# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 699 | 0 | 1.0000 | DltX of Bacillus thuringiensis Is Essential for D-Alanylation of Teichoic Acids and Resistance to Antimicrobial Response in Insects. The dlt operon of Gram-positive bacteria is required for the incorporation of D-alanine esters into cell wall-associated teichoic acids (TAs). Addition of D-alanine to TAs reduces the negative charge of the cell envelope thereby preventing cationic antimicrobial peptides (CAMPs) from reaching their target of action on the bacterial surface. In most gram-positive bacteria, this operon consists of five genes dltXABCD but the involvement of the first ORF (dltX) encoding a small protein of unknown function, has never been investigated. The aim of this study was to establish whether this protein is involved in the D-alanylation process in Bacillus thuringiensis. We, therefore constructed an in frame deletion mutant of dltX, without affecting the expression of the other genes of the operon. The growth characteristics of the dltX mutant and those of the wild type strain were similar under standard in vitro conditions. However, disruption of dltX drastically impaired the resistance of B. thuringiensis to CAMPs and significantly attenuated its virulence in two insect species. Moreover, high-performance liquid chromatography studies showed that the dltX mutant was devoid of D-alanine, and electrophoretic mobility measurements indicated that the cells carried a higher negative surface charge. Scanning electron microscopy experiments showed morphological alterations of these mutant bacteria, suggesting that depletion of D-alanine from TAs affects cell wall structure. Our findings suggest that DltX is essential for the incorporation of D-alanyl esters into TAs. Therefore, DltX plays a direct role in the resistance to CAMPs, thus contributing to the survival of B. thuringiensis in insects. To our knowledge, this work is the first report examining the involvement of dltX in the D-alanylation of TAs. | 2017 | 28824570 |
| 8214 | 1 | 0.9995 | The dlt operon confers resistance to cationic antimicrobial peptides in Clostridium difficile. The dlt operon in Gram-positive bacteria encodes proteins that are necessary for the addition of d-alanine to teichoic acids of the cell wall. The addition of d-alanine to the cell wall results in a net positive charge on the bacterial cell surface and, as a consequence, can decrease the effectiveness of antimicrobials, such as cationic antimicrobial peptides (CAMPs). Although the roles of the dlt genes have been studied for some Gram-positive organisms, the arrangement of these genes in Clostridium difficile and the life cycle of the bacterium in the host are markedly different from those of other pathogens. In the current work, we determined the contribution of the putative C. difficile dlt operon to CAMP resistance. Our data indicate that the dlt operon is necessary for full resistance of C. difficile to nisin, gallidermin, polymyxin B and vancomycin. We propose that the d-alanylation of teichoic acids provides protection against antimicrobial peptides that may be essential for growth of C. difficile in the host. | 2011 | 21330441 |
| 6342 | 2 | 0.9995 | Determinants of Extreme β-Lactam Tolerance in the Burkholderia pseudomallei Complex. Slow-growing bacteria are insensitive to killing by antibiotics, a trait known as antibiotic tolerance. In this study, we characterized the genetic basis of an unusually robust β-lactam (meropenem) tolerance seen in Burkholderia species. We identified tolerance genes under three different slow-growth conditions by extensive transposon mutant sequencing (Tn-seq), followed by single mutant validation. There were three principal findings. First, mutations in a small number of genes reduced tolerance under multiple conditions. Most of the functions appeared to be specific to peptidoglycan synthesis and the response to its disruption by meropenem action rather than being associated with more general physiological processes. The top tolerance genes are involved in immunity toward a type VI toxin targeting peptidoglycan (BTH_I0069), peptidoglycan recycling (ldcA), periplasmic regulation by proteolysis (prc), and an envelope stress response (rpoE and degS). Second, most of the tolerance functions did not contribute to growth in the presence of meropenem (intrinsic resistance), indicating that the two traits are largely distinct. Third, orthologues of many of the top Burkholderia thailandensis tolerance genes were also important in Burkholderia pseudomallei Overall, these studies show that the determinants of meropenem tolerance differ considerably depending on cultivation conditions, but that there are a few shared functions with strong mutant phenotypes that are important in multiple Burkholderia species. | 2018 | 29439964 |
