# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6969 | 0 | 1.0000 | Fate of antibiotic resistance genes in cultivation substrate and its association with bacterial communities throughout commercial production of Agaricus bisporus. Animal manure is an important raw material for Agaricus bisporus production; however, it is also a reservoir for antibiotic residues, antibiotic resistance genes (ARGs), and antibiotic-resistant bacteria. Little is known about the influence of the commercial cultivation of A. bisporus on the dynamics of ARGs and the underlying mechanisms that cause their variations. In this study, we investigated the fate of 285 ARGs, 10 mobile genetic elements, and seven major categories of antibiotic residues in substrate and mushroom samples at different production phases. The results showed that commercial substrate preparation, particularly the pasteurization phase, was highly efficient in removing ARGs from the substrate. We further found that mycelium proliferation of A. bisporus contributed significantly to the removal of ARGs from the substrate and casing soil. The bacterial community is the key driver of changes in ARGs during the commercial cultivation of A. bisporus, which explained 46.67% of the variation in ARGs. Our results indicate that, despite the addition of animal manure, the risk of ARG dissemination to fruiting bodies and the environment is low. We propose that bioremediation by specific edible fungi might be a novel and promising method for scavenging antimicrobial resistance contamination from soil environment. | 2023 | 36508827 |
| 7034 | 1 | 0.9997 | Meta-analysis reveals the processes and conditions of using biochar to control antibiotic resistance genes in soil. Soil is a significant reservoir of antibiotic resistance genes (ARGs) and an important habitat for pathogens associated with many clinical infections and plant disease outbreaks. Although scientists have found that biochar can reduce ARGs in soil, the understanding of how biochar removes soil ARGs and the influencing factors remains limited. Here, a meta-analysis of 65 published studies was conducted to illuminate the mechanisms through which biochar remediates ARG-contaminated soils. In biochar-amended soil, the antibiotic content significantly decreased by 24.1 %, while the abundances of mobile genetic elements and ARG host bacteria declined by 23.5 % and 12.1 %, respectively. The reduced antibiotic content, suppressed mobile genetic elements, and altered bacterial community structure collectively led to a 41.8 % reduction in soil ARG abundance. In addition, wood-derived biochar pyrolyzed at 300-500 °C exhibited a substantial advantage in the remediation of ARGs. Furthermore, biochar application decreased the abundance of ARGs in alkaline and neutral soil more markedly than that in acidic soil. The results of this research confirmed the positive mitigating effect of biochar on ARGs in soil, providing valuable insights for the prevention and control of ARG pollution. | 2025 | 40359860 |
| 6951 | 2 | 0.9997 | The vertical migration of antibiotic-resistant genes and pathogens in soil and vegetables after the application of different fertilizers. The prevalence of bacterial resistance caused by the application of animal manure has become an important environmental issue. Herein, the vertical migration of antibiotic resistance genes (ARGs) and pathogens in soil and vegetables after the application of different fertilizers was explored. The results showed that the application of composted manure considerably enhanced the abundance of most ARGs and pathogens, especially in surface soil and pakchoi roots. Moreover, the soil ARGs increased partially from log 1.93 to log 4.65 after the application of composted manure, and six pathogens were simultaneously detected. It was observed that the increase in soil depth decreased most ARGs and pathogens by log 1.04-2.24 and 53.98 %~85.54 %, respectively. This indicated that ARGs and pathogens still existed in the deep soil (80-100 cm). Moreover, total organic carbon had a significant influence on the pathogen distribution, whereas bacterial communities primarily drove the vertical migration of ARGs rather than environmental factors. Although most of the ARG-host associations observed in the surface soil were disappeared in deep soil as revealed by network analysis, some co-occurrence pattern still occurred in deep soil, suggesting that some ARGs might be carried to deep soil by their host bacteria. These results were novel in describing the vertical migration of ARGs in the environment after the application of different fertilizers, providing ideas for curbing their migration to crops. | 2022 | 34400159 |
