# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6989 | 0 | 1.0000 | Viral Community and Virus-Associated Antibiotic Resistance Genes in Soils Amended with Organic Fertilizers. Antibiotic resistance is a global health concern. Long-term organic fertilization can influence the antibiotic resistome of agricultural soils, posing potential risks to human health. However, little is known about the contribution of viruses to the dissemination of antibiotic resistance genes (ARGs) in this context. Here, we profiled the viral communities and virus-associated ARGs in a long-term (over 10 years) organic fertilized field by viral metagenomic analysis. A total of 61,520 viral populations (viral operational taxonomic units, vOTUs) were retrieved, of which 21,308 were assigned at the family level. The viral community structures were significantly correlated with the bacterial community structures (P < 0.001) and the dosage of applied sewage sludge (r(2) = 0.782). A total of 16 unique ARGs were detected in soil viromes, and the number of virus-associated ARG subtypes was higher in sewage sludge treatments (except for 1 SS) than others. The network analysis showed that the application of the organic fertilizer increased the bacteria-virus interactions, suggesting that the chances of ARG exchange between viruses and their hosts may increase. Overall, our results provide a novel understanding about virus-associated ARGs and factors affecting the profile of viral community in fertilized soil. | 2021 | 34596377 |
| 6951 | 1 | 0.9999 | The vertical migration of antibiotic-resistant genes and pathogens in soil and vegetables after the application of different fertilizers. The prevalence of bacterial resistance caused by the application of animal manure has become an important environmental issue. Herein, the vertical migration of antibiotic resistance genes (ARGs) and pathogens in soil and vegetables after the application of different fertilizers was explored. The results showed that the application of composted manure considerably enhanced the abundance of most ARGs and pathogens, especially in surface soil and pakchoi roots. Moreover, the soil ARGs increased partially from log 1.93 to log 4.65 after the application of composted manure, and six pathogens were simultaneously detected. It was observed that the increase in soil depth decreased most ARGs and pathogens by log 1.04-2.24 and 53.98 %~85.54 %, respectively. This indicated that ARGs and pathogens still existed in the deep soil (80-100 cm). Moreover, total organic carbon had a significant influence on the pathogen distribution, whereas bacterial communities primarily drove the vertical migration of ARGs rather than environmental factors. Although most of the ARG-host associations observed in the surface soil were disappeared in deep soil as revealed by network analysis, some co-occurrence pattern still occurred in deep soil, suggesting that some ARGs might be carried to deep soil by their host bacteria. These results were novel in describing the vertical migration of ARGs in the environment after the application of different fertilizers, providing ideas for curbing their migration to crops. | 2022 | 34400159 |
| 7026 | 2 | 0.9999 | Organic fertilizer potentiates the transfer of typical antibiotic resistance gene among special bacterial species. The propagation of antibiotic resistance genes (ARGs) in environments has evoked many attentions, however, how to identify their host pathogenic bacteria in situ remains a great challenge. Here we explored the bacterial host distribution and dissemination of a typical ARG, sul1 gene, in agricultural soils through the simultaneous detection of sul1 and its host 16S rRNA gene by emulsion paired isolation and concatenation PCR (epicPCR). Compared to chemical fertilizer, organic fertilizer (chicken manure) led to a higher prevalence of sul1 gene in the soil, and dominant bacterial hosts of sul1 gene were classified into Proteobacteria and Bacteroidetes phyla. Additionally, significant higher diversity of antibiotic resistance bacteria (ARB), higher rate of horizontal gene transfer (HGT), higher rate of mobile genetic elements (MGE) and higher proportion of pathogens were all observed in the treatment of organic fertilizer. This study alerts potential health risks of manure applications in agricultural soils. | 2022 | 35483268 |