| 701 | 3 | 0.9995 | Antimicrobial Peptide Resistance Genes in the Plant Pathogen Dickeya dadantii. Modification of teichoic acid through the incorporation of d-alanine confers resistance in Gram-positive bacteria to antimicrobial peptides (AMPs). This process involves the products of the dltXABCD genes. These genes are widespread in Gram-positive bacteria, and they are also found in a few Gram-negative bacteria. Notably, these genes are present in all soft-rot enterobacteria (Pectobacterium and Dickeya) whose dltDXBAC operons have been sequenced. We studied the function and regulation of these genes in Dickeya dadantii dltB expression was induced in the presence of the AMP polymyxin. It was not regulated by PhoP, which controls the expression of some genes involved in AMP resistance, but was regulated by ArcA, which has been identified as an activator of genes involved in AMP resistance. However, arcA was not the regulator responsible for polymyxin induction of these genes in this bacterium, which underlines the complexity of the mechanisms controlling AMP resistance in D. dadantii Two other genes involved in resistance to AMPs have also been characterized, phoS and phoH dltB, phoS, phoH, and arcA but not dltD mutants were more sensitive to polymyxin than the wild-type strain. Decreased fitness of the dltB, phoS, and phoH mutants in chicory leaves indicates that their products are important for resistance to plant AMPs. IMPORTANCE: Gram-negative bacteria can modify their lipopolysaccharides (LPSs) to resist antimicrobial peptides (AMPs). Soft-rot enterobacteria (Dickeya and Pectobacterium spp.) possess homologues of the dlt genes in their genomes which, in Gram-positive bacteria, are involved in resistance to AMPs. In this study, we show that these genes confer resistance to AMPs, probably by modifying LPSs, and that they are required for the fitness of the bacteria during plant infection. Two other new genes involved in resistance were also analyzed. These results show that bacterial resistance to AMPs can occur in bacteria through many different mechanisms that need to be characterized. | 2016 | 27565623 |
| 706 | 4 | 0.9995 | Effect of PhoP-PhoQ activation by broad repertoire of antimicrobial peptides on bacterial resistance. Pathogenic bacteria can resist their microenvironment by changing the expression of virulence genes. In Salmonella typhimurium, some of these genes are controlled by the two-component system PhoP-PhoQ. Studies have shown that activation of the system by cationic antimicrobial peptides (AMPs) results, among other changes, in outer membrane remodeling. However, it is not fully clear what characteristics of AMPs are required to activate the PhoP-PhoQ system and whether activation can induce resistance to the various AMPs. For that purpose, we investigated the ability of a broad repertoire of AMPs to traverse the inner membrane, to activate the PhoP-PhoQ system, and to induce bacterial resistance. The AMPs differ in length, composition, and net positive charge, and the tested bacteria include two wild-type (WT) Salmonella strains and their corresponding PhoP-PhoQ knock-out mutants. A lacZ-reporting system was adapted to follow PhoP-PhoQ activation. The data revealed that: (i) a good correlation exists among the extent of the positive charge, hydrophobicity, and amphipathicity of an AMP and its potency to activate PhoP-PhoQ; (ii) a +1 charged peptide containing histidines was highly potent, suggesting the existence of an additional mechanism independent of the peptide charge; (iii) the WT bacteria are more resistant to AMPs that are potent activators of PhoP-PhoQ; (iv) only a subset of AMPs, independent of their potency to activate the system, is more toxic to the mutated bacteria compared with the WT strains; and (v) short term exposure of WT bacteria to these AMPs does not enhance resistance. Overall, this study advances our understanding of the molecular mechanism by which AMPs activate PhoP-PhoQ and induce bacterial resistance. It also reveals that some AMPs can overcome such a resistance mechanism. | 2012 | 22158870 |