| 6983 | 3 | 0.9997 | Deciphering Potential Roles of Earthworms in Mitigation of Antibiotic Resistance in the Soils from Diverse Ecosystems. Earthworms are capable of redistributing bacteria and antibiotic resistance genes (ARGs) through soil profiles. However, our understanding of the earthworm gut microbiome and its interaction with the antibiotic resistome is still lacking. Here, we characterized the earthworm gut and soil microbiome and antibiotic resistome in natural and agricultural ecosystems at a national scale, and microcosm studies and field experiments were also employed to test the potential role of earthworms in dynamics of soil ARGs. The diversity and structure of bacterial communities were different between the earthworm gut and soil. A significant correlation between bacterial community dissimilarity and spatial distance between sites was identified in the earthworm gut. The earthworm gut consistently had lower ARGs than the surrounding soil. A significant reduction in the relative abundance of mobile genetic elements and dominant bacterial phylotypes that are the likely hosts of ARGs was observed in the earthworm gut compared to the surrounding soil, which might contribute to the decrease of ARGs in the earthworm gut. The microcosm studies and field experiments further confirmed that the presence of earthworms significantly reduced the number and abundance of ARGs in soils. Our study implies that earthworm-based bioremediation may be a method to reduce risks associated with the presence of ARGs in soils. | 2021 | 33977709 |
| 7632 | 4 | 0.9997 | Metagenomic insights into the rapid recovery mechanisms of prokaryotic community and spread of antibiotic resistance genes after seawater disinfection. Disinfectants, such as bleaching powder, are widely employed in marine aquaculture worldwide to control the bacterial pathogens and eliminate antibiotic resistance genes (ARGs). Nevertheless, the rapid recovery of prokaryotic community compositions (PCCs) after disinfection may significantly influence the overall efficacy of disinfection. Presently, little is known about the rapid recovery mechanisms of PCCs and its impact on the removal of ARGs in seawater. In this study, 16S rRNA gene sequencing and metagenomic analysis were used to address the above concerns through simulating the disinfection process in aquaculture. The results showed that recovery of PCCs began within 16 h. The underlying mechanisms of the rapid recovery of PCCs were the synergistic interactions between microbes and the residues of disinfection-resistant bacteria (DRB). Disinfection resistance genes (DRGs) related to efflux pump serve as the primary molecular foundation providing DRB to resist disinfection. Among the 78 annotated ARGs, only 10 ARGs exhibited a significant decrease (P < 0.05) after 72 h, implying the ineffective removal of ARGs by bleaching powder. Furthermore, bacterial co-resistance to disinfectants and antibiotics was observed. Genome analysis of two highly resistant DRB from Pseudomonadaceae revealed that both DRB carried 16 DRGs, aiding the recovery of PCCs and the spread of ARGs. These findings provide novel insights in the mechanisms of the rapid recovery of PCCs and bacterial co-resistance to disinfectants and antibiotics, which can be crucial for the management of pathogens and antibiotic resistance in seawater. | 2025 | 39637691 |
| 7486 | 5 | 0.9997 | Body size: A hidden trait of the organisms that influences the distribution of antibiotic resistance genes in soil. Body size is a key life-history trait of organisms, which has important ecological functions. However, the relationship between soil antibiotic resistance gene (ARG) distribution and organisms' body size has not been systematically reported so far. Herein, the impact of organic fertilizer on the soil ARGs and organisms (bacteria, fungi, and nematode) at the aggregate level was analyzed. The results showed that the smaller the soil aggregate size, the greater the abundance of ARGs, and the larger the body size of bacteria and nematodes. Further analysis revealed significant positive correlations of ARG abundance with the body sizes of bacteria, fungi, and nematodes, respectively. Additionally, the structural equation model demonstrated that changes in soil fertility mainly regulate the ARG abundance by affecting bacterial body size. The random forest model revealed that total phosphorus was the primary soil fertility factor influencing the body size of organisms. Therefore, these findings proposed that excessive application of phosphate fertilizers could increase the risk of soil ARG transmission by increasing the body size of soil organisms. This study highlights the significance of organisms' body size in determining the distribution of soil ARGs and proposes a new disadvantage of excessive fertilization from the perspective of ARGs. | 2024 | 38696961 |