| 7389 | 3 | 0.9999 | Temporal changes of antibiotic-resistance genes and bacterial communities in two contrasting soils treated with cattle manure. The emerging environmental spread of antibiotic-resistance genes (ARGs) and their subsequent acquisition by clinically relevant microorganisms is a major threat to public health. Animal manure has been recognized as an important reservoir of ARGs; however, the dissemination of manure-derived ARGs and the impacts of manure application on the soil resistome remain obscure. Here, we conducted a microcosm study to assess the temporal succession of total bacteria and a broad spectrum of ARGs in two contrasting soils following manure application from cattle that had not been treated with antibiotics. High-capacity quantitative PCR detected 52 unique ARGs across all the samples, with β-lactamase as the most dominant ARG type. Several genes of soil indigenous bacteria conferring resistance to β-lactam, which could not be detected in manure, were found to be highly enriched in manure-treated soils, and the level of enrichment was maintained over the entire course of 140 days. The enriched β-lactam resistance genes had significantly positive relationships with the relative abundance of the integrase intI1 gene, suggesting an increasing mobility potential in manure-treated soils. The changes in ARG patterns were accompanied by a significant effect of cattle manure on the total bacterial community compositions. Our study indicates that even in the absence of selective pressure imposed by agricultural use of antibiotics, manure application could still strongly impact the abundance, diversity and mobility potential of a broad spectrum of soil ARGs. Our findings are important for reliable prediction of ARG behaviors in soil environment and development of appropriate strategies to minimize their dissemination. | 2016 | 26712351 |
| 6885 | 4 | 0.9999 | Abundant bacteria shaped by deterministic processes have a high abundance of potential antibiotic resistance genes in a plateau river sediment. Recent research on abundant and rare bacteria has expanded our understanding of bacterial community assembly. However, the relationships of abundant and rare bacteria with antibiotic resistance genes (ARGs) remain largely unclear. Here, we investigated the biogeographical patterns and assembly processes of the abundant and rare bacteria from river sediment at high altitudes (Lhasa River, China) and their potential association with the ARGs. The results showed that the abundant bacteria were dominated by Proteobacteria (55.4%) and Cyanobacteria (13.9%), while the Proteobacteria (33.6%) and Bacteroidetes (18.8%) were the main components of rare bacteria. Rare bacteria with a large taxonomic pool can provide function insurance in bacterial communities. Spatial distribution of persistent abundant and rare bacteria also exhibited striking differences. Strong selection of environmental heterogeneity may lead to deterministic processes, which were the main assembly processes of abundant bacteria. In contrast, the assembly processes of rare bacteria affected by latitude were dominated by stochastic processes. Abundant bacteria had the highest abundance of metabolic pathways of potential drug resistance in all predicted functional genes and a high abundance of potential ARGs. There was a strong potential connection between these ARGs and mobile genetic elements, which could increase the ecological risk of abundant taxa and human disease. These results provide insights into sedimental bacterial communities and ARGs in river ecosystems. | 2022 | 36406442 |
| 6884 | 5 | 0.9999 | The changes in antibiotic resistance genes during 86 years of the soil ripening process without anthropogenic activities. This study aimed to reveal the baseline of natural variations in antibiotic resistance genes (ARGs) in soil without anthropogenic activities over the decades. Nine soil samples with different time of soil formation were taken from the Yancheng Wetland National Nature Reserve, China. ARGs and mobile genetic elements (MGEs) were characterized using metagenomic analysis. A total of 196 and 192 subtypes of ARGs were detected in bulk soil and rhizosphere, respectively. The diversity and abundance of ARGs were stable during 69 years probably due to the alkaline pH soil environment but not due to antibiotics. Increases in ARGs after 86 years were probably attributed to more migrant birds inhabited compared with other sampling sites. Multidrug was the most abundant type, and largely shared by soil samples. It was further shown that soil samples could not be clearly distinguished, suggesting a slow process of succession of ARGs in the mudflat. The variation partitioning analysis revealed that the ARG profile was driven by the comprehensive effects exhibited by the bacterial community, MGEs, and environmental factors. Besides, pathogenic bacteria containing ARGs mediated by migrant birds in the area with 86 years of soil formation history nearing human settlements needed special attention. This study revealed the slow variations in ARGs in the soil ripening process without anthropogenic activities over decades, and it provided information for assessing the effect of human activities on the occurrence and dissemination of ARGs. | 2021 | 33228990 |