| 684 | 5 | 0.9994 | Transcriptome analysis reveals mechanisms by which Lactococcus lactis acquires nisin resistance. Nisin, a posttranslationally modified antimicrobial peptide produced by Lactococcus lactis, is widely used as a food preservative. Yet, the mechanisms leading to the development of nisin resistance in bacteria are poorly understood. We used whole-genome DNA microarrays of L. lactis IL1403 to identify the factors underlying acquired nisin resistance mechanisms. The transcriptomes of L. lactis IL1403 and L. lactis IL1403 Nis(r), which reached a 75-fold higher nisin resistance level, were compared. Differential expression was observed in genes encoding proteins that are involved in cell wall biosynthesis, energy metabolism, fatty acid and phospholipid metabolism, regulatory functions, and metal and/or peptide transport and binding. These results were further substantiated by showing that several knockout and overexpression mutants of these genes had strongly altered nisin resistance levels and that some knockout strains could no longer become resistant to the same level of nisin as that of the wild-type strain. The acquired nisin resistance mechanism in L. lactis is complex, involving various different mechanisms. The four major mechanisms are (i) preventing nisin from reaching the cytoplasmic membrane, (ii) reducing the acidity of the extracellular medium, thereby stimulating the binding of nisin to the cell wall, (iii) preventing the insertion of nisin into the membrane, and (iv) possibly transporting nisin across the membrane or extruding nisin out of the membrane. | 2006 | 16641446 |
| 702 | 6 | 0.9994 | Cutting edge: the toll pathway is required for resistance to gram-positive bacterial infections in Drosophila. In Drosophila, the response against various microorganisms involves different recognition and signaling pathways, as well as distinct antimicrobial effectors. On the one hand, the immune deficiency pathway regulates the expression of antimicrobial peptides that are active against Gram-negative bacteria. On the other hand, the Toll pathway is involved in the defense against filamentous fungi and controls the expression of antifungal peptide genes. The gene coding for the only known peptide with high activity against Gram-positive bacteria, Defensin, is regulated by both pathways. So far, survival experiments to Gram-positive bacteria have been performed with Micrococcus luteus and have failed to reveal the involvement of one or the other pathway in host defense against such infections. In this study, we report that the Toll pathway, but not that of immune deficiency, is required for resistance to other Gram-positive bacteria and that this response does not involve Defensin. | 2002 | 11823479 |
| 8229 | 7 | 0.9994 | Molecular genetics, biochemistry and biological role of Yersinia lipopolysaccharide. Lipopolysaccharide (LPS) is the major component of the outer leaflet of the outer membrane of Gram-negative bacteria. The LPS molecule is composed of two biosynthetic entities: the lipid A--core and the O-polysaccharide (O-antigen). Most biological effects of LPS are due to the lipid A part, however, there is an increasing body of evidence also with Yersinia indicating that O-antigen plays an important role in effective colonization of host tissues, resistance to complement-mediated killing and in the resistance to cationic antimicrobial peptides that are key elements of the innate immune system. The biosynthesis of O-antigen requires numerous enzymatic activities and includes the biosynthesis of individual NDP-activated precursor sugars in the cytoplasm, linkage and sugar-specific transferases, O-unit flippase, O-antigen polymerase and O-chain length determinant. Based on this enzymatic mode of O-antigen biosynthesis LPS isolated from bacteria is a heterologous population of molecules; some do not carry any O-antigen while others that do have variation in the O-antigen chain lengths. The genes required for the O-antigen biosynthesis are located in O-antigen gene clusters that in genus Yersinia is located between the hemH and gsk genes. Temperature regulates the O-antigen expression in Y. enterocolitica and Y. pseudotuberculosis; bacteria grown at room temperature (RT, 22-25 degrees C) produce in abundance O-antigen while only trace amounts are present in bacteria grown at 37 degrees C. Even though the amount of O-antigen is known to fluctuate under different growth conditions in many bacteria very little detailed information is available on the control of the O-antigen biosynthetic machinery. | 2003 | 12756756 |
| 700 | 8 | 0.9994 | The extracytoplasmic function sigma factor SigV plays a key role in the original model of lysozyme resistance and virulence of Enterococcus faecalis. BACKGROUND: Enterococcus faecalis is one of the leading agents of nosocomial infections. To cause diseases, pathogens or opportunistic bacteria have to adapt and survive to the defense systems encountered in the host. One of the most important compounds of the host innate defense response against invading microorganisms is lysozyme. It is found in a wide variety of body fluids, as well as in cells of the innate immune system. Lysozyme could act either as a muramidase and/or as a cationic antimicrobial peptide. Like Staphylococcus aureus, E. faecalis