| 6954 | 6 | 0.9997 | Temporal effects of repeated application of biogas slurry on soil antibiotic resistance genes and their potential bacterial hosts. Biogas slurry, a liquid end product of animal manure fermentation, is widely used as fertilizer in crop fields. Land application may introduce antibiotics and related resistance genes from livestock production into agricultural soil. Nevertheless, changes in antimicrobial resistance in soil where biogas slurry has been repeatedly applied are not fully understood. In the present study, 13 veterinary antibiotics were analyzed in soils that were repeatedly sprayed with biogas slurry, and simultaneously, temporal changes in antibiotic resistance genes (ARGs) and bacterial community composition were investigated using a real-time quantitative PCR assay and MiSeq sequencing. Long-term repeated application of biogas slurry did not result in excessive accumulation of antibiotic residuals in the soil but increased the abundance of ARGs and facilitated ARG transfer among potential hosts. Although the quantitative PCR assay showed a decreasing trend for the relative abundance of ARGs over time, a relevance network analysis revealed highly complex bacteria-ARG co-occurrence after long-term application, which implied that repeated application might intensify horizontal gene transfer (HGT) of ARGs among different bacterial hosts in soil. The increased relative abundance of the intl1 gene supported the shift in ARG-bacteria co-occurrence. Furthermore, ordination analysis showed that the distributions of antibiotic resistance bacteria (ARB) and ARGs were closely related to application duration than to the influence of antibiotic residuals in the biogas slurry-treated soil environment. Additionally, natural level of ARG abundance in untreated soils indirectly suggested the presence/absence of antibiotics was not a key determinant causing the spread of antimicrobial resistance. This study provides improved insight into the effects of long-term repeated application of biogas slurry on the shift in ARG abundances and bacteria-ARG co-occurrence in soils, highlighting the need to focus on the influence of changed soil environment on the ARG transfer. | 2020 | 31818620 |
| 7030 | 7 | 0.9997 | Metagenomic profiling of antibiotic resistance genes/bacteria removal in urban water: Algal-bacterial consortium treatment system. Antibiotic resistance genes (ARGs) have exhibited significant ecological concerns, especially in the urban water that are closely associated with human health. In this study, with presence of exogenous Chlorella vulgaris-Bacillus licheniformis consortium, most of the typical ARGs and MGEs were removed. Furthermore, the relative abundance of potential ARGs hosts has generally decreased by 1-4 orders of magnitude, revealing the role of algal-bacterial consortium in cutting the spread of ARGs in urban water. While some of ARGs such as macB increased, which may be due to the negative impact of algicidal bacteria and algal viruses in urban water on exogenous C. vulgaris and the suppression of exogenous B. licheniformis by indigenous microorganisms. A new algal-bacterial interaction might form between C. vulgaris and indigenous microorganisms. The interplay between C. vulgaris and bacteria has a significant impact on the fate of ARGs removal in urban water. | 2024 | 38801952 |
| 6955 | 8 | 0.9997 | Soil antibiotic resistance genes accumulate at different rates over four decades of manure application. Manure can be a source of antibiotic resistance genes (ARGs) that enter the soil. However, previous studies assessing ARG persistence in soil have generally lacked continuity over sampling times, consistency of location, and assessing the impact of discontinuing manure application. We evaluated both short- and long-term ARG accumulation dynamics in soil with a 40-year known history of manure use. Manure application caused a greater abundance of tetracycline, macrolide, and sulfonamide ARGs in the soil. There was an initial spike in ARG abundance resulting from manure bacteria harboring ARGs being introduced to soil, followed by resident soil bacteria out-competing them, which led to ARG dissipation within a year. However, over four decades, annual manure application caused linear or exponential ARG accumulation, and bacteria associated with ARGs differed compared to those in the short term. Eleven years after discontinuing manure application, most soil ARG levels declined but remained elevated. We systematically explored the historical accumulation of ARGs in manured soil, and provide insight into factors that affect their persistence. | 2023 | 36444046 |