| 6988 | 6 | 0.9999 | Plant cultivar determined bacterial community and potential risk of antibiotic resistance gene spread in the phyllosphere. The global increased antibiotic resistance level in pathogenic microbes has posed a significant threat to human health. Fresh vegetables have been recognized to be an important vehicle of antibiotic resistance genes (ARGs) from environments to human beings. Phyllosphere ARGs have been indicated to be changed with plant species, yet the influence of plant cultivar on the phyllospheric resistome is still unclear. Here, we detected the ARGs and bacterial communities in the phyllosphere of two cultivars of cilantros and their corresponding soils using high-throughput quantitative PCR technique and bacterial 16S rRNA gene-based high-throughput sequencing, respectively. We further identified the potential bacterial pathogens and analyzed the effects of plant cultivar on ARGs, mobile genetic elements (MGEs), microbiome and potential bacterial pathogens. The results showed that the cultivars did not affect the ARG abundance and composition, but significantly shaped the abundance of MGEs and the composition structure of bacteria in the phyllosphere. The relative abundance of potential bacterial pathogens was significantly higher in the phyllosphere than that in soils. Mantel test showed that the ARG patterns were significantly correlated to the patterns of potential bacterial pathogens. Our results suggested that the horizontal gene transfer of ARGs in the phyllosphere might be different between the two cultivars of cilantro and highlighted the higher risk of phyllospheric microorganisms compared with those in soils. These findings extend our knowledge on the vegetable microbiomes, ARGs, and potential pathogens, suggesting more agricultural and hygiene protocols are needed to control the risk of foodborne ARGs. | 2023 | 36522081 |
| 6987 | 7 | 0.9999 | Chemical fertilizers promote dissemination of ARGs in maize rhizosphere: An overlooked risk revealed after 37-year traditional agriculture practice. Bacterial communities in soil and rhizosphere maintain a large collection of antibiotic resistance genes (ARGs). However, few of these ARGs and antibiotic resistant bacteria (ARB) are well-characterized under traditional farming practices. Here we compared the ARG profiles of maize rhizosphere and their bulk soils using metagenomic analysis to identify the ARG dissemination and explored the potential impact of chemical fertilization on ARB. Results showed a relatively lower abundance but higher diversity of ARGs under fertilization than straw-return. Moreover, the abundance and diversity of MGEs were significantly promoted by chemical fertilizer inputs in the rhizosphere compared to bulk soil. Machine learning and bipartite networks identified three bacterial genera (Pseudomonas, Bacillus and Streptomyces) as biomarkers for ARG accumulation. Thus we cultured 509 isolates belonging to these three genera from the rhizosphere and tested their antimicrobial susceptibility, and found that multi-resistance was frequently observed among Pseudomonas isolates. Assembly-based tracking explained that ARGs and four class I integrons (LR134330, LS998783, CP065848, LT883143) were co-occurred among contigs from Pseudomonas sp. Chemical fertilizers may shape the resistomes of maize rhizosphere, highlighting that rhizosphere carried multidrug-resistant Pseudomonas isolates, which may pose a risk to animal and human health. This study adds knowledge of long-term chemical fertilization on ARG dissemination in farmland systems and provides information for decision-making in agricultural production and monitoring. | 2024 | 38844214 |
| 6982 | 8 | 0.9999 | Viral Communities Suppress the Earthworm Gut Antibiotic Resistome by Lysing Bacteria on a National Scale. Earthworms are critical in regulating soil processes and act as filters for antibiotic resistance genes (ARGs). Yet, the geographic patterns and main drivers of earthworm gut ARGs remain largely unknown. We collected 52 earthworm and soil samples from arable and forest ecosystems along a 3000 km transect across China, analyzing the diversity and abundance of ARGs using shotgun metagenomics. Earthworm guts harbored a lower diversity and abundance of ARGs compared to soil, resulting in a stronger distance-decay rate of ARGs in the gut. Greater deterministic assembly processes of ARGs were found in the gut than in soil. The earthworm gut had a lower frequency of co-occurrence patterns between ARGs and mobile genetic elements (MGEs) in forest than in arable systems. Viral diversity was higher in the gut compared to soil and was negatively correlated with bacterial diversity. Bacteria such as Streptomyces and Pseudomonas were potential hosts of both viruses and ARGs. Viruses had negative effects on the diversity and abundance of ARGs, likely due to the lysis on ARG-bearing bacteria. These findings provide new insights into the variations of ARGs in the earthworm gut and highlight the vital role of viruses in the regulation of ARGs in the soil ecosystem. | 2024 | 39037720 |