is one of the few bacteria that are completely lysozyme resistant. RESULTS: This study revealed that oatA (O-acetyl transferase) and dlt (D-Alanylation of lipoteicoic acids) genes contribute only partly to the lysozyme resistance of E. faecalis and that a specific transcriptional regulator, the extracytoplasmic function SigV sigma factor plays a key role in this event. Indeed, the sigV single mutant is as sensitive as the oatA/dltA double mutant, and the sigV/oatA/dltA triple mutant displays the highest level of lysozyme sensitivity suggesting synergistic effects of these genes. In S. aureus, mutation of both oatA and dlt genes abolishes completely the lysozyme resistance, whereas this is not the case in E. faecalis. Interestingly SigV does not control neither oatA nor dlt genes. Moreover, the sigV mutants clearly showed a reduced capacity to colonize host tissues, as they are significantly less recovered than the parental JH2-2 strain from organs of mice subjected to intravenous or urinary tract infections. CONCLUSIONS: This work led to the discovery of an original model of lysozyme resistance mechanism which is obviously more complex than those described for other Gram positive pathogens. Moreover, our data provide evidences for a direct link between lysozyme resistance and virulence of E. faecalis. | 2010 | 20300180 |
| 696 | 9 | 0.9994 | Identification of a two-component regulatory system involved in antimicrobial peptide resistance in Streptococcus pneumoniae. Two-component regulatory systems (TCS) are among the most widespread mechanisms that bacteria use to sense and respond to environmental changes. In the human pathogen Streptococcus pneumoniae, a total of 13 TCS have been identified and many of them have been linked to pathogenicity. Notably, TCS01 strongly contributes to pneumococcal virulence in several infection models. However, it remains one of the least studied TCS in pneumococci and its functional role is still unclear. In this study, we demonstrate that TCS01 cooperates with a BceAB-type ABC transporter to sense and induce resistance to structurally-unrelated antimicrobial peptides of bacterial origin that all target undecaprenyl-pyrophosphate or lipid II, which are essential precursors of cell wall biosynthesis. Even though tcs01 and bceAB genes do not locate in the same gene cluster, disruption of either of them equally sensitized the bacterium to the same set of antimicrobial peptides. We show that the key function of TCS01 is to upregulate the expression of the transporter, while the latter appears the main actor in resistance. Electrophoretic mobility shift assays further demonstrated that the response regulator of TCS01 binds to the promoter region of the bceAB genes, implying a direct control of these genes. The BceAB transporter was overexpressed and purified from E. coli. After reconstitution in liposomes, it displayed substantial ATPase and GTPase activities that were stimulated by antimicrobial peptides to which it confers resistance to, revealing new functional features of a BceAB-type transporter. Altogether, this inducible defense mechanism likely contributes to the survival of the opportunistic microorganism in the human host, in which competition among commensal microorganisms is a key determinant for effective host colonization and invasive path. | 2022 | 35395062 |
| 686 | 10 | 0.9994 | SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. One of the strongest and most noticeable responses of Bacillus subtilis cells to a range of stress and starvation stimuli is the dramatic induction of about 150 SigB-dependent general stress genes. The activity of SigB itself is tightly regulated by a complex signal transduction cascade with at least three main signaling pathways that respond to environmental stress, energy depletion, or low temperature. The SigB-dependent response is conserved in related gram-positive bacteria but is missing in strictly anaerobic or in some facultatively anaerobic gram-positive bacteria. It covers functions from nonspecific and multiple stress resistance to the control of virulence in pathogenic bacteria. A comprehensive understanding of this crucial stress response is essential not only for bacterial physiology but also for applied microbiology, including pathogenicity and pathogen control. | 2007 | 18035607 |
