibiotic resistance transfer risks involved in applying the composted sludge in agriculture. We studied changes in and relationships between heavy metal contents, microbial communities, and antibiotic resistance genes (ARGs), heavy metal resistance genes (HMRGs) and mobile genetic elements (MGEs) in aerobic composting of sewage sludge. The contents of most of the analyzed heavy metals were not lower after composting. The bacterial α-diversity was lower, and the community composition was different after composting. Firmicutes were enriched, and Proteobacteria and potential pathogens in the genera Arcobacter and Acinetobacter were depleted in the composted sludge. The differences in bacteria were possibly due to the high temperature phase during the composting which was likely to affect temperature-sensitive bacteria. The number of detected ARGs, HMRGs and MGEs was lower, and the relative abundances of several resistance genes were lower after composting. However, the abundance of seven ARGs and six HMRGs remained on the same level after composting. Co-occurrence analysis of bacterial taxa and the genes suggested that the ARGs may spread via horizontal gene transfer during composting. In summary, even though aerobic composting is effective for managing sewage sludge and to decrease the relative abundance of potential pathogens, ARGs and HMRGs, it might include a potential risk for the dissemination of ARGs in the environment.202336608829
703070.9997Metagenomic profiling of antibiotic resistance genes/bacteria removal in urban water: Algal-bacterial consortium treatment system. Antibiotic resistance genes (ARGs) have exhibited significant ecological concerns, especially in the urban water that are closely associated with human health. In this study, with presence of exogenous Chlorella vulgaris-Bacillus licheniformis consortium, most of the typical ARGs and MGEs were removed. Furthermore, the relative abundance of potential ARGs hosts has generally decreased by 1-4 orders of magnitude, revealing the role of algal-bacterial consortium in cutting the spread of ARGs in urban water. While some of ARGs such as macB increased, which may be due to the negative impact of algicidal bacteria and algal viruses in urban water on exogenous C. vulgaris and the suppression of exogenous B. licheniformis by indigenous microorganisms. A new algal-bacterial interaction might form between C. vulgaris and indigenous microorganisms. The interplay between C. vulgaris and bacteria has a significant impact on the fate of ARGs removal in urban water.202438801952
688580.9997Abundant bacteria shaped by deterministic processes have a high abundance of potential antibiotic resistance genes in a plateau river sediment. Recent research on abundant and rare bacteria has expanded our understanding of bacterial community assembly. However, the relationships of abundant and rare bacteria with antibiotic resistance genes (ARGs) remain largely unclear. Here, we investigated the biogeographical patterns and assembly processes of the abundant and rare bacteria from river sediment at high altitudes (Lhasa River, China) and their potential association with the ARGs. The results showed that the abundant bacteria were dominated by Proteobacteria (55.4%) and Cyanobacteria (13.9%), while the Proteobacteria (33.6%) and Bacteroidetes (18.8%) were the main components of rare bacteria. Rare bacteria with a large taxonomic pool can provide function insurance in bacterial communities. Spatial distribution of persistent abundant and rare bacteria also exhibited striking differences. Strong selection of environmental heterogeneity may lead to deterministic processes, which were the main assembly processes of abundant bacteria. In contrast, the assembly processes of rare bacteria affected by latitude were dominated by stochastic processes. Abundant bacteria had the highest abundance of metabolic pathways of potential drug resistance in all predicted functional genes and a high abundance of potential ARGs. There was a strong potential connection between these ARGs and mobile genetic elements, which could increase the ecological risk of abundant taxa and human disease. These results provide insights into sedimental bacterial communities and ARGs in river ecosystems.202236406442
701590.9997Comparison of bacterial communities and antibiotic resistance genes in oxidation ditches and membrane bioreactors. Oxidation ditches (ODs) and membrane bioreactors (MBRs) are widely used in wastewater treatment plants (WWTPs) with bacteria and antibiotic resistance genes (ARGs) running through the whole system. In this study, metagenomic sequencing was used to compare the bacterial communities and ARGs in the OD and MBR systems, which received the same influent in a WWTP located in Xinjiang, China. The results showed that the removal efficiency of pollutants by the MBR process was better than that by the OD process. The composition and the relative abundance of bacteria in activated sludge were similar at the phylum and genus levels and were not affected by process type. Multidrug, fluoroquinolones and peptides were the main ARG types for the two processes, with macB being the main ARG subtype, and the relative abundance of ARG subtypes in MBR effluent was much higher than that in the OD effluent. The mobile genetic elements (MGEs) in the activated sludge were mainly transposons (tnpA) and insertion sequences (ISs; IS91). These results provide a theoretical basis for process selection and controlling the spread of ARGs.202133903636