| 6888 | 9 | 0.9998 | Viral Communities Contribute More to the Lysis of Antibiotic-Resistant Bacteria than the Transduction of Antibiotic Resistance Genes in Anaerobic Digestion Revealed by Metagenomics. Ecological role of the viral community on the fate of antibiotic resistance genes (ARGs) (reduction vs proliferation) remains unclear in anaerobic digestion (AD). Metagenomics revealed a dominance of Siphoviridae and Podoviridae among 13,895 identified viral operational taxonomic units (vOTUs) within AD, and only 21 of the vOTUs carried ARGs, which only accounted for 0.57 ± 0.43% of AD antibiotic resistome. Conversely, ARGs locating on plasmids and integrative and conjugative elements accounted for above 61.0%, indicating a substantial potential for conjugation in driving horizontal gene transfer of ARGs within AD. Virus-host prediction based on CRISPR spacer, tRNA, and homology matches indicated that most viruses (80.2%) could not infect across genera. Among 480 high-quality metagenome assembly genomes, 95 carried ARGs and were considered as putative antibiotic-resistant bacteria (pARB). Furthermore, lytic phages of 66 pARBs were identified and devoid of ARGs, and virus/host abundance ratios with an average value of 71.7 indicated extensive viral activity and lysis. The infectivity of lytic phage was also elucidated through laboratory experiments concerning changes of the phage-to-host ratio, pH, and temperature. Although metagenomic evidence for dissemination of ARGs by phage transduction was found, the higher proportion of lytic phages infecting pARBs suggested that the viral community played a greater role in reducing ARB numbers than spreading ARGs in AD. | 2024 | 38267392 |
| 6981 | 10 | 0.9998 | Decline in the Relative Abundance of Antibiotic Resistance Genes in Long-Term Fertilized Soil and Its Driving Factors. The changes in antibiotic resistance genes (ARGs) in long-term fertilized soil remain controversial. We aimed to analyze the variation characteristics of ARGs in long-term fertilized soil using metagenomic sequencing. The relative abundance of ARGs did not increase significantly after 7 years of fertilization. However, a clear decline in the relative abundance of ARGs was observed compared to the data from the 4th year. Microbial adaptation strategies in response to changes in the ARG abundance were associated with shifts in microbiome composition and function. Among these, bacterial abundance was the primary driving factor. Additionally, total heavy metal content might serve as the most significant co-selective pressure influencing ARG number. We believe that increasing the selective pressure from heavy metals and antibiotics might result in the loss of certain microbial species and a decrease in ARG abundance. This study provides novel insights into the variations of soil resistance genes under long-term fertilization. | 2025 | 40785530 |
| 7038 | 11 | 0.9998 | Interactions between fungi and bacteria hosts carrying MGEs is dominant for ARGs fate during manure mesophilic composting. The mycelial networks of fungi promote the interaction between the originally isolated bacteria, thereby potentially enhancing the exchange of nutrients and the horizontal transfer of genetic materials. However, the driving effect of fungi on antibiotic resistance genes (ARGs) during mesophilic facultative composting is still unclear. This study aims to elucidate the changes in ARGs and underlying mechanisms during the mesophilic composting of manure. Results indicated that reduction rates of ARGs in sheep and pig manure over a 90-day composting period were 34.68% and 60.10%, respectively. The sul1, sul2 and tetX were identified as recalcitrant ARGs in both composting treatments, with the additional unique recalcitrant gene addA observed in sheep manure. Fungal communities appeared to have a more significant influence on the cooperation between bacteria and fungi. Massive fungi interacted intensively with bacterial hosts carrying both ARGs and mobile genetic elements (MGEs). In sheep and pig manure, there were 53 and 38 potential bacterial hosts (genus level) carrying both ARGs and MGEs, associated close interactions with fungi. Structural equation modeling revealed that compost properties influence ARGs by affecting the abundance of core fungi and the hosts carrying MGEs, and that core fungi could also impact ARGs by influencing the bacterial hosts carrying MGEs. Core fungi have the potential to facilitate the horizontal transfer of ARGs by enhancing bacterial network interactions. | 2025 | 39764902 |