| 8212 | 11 | 0.9994 | The biosynthesis and functionality of the cell-wall of lactic acid bacteria. The cell wall of lactic acid bacteria has the typical gram-positive structure made of a thick, multilayered peptidoglycan sacculus decorated with proteins, teichoic acids and polysaccharides, and surrounded in some species by an outer shell of proteins packed in a paracrystalline layer (S-layer). Specific biochemical or genetic data on the biosynthesis pathways of the cell wall constituents are scarce in lactic acid bacteria, but together with genomics information they indicate close similarities with those described in Escherichia coli and Bacillus subtilis, with one notable exception regarding the peptidoglycan precursor. In several species or strains of enterococci and lactobacilli, the terminal D-alanine residue of the muramyl pentapeptide is replaced by D-lactate or D-serine, which entails resistance to the glycopeptide antibiotic vancomycin. Diverse physiological functions may be assigned to the cell wall, which contribute to the technological and health-related attributes of lactic acid bacteria. For instance, phage receptor activity relates to the presence of specific substituents on teichoic acids and polysaccharides; resistance to stress (UV radiation, acidic pH) depends on genes involved in peptidoglycan and teichoic acid biosynthesis; autolysis is controlled by the degree of esterification of teichoic acids with D-alanine; mucosal immunostimulation may result from interactions between epithelial cells and peptidoglycan or teichoic acids. | 1999 | 10532377 |
| 698 | 12 | 0.9994 | Genome-wide transcriptional changes induced by phagocytosis or growth on bacteria in Dictyostelium. BACKGROUND: Phagocytosis plays a major role in the defense of higher organisms against microbial infection and provides also the basis for antigen processing in the immune response. Cells of the model organism Dictyostelium are professional phagocytes that exploit phagocytosis of bacteria as the preferred way to ingest food, besides killing pathogens. We have investigated Dictyostelium differential gene expression during phagocytosis of non-pathogenic bacteria, using DNA microarrays, in order to identify molecular functions and novel genes involved in phagocytosis. RESULTS: The gene expression profiles of cells incubated for a brief time with bacteria were compared with cells either incubated in axenic medium or growing on bacteria. Transcriptional changes during exponential growth in axenic medium or on bacteria were also compared. We recognized 443 and 59 genes that are differentially regulated by phagocytosis or by the different growth conditions (growth on bacteria vs. axenic medium), respectively, and 102 genes regulated by both processes. Roughly one third of the genes are up-regulated compared to macropinocytosis and axenic growth. Functional annotation of differentially regulated genes with different tools revealed that phagocytosis induces profound changes in carbohydrate, amino acid and lipid metabolism, and in cytoskeletal components. Genes regulating translation and mitochondrial biogenesis are mostly up-regulated. Genes involved in sterol biosynthesis are selectively up-regulated, suggesting a shift in membrane lipid composition linked to phagocytosis. Very few changes were detected in genes required for vesicle fission/fusion, indicating that the intracellular traffic machinery is mostly in common between phagocytosis and macropinocytosis. A few putative receptors, including GPCR family 3 proteins, scaffolding and adhesion proteins, components of signal transduction and transcription factors have been identified, which could be part of a signalling complex regulating phagocytosis and adaptational downstream responses. CONCLUSION: The results highlight differences between phagocytosis and macropinocytosis, and provide the basis for targeted functional analysis of new candidate genes and for comparison studies with transcriptomes during infection with pathogenic bacteria. | 2008 | 18559084 |
| 635 | 13 | 0.9994 | Transcriptome of Dickeya dadantii infecting Acyrthosiphon pisum reveals a strong defense against antimicrobial peptides. The plant pathogenic bacterium Dickeya dadantii has recently been shown to be able to kill the aphid Acyrthosiphon pisum. While the factors required to cause plant disease are now well characterized, those required for insect pathogeny remain mostly unknown. To identify these factors, we analyzed the transcriptome of the bacteria isolated from infected aphids. More than 150 genes were upregulated and 300 downregulated more than 5-fold at 3 days post infection. No homologue to known toxin genes could be identified in the upregulated genes. The upregulated genes reflect the response of the bacteria to the conditions encountered inside aphids. While only a few genes involved in the response to oxidative stress were induced, a strong defense against antimicrobial peptides (AMP) was induced. Expression of a great number of efflux proteins and transporters was increased. Besides the genes involved in LPS modification by addition of 4-aminoarabinose (the arnBCADTEF operon) and phosphoethanolamine (pmrC, eptB) usually induced in Gram negative bacteria in response to AMPs, dltBAC and pbpG genes, which confer Gram positive bacteria resistance to AMPs by adding alanine to teichoic acids, were also induced. Both types of modification confer D. dadantii resistance to the AMP polymyxin. A. pisum harbors symbiotic bacteria and it is thought that it has a very limited immune system to maintain these populations and do not synthesize AMPs. The arnB mutant was less pathogenic to A. pisum, which suggests that, in contrast to what has been supposed, aphids do synthesize AMP. | 2013 | 23342088 |