6830100.9997Heavy metal could drive co-selection of antibiotic resistance in terrestrial subsurface soils. Terrestrial surface ecosystems are important sinks for antibiotic resistance genes (ARGs) due to the continuous discharge of contaminants from human-impacted ecosystems. However, the abundance and resistance types of ARGs and their influencing factors in terrestrial subsurface soils are not well known. In this study, we investigated the abundance and diversity of ARGs, and their correlations with metal resistance genes (MRGs), mobile genetic elements (MGEs), bacteria, and heavy metals in subsurface soils using high throughput quantitative PCR and metagenomic sequencing approaches. Abundant and diverse ARGs were detected with high spatial heterogeneity among sampling sites. Vertically, there was no significant difference in ARG profiles between the aquifer and non-aquifer soils. Heavy metals were key factors shaping ARG profiles in soils with high heavy metal contents, while they showed no significant effect in low contents. Moreover, heavy metals could trigger the proliferation of antibiotic resistance by increasing MGE abundance or influencing bacterial communities. Metagenomic analysis also revealed the widespread co-occurrence of ARGs and MRGs, with heavy metals possibly enhancing the co-selection of ARGs and MRGs in soils with high heavy metal contents. This study highlighted the heavy metal-driven co-selection of ARGs and revealed the occurrence of ARG pollution in terrestrial subsurface soils.202133858075
7050110.9997Distinct bacterial communities and resistance genes enriched by triclocarban-contaminated polyethylene microplastics in antibiotics and heavy metals polluted sewage environment. Knowledge gaps still surround the question of what biofilms form on contaminated microplastics (MPs) in the antibiotics and (or) heavy metals polluted sewage. In this work, the clean polyethylene microplastics (PE MPs) and triclocarban (TCC)-contaminated PE MPs were cultured in the sewage containing only ampicillin (AMP), only copper (Cu) and both AMP and Cu for 28 days. The results showed that the TCC on PE MPs (with concentration of 2.48 mg/g PE MPs) did not impede the adhesion of the bacteria and the formation of biofilm. Moreover, many potential pathogenic bacteria (Aquabacterium and Pseudoxanthomonas) and potential resistant bacteria (Stenotrophomonas) were more likely to attach on TCC-contaminated PE MPs compared with clean PE MPs. In addition, biofilms of TCC-contaminated PE MPs had highest potential pathogenic functions. TCC-contaminated PE MPs also caused the increases of various resistance genes in both biofilm and sewage. The co-occurrence of TCC, AMP and Cu might exert a stronger selective pressure on bacterial communities and promote the co-selection of resistance genes. In addition, TCC-contaminated PE MPs resulted in higher abundance of five mobile genetic elements (MGEs) (intI1, intI3, tnpA-04, IS613 and trb-C) in sewage, which might further promote the transmission of resistance genes.202235640752
6828120.9997Unraveling antibiotic resistomes associated with bacterial and viral communities in intertidal mudflat aquaculture area. The extensive use of antibiotics in intertidal mudflat aquaculture area has substantially increased the dissemination risk of antibiotic resistance genes (ARGs). As hosts of ARGs, bacteria and virus exert vital effects on ARG dissemination. However, the insights for the interrelationships among ARGs, bacteria, and virus have not been thoroughly explored in intertidal mudflat. Therefore, this study attempts to unravel the occurrence, dissemination, evolution, and driving mechanisms of ARGs associated with bacterial and viral communities using metagenomic sequencing in a typical intertidal mudflat. Abundant and diverse ARGs (22 types and 437 subtypes) were identified and those of ARGs were higher in spring than in autumn. It is worthy noted that virus occupied a more essential position than bacteria for ARGs dissemination through network analysis. Meanwhile, nitrogen exerted indirect effect on ARG profiles by shaping viral and bacterial diversity. According to the results of neutral and null models, deterministic processes dominated the ARG community assembly by controlling sediment nitrogen and antibiotics. Homogeneous and variable selection dominated phylogenetic turnover of ARG community, contributing 46.15% and 45.90% of the total processes, respectively. This study can hence theoretically support for the ARG pollution control and management in intertidal mudflat aquaculture area.202337506645