| 6827 | 12 | 0.9998 | Metagenomic profiles of planktonic bacteria and resistome along a salinity gradient in the Pearl River Estuary, South China. Estuarine ecosystems undergo pronounced and intricate changes due to the mixing of freshwater and saltwater. Additionally, urbanization and population growth in estuarine regions result in shifts in the planktonic bacterial community and the accumulation of antibiotic resistance genes (ARGs). The dynamic changes in bacterial communities, environmental factors, and carriage of ARGs from freshwater to seawater, as well as the complex interrelationships among these factors, have yet to be fully elucidated. Here, we conducted a comprehensive study based on metagenomic sequencing and full-length 16S rRNA sequencing, covering the entire Pearl River Estuary (PRE) in Guangdong, China. The abundance and distribution of the bacterial community, ARGs, mobile genetic elements (MGEs), and bacterial virulence factors (VFs) were analyzed on a site-by-site basis through sampling along the salinity gradient in PRE, from upstream to downstream. The structure of the planktonic bacterial community undergoes continuous changes in response to variations in estuarine salinity, with the phyla Proteobacteria and Cyanobacteria being dominant bacterial throughout the entire region. The diversity and abundance of ARGs and MGEs gradually decreased with the direction of water flow. A large number of ARGs were carried by potentially pathogenic bacteria, especially in Alpha-proteobacteria and Beta-proteobacteria. Multi-drug resistance genes have the highest abundance and subtypes in PRE. In addition, ARGs are more linked to some MGEs than to specific bacterial taxa and disseminate mainly by HGT and not by vertical transfer in the bacterial communities. Various environmental factors, such as salinity and nutrient concentrations, have a significantly impact on the community structure and distribution of bacteria. In conclusion, our results represent a valuable resource for further investigating the intricate interplay between environmental factors and anthropogenic disturbances on bacterial community dynamics. Moreover, they contribute to a better understanding of the relative impact of these factors on the dissemination of ARGs. | 2023 | 37211102 |
| 7010 | 13 | 0.9998 | Dynamics of metal(loid) resistance genes driven by succession of bacterial community during manure composting. Metal(loid) resistance genes (MRGs) play important roles in conferring resistance to metal(loid)s in bacterial communities. How MRGs respond to bacterial succession during manure composting remains largely unknown. Metagenomics was used in the present study to investigate the compositional changes of MRGs, their candidate hosts and association with integrons during thermophilic composting of chicken manures. MRGs conferring resistance to 20 metal(loid)s were detected, and their diversity and abundance (normalized to the abundance of 16S rRNA genes) were significantly reduced during composting. MRGs associated with integron were exclusively observed in proteobacterial species. Class 1 integron likely played an important role in maintaining mercury-resistance mer operon genes in composts. Escherichia coli harbored the most abundant MRGs in the original composting material, whereas species of Actinobacteria and Bacilli became more important in carrying MRGs during the late phases. There were significant linear relationships between the relative abundance of some specific bacterial species (E. coli, Actinobacteria species and Enterococcus faecium) and the abundance of MRGs they potentially harbored. The succession of these bacteria contributed to an overall linear regression between the relative abundance of all predicted candidate hosts and the abundance of total MRGs. Our results suggest that the succession of bacterial community was the main driver of MRG dynamics during thermophilic composting. | 2019 | 31563779 |