| 685 | 14 | 0.9994 | Implication of a Key Region of Six Bacillus cereus Genes Involved in Siroheme Synthesis, Nitrite Reductase Production and Iron Cluster Repair in the Bacterial Response to Nitric Oxide Stress. Bacterial response to nitric oxide (NO) is of major importance for bacterial survival. NO stress is a main actor of the eukaryotic immune response and several pathogenic bacteria have developed means for detoxification and repair of the damages caused by NO. However, bacterial mechanisms of NO resistance by Gram-positive bacteria are poorly described. In the opportunistic foodborne pathogen Bacillus cereus, genome sequence analyses did not identify homologs to known NO reductases and transcriptional regulators, such as NsrR, which orchestrate the response to NO of other pathogenic or non-pathogenic bacteria. Using a transcriptomic approach, we investigated the adaptation of B. cereus to NO stress. A cluster of 6 genes was identified to be strongly up-regulated in the early phase of the response. This cluster contains an iron-sulfur cluster repair enzyme, a nitrite reductase and three enzymes involved in siroheme biosynthesis. The expression pattern and close genetic localization suggest a functional link between these genes, which may play a pivotal role in the resistance of B. cereus to NO stress during infection. | 2021 | 34064887 |
| 598 | 15 | 0.9994 | Bacteria possessing two RelA/SpoT-like proteins have evolved a specific stringent response involving the acyl carrier protein-SpoT interaction. Bacteria respond to nutritional stress by producing (p)ppGpp, which triggers a stringent response resulting in growth arrest and expression of resistance genes. In Escherichia coli, RelA produces (p)ppGpp upon amino acid starvation by detecting stalled ribosomes. The SpoT enzyme responds to various other types of starvation by unknown mechanisms. We previously described an interaction between SpoT and the central cofactor of lipid synthesis, acyl carrier protein (ACP), which is involved in detecting starvation signals in lipid metabolism and triggering SpoT-dependent (p)ppGpp accumulation. However, most bacteria possess a unique protein homologous to RelA/SpoT (Rsh) that is able to synthesize and degrade (p)ppGpp and is therefore more closely related to SpoT function. In this study, we asked if the ACP-SpoT interaction is specific for bacteria containing two RelA and SpoT enzymes or if it is a general feature that is conserved in Rsh enzymes. By testing various combinations of SpoT, RelA, and Rsh enzymes and ACPs of E. coli, Pseudomonas aeruginosa, Bacillus subtilis and Streptococcus pneumoniae, we found that the interaction between (p)ppGpp synthases and ACP seemed to be restricted to SpoT proteins of bacteria containing the two RelA and SpoT proteins and to ACP proteins encoded by genes located in fatty acid synthesis operons. When Rsh enzymes from B. subtilis and S. pneumoniae are produced in E. coli, the behavior of these enzymes is different from the behavior of both RelA and SpoT proteins with respect to (p)ppGpp synthesis. This suggests that bacteria have evolved several different modes of (p)ppGpp regulation in order to respond to nutrient starvation. | 2009 | 18996989 |
| 8215 | 16 | 0.9994 | Insight into Two ABC Transporter Families Involved in Lantibiotic Resistance. Antimicrobial peptides, which contain (methyl)-lanthionine-rings are called lantibiotics. They are produced by several Gram-positive bacteria and are mainly active against these bacteria. Although these are highly potent antimicrobials, some human pathogenic bacteria express specific ABC transporters that confer resistance and counteract their antimicrobial activity. Two distinct ABC transporter families are known to be involved in this process. These are the Cpr- and Bce-type ABC transporter families, named after their involvement in cationic peptide resistance in Clostridium difficile, and bacitracin efflux in Bacillus subtilis, respectively. Both resistance systems differentiate to each other in terms of the proteins involved. Here, we summarize the current knowledge and describe the divergence as well as the common features present in both the systems to confer lantibiotic resistance. | 2017 | 29404338 |