6902130.9997Antibiotic resistance genes in surface water and groundwater from mining affected environments. Mining activities are known to generate a large amount of mine tailings and acid mine drainage which contain varieties of heavy metals. Heavy metals play an important role in co-selection for bacterial antibiotic resistance. However, the characteristics of antibiotic resistance genes (ARGs) in mining-affected water environments are still unclear. Here we investigated the pollution of metals, profiles of ARGs, mobile genetic elements (MGEs) and microbial community in mining-affected surface water and groundwater. The results showed that in the tested water samples, the concentrations of Zn and Mn were the highest, and Ni was the lowest. Higher abundances of ARGs with great proportion of sulfonamides, chloramphenicols and tetracyclines resistance genes were found in mining-affected water when compared with those without mining activities. Additionally, there were positive correlations between heavy metals (especially Ni, Zn and Mn) and these ARGs. Linear regression analysis suggested that MGEs were positively correlated with ARGs. In addition, total phosphorus was correlated with ARGs (p < 0.05). The microbial community was different between the mining-affected water and the reference (p < 0.05). Proteobacteria, Bacteroidetes and Actinobacteria were dominant phyla in the surface water and groundwater. Network analysis showed that many ARGs were significantly associated with these dominant bacteria, which suggested they might be potential hosts for these ARGs. These findings provide a clear evidence that the mining activities in the study area had a significant impact on surface water and groundwater to different degrees.202133571766
6981140.9997Decline in the Relative Abundance of Antibiotic Resistance Genes in Long-Term Fertilized Soil and Its Driving Factors. The changes in antibiotic resistance genes (ARGs) in long-term fertilized soil remain controversial. We aimed to analyze the variation characteristics of ARGs in long-term fertilized soil using metagenomic sequencing. The relative abundance of ARGs did not increase significantly after 7 years of fertilization. However, a clear decline in the relative abundance of ARGs was observed compared to the data from the 4th year. Microbial adaptation strategies in response to changes in the ARG abundance were associated with shifts in microbiome composition and function. Among these, bacterial abundance was the primary driving factor. Additionally, total heavy metal content might serve as the most significant co-selective pressure influencing ARG number. We believe that increasing the selective pressure from heavy metals and antibiotics might result in the loss of certain microbial species and a decrease in ARG abundance. This study provides novel insights into the variations of soil resistance genes under long-term fertilization.202540785530
7043150.9997Antibiotic resistance gene transfer during anaerobic digestion with added copper: Important roles of mobile genetic elements. The abuse of heavy metals as feed additives in livestock is widespread and it might aggravate the spread of antibiotic resistance genes (ARGs) in the environment. However, the mechanisms that allow heavy metals to increase the transmission of ARGs in the environment remain unclear. Cu is the heavy metal present at the highest concentration in livestock manure, and thus Cu was selected to investigate the responses of ARGs to heavy metals. The effects of the microbial communities, mobile genetic elements (MGEs), and heavy metal resistance genes (HMRGs) on ARGs were determined in the presence of 75 and 227 mg L(-1) Cu in a swine manure anaerobic digestion (AD) system. In the AD products, the presence of residual Cu (75 and 227 mg L(-1)) increased the total ARGs, HMRGs, and some MGEs, and the higher Cu selected more ARGs than the lower Cu treatment. The results demonstrated that Cu could promote the co-selection of HMRGs, ARGs, and MGEs. The different levels of Cu did not change the bacterial community composition, but they influenced the abundances of bacteria during AD. Network analysis showed that the presence of Cu increased the co-occurrence of specific bacteria containing ARGs, HMRGs, and MGEs. Furthermore, the co-occurrence of MGEs and ARGs increased greatly compared with that of HMRGs and ARGs. Therefore, compared HMRGs, the increased MGEs had the main effect on increasing of ARGs.202032659562
7141160.9997The fate of antibiotic resistance genes and their association with bacterial and archaeal communities during advanced treatment of pig farm wastewater. Advanced wastewater treatment plants are widely used in most large-scale pig farms in southern China. However, the fate of antibiotic resistance genes (ARGs) and their association with bacterial and archaeal communities during advanced wastewater treatment remain unclear. In this study, the profiles of ARGs in typical advanced wastewater treatment plants were surveyed using metagenomic analysis. The results showed that 279- 326 different subtypes of ARGs were detected in raw wastewater, with a total abundance of 5.98 ± 0.48 copies per bacterial cell. During the advanced wastewater treatment, the abundance and number of ARGs were significantly reduced. Microbial