| 6949 | 14 | 0.9998 | Tracing the transfer characteristics of antibiotic resistance genes from swine manure to biogas residue and then to soil. Based on laboratory simulation experiments and metagenomic analysis, this study tracked the transmission of antibiotic resistance genes (ARGs) from swine manure (SM) to biogas residue and then to soil (biogas residue as organic fertilizer (OF) application). ARGs were abundant in SM and they were assigned to 11 categories of antibiotics. Among the 383 ARG subtypes in SM, 43 % ARG subtypes were absent after anaerobic digestion (AD), which avoided the transfer of these ARGs from SM to soil. Furthermore, 9 % of the ARG subtypes in SM were introduced into soil after amendment with OF. Moreover, 43 % of the ARG subtypes in SM were present in OF and soil, and their abundances increased slightly in the soil amended with OF. The bacterial community in the soil treated with OF was restored to its original state within 60 to 90 days, probably because the abundances of ARGs were elevated but not significantly in the soil. Network analysis identified 31 potential co-host bacteria of ARGs based on the relationships between the bacteria community members, where they mainly belonged to Firmicutes, followed by Bacteroidetes, Actinobacteria, and Proteobacteria. This study provides a basis for objectively evaluating pollution by ARGs in livestock manure for agricultural use. | 2024 | 38072280 |
| 6977 | 15 | 0.9998 | Tracking virulence genes and their interaction with antibiotic resistome during manure fertilization. Antibiotic resistance genes, collectively termed as antibiotic resistome, are regarded as emerging contaminants. Antibiotics resistome can be highly variable in different environments, imposing environmental safety concern and public health risk when it is in conjunction with pathogenic bacteria. However, it remains elusive how pathogenic bacteria interact with antibiotic resistome, making it challenging to assess microbial risk. Here, we examined the presence and relative abundance of bacterial virulence genes representing potential pathogens in swine manure, compost, compost-amended soil, and unamended agricultural soil in five suburban areas of Beijing, China. The absolute abundances of virulence genes were marginally significantly (p < 0.100) increased in compost-amended soils than unamended soil, revealing potential health risks in manure fertilization. The composition of potential pathogens differed by sample types and was linked to temperature, antibiotics, and heavy metals. As antibiotics can confer pathogens the resistance to clinic treatment, it was alarming to note that virulence genes tended to co-exist with antibiotic resistance genes, as shown by prevalently positive links among them. Collectively, our results demonstrate that manure fertilization in agriculture might give rise to the development of potentially antibiotic-resistant pathogens, unveiling an environmental health risk that has been frequently overlooked. | 2022 | 35810986 |
| 6980 | 16 | 0.9998 | Effects of agricultural inputs on soil virome-associated antibiotic resistance and virulence: A focus on manure, microplastic and pesticide. Soil viruses are increasingly recognized as crucial mediators of horizontal gene transfer, yet their role in disseminating antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) under agricultural disturbances remains poorly understood. Here, we characterized the viromes and associated ARGs and VFGs in agricultural soils treated with low- and high-dose manures, microplastics, and pesticides. Using metagenomic sequencing coupled with advanced viral identification tools, we found that manure fertilization markedly altered viral community composition and increased viral diversity. Manure also enhanced the abundance of ARGs and VFGs in viromes by 2.0-9.8-fold and 2.0-8.1-fold, respectively, while microplastics and pesticides had limited impacts. Additionally, gene pathways related to human diseases and environmental adaptation were enriched in soil viromes treated with manures and high-dose pesticides. Virus-host prediction revealed that Actinomycetia dominated bacterial hosts of both ARG- and VFG-carrying viruses, with some VFG-carrying viruses linked to potential human pathogens, e.g., Escherichia albertii and Klebsiella pneumoniae. Co-occurrence network analysis indicated that these disturbances strengthened connections between bacteria, viruses, and ARGs (or VFGs). Our study provides a comprehensive profile of viromes and associated risks in agricultural soil under three disturbances, highlighting the role of viruses in spread of antibiotic resistance and pathogenic risks in agricultural soil. | 2025 | 40752173 |
| 6846 | 17 | 0.9998 | Antibiotic resistance genes in an urban river as impacted by bacterial community and physicochemical parameters. Antibiotic resistance genes (ARGs) in urban rivers are a serious public health concern in regions with poorly planned, rapid development. To gain insights into the predominant factors affecting the fate of ARGs in a highly polluted urban river in eastern China, a total of 285 ARGs, microbial communities, and 20 physicochemical parameters were analyzed for 17 sites. A total of 258 unique ARGs were detected using high-throughput qPCR, and the absolute abundance of total ARGs was positively correlated with total organic carbon and total dissolved nitrogen concentrations (P < 0.01). ARG abundance and