| 8301 | 17 | 0.9994 | Metabolic disruption impairs ribosomal protein levels, resulting in enhanced aminoglycoside tolerance. Aminoglycoside antibiotics target ribosomes and are effective against a wide range of bacteria. Here, we demonstrated that knockout strains related to energy metabolism in Escherichia coli showed increased tolerance to aminoglycosides during the mid-exponential growth phase. Contrary to expectations, these mutations did not reduce the proton motive force or aminoglycoside uptake, as there were no significant changes in metabolic indicators or intracellular gentamicin levels between wild-type and mutant strains. Our comprehensive proteomics analysis unveiled a noteworthy upregulation of proteins linked to the tricarboxylic acid (TCA) cycle in the mutant strains during the mid-exponential growth phase, suggesting that these strains compensate for the perturbation in their energy metabolism by increasing TCA cycle activity to maintain their membrane potential and ATP levels. Furthermore, our pathway enrichment analysis shed light on local network clusters displaying downregulation across all mutant strains, which were associated with both large and small ribosomal binding proteins, ribosome biogenesis, translation factor activity, and the biosynthesis of ribonucleoside monophosphates. These findings offer a plausible explanation for the observed tolerance of aminoglycosides in the mutant strains. Altogether, this research provides valuable insights into the mechanisms of aminoglycoside tolerance, paving the way for novel strategies to combat such cells. | 2024 | 39093940 |
| 677 | 18 | 0.9994 | Essential role of K(+) uptake permease (Kup) for resistance to sucrose-induced stress in Gluconacetobacter diazotrophicus PAl 5. Microorganisms are constantly challenged by stressful conditions, such as sugar-rich environments. Such environments can cause an imbalance of biochemical activities and compromise cell multiplication. Gluconacetobacter diazotrophicus PAl 5 is among the most sugar-tolerant bacteria, capable of growing in the presence of up to 876 mM sucrose. However, the molecular mechanisms involved in its response to high sucrose remain unknown. The present work aimed to identify sucrose-induced stress resistance genes in G. diazotrophicus PAl 5. Screening of a Tn5 transposon insertion library identified a mutant that was severely compromised in its resistance to high sucrose concentrations. Molecular characterization revealed that the mutation affected the kupA gene, which encodes a K(+) uptake transporter (KupA). Functional complementation of the mutant with the wild type kupA gene recovered the sucrose-induced stress resistance phenotype. High sucrose resistance assay, under different potassium concentrations, revealed that KupA acts as a high-affinity K(+) transporter, which is essential for resistance to sucrose-induced stress, when extracellular potassium levels are low. This study is the first to show the essential role of the KupA protein for resistance to sucrose-induced stress in bacteria by acting as a high-affinity potassium transporter in G. diazotrophicus PAl 5. | 2017 | 27886654 |
| 704 | 19 | 0.9993 | Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in Burkholderia cenocepacia(†). One common mechanism of resistance against antimicrobial peptides in Gram-negative bacteria is the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) to the lipopolysaccharide (LPS) molecule. Burkholderia cenocepacia exhibits extraordinary intrinsic resistance to antimicrobial peptides and other antibiotics. We have previously discovered that unlike other bacteria, B. cenocepacia requires L-Ara4N for viability. Here, we describe the isolation of B. cenocepacia suppressor mutants that remain viable despite the deletion of genes required for L-Ara4N synthesis and transfer to the LPS. The absence of L-Ara4N is the only structural difference in the LPS of the mutants compared with that of the parental strain. The mutants also become highly sensitive to polymyxin B and melittin, two different classes of antimicrobial peptides. The suppressor phenotype resulted from a single amino acid replacement (aspartic acid to histidine) at position 31 of LptG, a protein component of the multi-protein pathway responsible for the export of the LPS molecule from the inner to the outer membrane. We propose that L-Ara4N modification of LPS provides a molecular signature required for LPS export and proper assembly at the outer membrane of B. cenocepacia, and is the most critical determinant for the intrinsic resistance of this bacterium to antimicrobial peptides. | 2012 | 22742453 |