communities (bacteria and archaea) contributed the most to the variation in ARG abundance and composition (PCA axis_1), accounting for 10.8 % and 15.7 %, respectively, followed by mobile genetic elements (MGEs) and physicochemical factors. Special attention should be given to potential pathogenic bacteria such as Escherichia, Streptococcus, Enterococcus and Staphylococcus and archaea such as Methanocorpusculum, Candidatus Methanoplasma and Candidatus Methanomethylophilus, which were important potential ARG hosts. Bacterial communities may indirectly affect ARG variation by affecting archaeal communities. These findings indicated that ARG levels in pig farm wastewater can be effectively reduced during advanced treatment and highlighted the important role played by archaea, which should not be ignored.202236041618
6808170.9997Antibiotics and antibiotic resistance change bacterial community compositions in marine sediments. Emerging contaminants, including antibiotics, antibiotic-resistant bacteria (ARB), and extracellular antibiotic resistance genes (eARGs), have been detected in large numbers in the aquatic environment. The effects of emerging contaminants on bacterial communities in marine sediments are not well studied. In this study, the effects of emerging contaminants (antibiotics, ARB, and eARGs) on the variations of bacterial populations in marine sediments of the Bohai Sea, Yellow Sea, East China Sea, and South China Sea were investigated. The results showed that the abundance of the host bacterial phylum Probacteria in the marine sediments of the Bohai Sea was the lowest among the four seas after exposure to different antibiotics, ARB, and eARGs. The inputs of exogenous antibiotics and resistance genes significantly affected the community function, resulting in significant differences in community abundance at the genus level. The abundance of Halomonas, Sulfitobacter, and Alcanivorax in the four sea areas displayed noteworthy differences in response to the addition of exogenous antibiotics and eARGs. These findings contribute to a more comprehensive understanding of the intricate interplay between emerging contaminants and the dynamics of bacterial communities in natural ecosystems.202438135101
6950180.9997Ceftiofur in swine manure contributes to reducing pathogens and antibiotic resistance genes during composting. Aerobic composting is a common way for the disposal of feces produced in animal husbandry, and can reduce the release of antibiotic resistance genes (ARGs) from feces into the environment. In this study, we collected samples from two distinct treatments of swine manure compost with and without ceftiofur (CEF), and identified the ARGs, mobile genetic elements (MGEs), and bacterial community by metagenomic sequencing. The impacts of CEF on the bacterial community composition and fate of ARGs and MGEs were investigated. With increasing composting temperature and pH, the concentration of CEF in the manure decreased rapidly, with a degradation half-life of 1.12 d and a 100% removal rate after 10 d of aerobic composting. Metagenomics demonstrated that CEF in the manure might inhibit the growth of Firmicutes and Proteobacteria, thereby reducing some ARGs and MGEs hosted by these two bacteria, which was further confirmed by the variations of ARGs and MGEs. A further redundancy analysis suggested that pH and temperature are key environmental factors affecting ARG removal during composting, and intI1 and bacterial communities also have significant influence on ARG abundance. These results are of great significance for promoting the removal of some ARGs from animal manure by controlling some key environmental factors and the type of antibiotics used in animals.202438685300
7517190.9997Bacterial Heavy-Metal and Antibiotic Resistance Genes in a Copper Tailing Dam Area in Northern China. Heavy metal resistance genes (MRGs) and antibiotic resistance genes (ARGs) in bacteria can respond to the inducement of heavy metals. However, the co-occurrence of MRGs and ARGs in the long-term heavy metal contaminated area is still poorly understood. Here, we investigated the relationship between the abundance of soil bacteria MRGs, ARGs and heavy metal pollution in a copper tailing dam area of northern China. We found that arsC and ereA genes coding for resistance mechanisms to arsenic and to macrolides, respectively, are the most abundant MRG and ARG in the study area. The abundance of MRGs is positively correlated with cadmium (Cd) concentration, and this indicates the importance of Cd in the selection of MRGs. The network analysis results show that sulII and MRGs co-occur and copB occur with ARGs, which suggests that MRGs and ARGs can be co-selected in the soil contaminated by heavy metal. The network analysis also reveals the co-occurrence of Cd and MRGs, and thus heavy metal with a high 'toxic-response' factor can be used as the indicator of MRGs. This study improves the understanding of the relationship between bacterial resistance and multi-metal contamination, and underlies the exploration of the adaptive mechanism of microbes in the multi-metal contaminated environment.201931481945