diversity were greatly altered by microbial community structure. Variation partitioning analysis showed that the combined effects of multiple factors contributed to the profile and dissemination of ARGs, and variation of microbial communities was the major factor affecting the distribution of ARGs. The disparate distribution of some bacteria, including Bacteroides from mammalian gastrointestinal flora, Burkholderia from zoonotic infectious diseases, and Zoogloea from wastewater treatment, indicates that the urban river was strongly influenced by point-source pollution. Results imply that microbial community shifts caused by changes in water quality may lead to the spread of ARGs, and point-source pollution in urban rivers requires greater attention to control the transfer of ARGs between environmental bacteria and pathogens. | 2017 | 28864929 |
| 6902 | 18 | 0.9998 | Antibiotic resistance genes in surface water and groundwater from mining affected environments. Mining activities are known to generate a large amount of mine tailings and acid mine drainage which contain varieties of heavy metals. Heavy metals play an important role in co-selection for bacterial antibiotic resistance. However, the characteristics of antibiotic resistance genes (ARGs) in mining-affected water environments are still unclear. Here we investigated the pollution of metals, profiles of ARGs, mobile genetic elements (MGEs) and microbial community in mining-affected surface water and groundwater. The results showed that in the tested water samples, the concentrations of Zn and Mn were the highest, and Ni was the lowest. Higher abundances of ARGs with great proportion of sulfonamides, chloramphenicols and tetracyclines resistance genes were found in mining-affected water when compared with those without mining activities. Additionally, there were positive correlations between heavy metals (especially Ni, Zn and Mn) and these ARGs. Linear regression analysis suggested that MGEs were positively correlated with ARGs. In addition, total phosphorus was correlated with ARGs (p < 0.05). The microbial community was different between the mining-affected water and the reference (p < 0.05). Proteobacteria, Bacteroidetes and Actinobacteria were dominant phyla in the surface water and groundwater. Network analysis showed that many ARGs were significantly associated with these dominant bacteria, which suggested they might be potential hosts for these ARGs. These findings provide a clear evidence that the mining activities in the study area had a significant impact on surface water and groundwater to different degrees. | 2021 | 33571766 |
| 6976 | 19 | 0.9998 | Unveiling the critical role of overlooked consumer protist-bacteria interactions in antibiotic resistance gene dissemination in urban sewage systems. Antibiotic resistance genes (ARGs) are emerging contaminants of significant concern due to their role in facilitating the spread of antibiotic resistance, especially high-risk ARGs, which are characterized by high human accessibility, gene mobility, pathogenicity, and clinical availability. Studies have shown that cross-domain interactions, such as those between consumer protists (consumers) and bacteria, can influence bacterial diversity, distribution, and function through top-down control. The consumers-bacteria interactions may also affect the occurrence and distribution of ARGs, yet this has been scarcely explored in field investigations. We conducted a city-scale investigation of ARGs, protists, and bacterial communities across each unit of the urban sewage system (USS), including 49 sewage pumping stations (SW), as well as influent (IF), activated sludge (AS), and effluent (EF) from seven wastewater treatment plants. Interestingly, consumers-bacteria interactions, as indicated by indices of bipartite relevance networks (i.e., connectedness and cohesion), increased from SW and IF to AS and EF. Structural equation modelling (SEM) revealed that consumers-bacteria interactions had a greater influence on the abundance of total ARGs and high-risk ARGs than seasonal or environmental factors. Notably, the total effects of consumers-bacteria interactions in SEM were significant (P < 0.05) and comparable in both IF and EF, even with the decrease in ARG abundance from IF to EF. This suggests a potential risk of ARG spread to the environment, facilitated by consumer protists in the EF. Additionally, the relevance network also demonstrated an increasing trend in the relationships between consumer protists and potential hosts of high-risk ARGs from raw sewage (SW and IF) to AS and EF. Overall, this study emphasizes the importance of integrating multitrophic microbial interactions to better understand and mitigate the dissemination of ARGs in sewage systems. | 2025 | 39662352 |