| 6981 | 9 | 0.9997 | Decline in the Relative Abundance of Antibiotic Resistance Genes in Long-Term Fertilized Soil and Its Driving Factors. The changes in antibiotic resistance genes (ARGs) in long-term fertilized soil remain controversial. We aimed to analyze the variation characteristics of ARGs in long-term fertilized soil using metagenomic sequencing. The relative abundance of ARGs did not increase significantly after 7 years of fertilization. However, a clear decline in the relative abundance of ARGs was observed compared to the data from the 4th year. Microbial adaptation strategies in response to changes in the ARG abundance were associated with shifts in microbiome composition and function. Among these, bacterial abundance was the primary driving factor. Additionally, total heavy metal content might serve as the most significant co-selective pressure influencing ARG number. We believe that increasing the selective pressure from heavy metals and antibiotics might result in the loss of certain microbial species and a decrease in ARG abundance. This study provides novel insights into the variations of soil resistance genes under long-term fertilization. | 2025 | 40785530 |
| 7506 | 10 | 0.9996 | Risk assessment and dissemination mechanism of antibiotic resistance genes in compost. In recent years, the excessive of antibiotics in livestock and poultry husbandry, stemming from extensive industry experience, has resulted in the accumulation of residual antibiotics and antibiotic resistance genes (ARGs) in livestock manure. Composting, as a crucial approach for the utilization of manure resources, has the potential to reduce the levels of antibiotics and ARGs in manure, although complete elimination is challenging. Previous studies have primarily focused on the diversity and abundance of ARGs in compost or have solely examined the correlation between ARGs and their carriers, potentially leading to a misjudgment of the actual risk associated with ARGs in compost. To address this gap, this study investigated the transfer potential of ARGs in compost and their co-occurrence with opportunistic pathogenic bacteria by extensively analyzing metagenomic sequencing data of compost worldwide. The results demonstrated that the potential risk of ARGs in compost was significantly lower than in manure, suggesting that composting effectively reduces the risk of ARGs. Further analysis showed that the microbes shifted their life history strategy in manure and compost due to antibiotic pressure and formed metabolic interactions dominated by antibiotic-resistant microbes, increasing ARG dissemination frequency. Therefore, husbandry practice without antibiotic addition was recommended to control ARG evolution, dissemination, and abatement both at the source and throughout processing. | 2023 | 37562342 |
| 6946 | 11 | 0.9996 | Persistence of Salmonella Typhimurium and antibiotic resistance genes in different types of soil influenced by flooding and soil properties. Salmonella is a zoonotic foodborne bacterial pathogen that can seriously harm health. Persistence of Salmonella and antibiotic resistance genes (ARGs) in different types of soil under flooding and natural conditions are rare explored. This study investigated the dynamic changes of the Salmonella, ARGs and bacterial communities in three types of soils applied with pig manure in lab scale. Abundance of the Salmonella Typhimurium in soils reduced to the detection limit varied from 40 to 180 days, most of the Salmonella did not survive in soil for more than 90 days. Flooding and soil texture (content of sand) promote the decline rate of Salmonella. No Salmonella was found have acquired resistance gene from the soil or manure after 90 days. 64 ARGs and 11 MGEs were quantified, abundance of these genes and risky ARGs both gradually decline along with the extension of time. Most of the extrinsic ARGs cannot colonize in soil, cellular protection and antibiotic deactivation were their main resistance mechanism. Multidrug resistance and efflux pump were the dominant class and mechanism of soil intrinsic ARGs. Flooding can affect the ARGs profiles by reducing the types of extrinsic ARGs invaded into soil and inhibit the proliferation of intrinsic genes. Soil sand content, soil moisture and nutrition concentrations had significant direct effect on the abundance or profile of ARGs. Soil bacterial community structures also changed along with the extension of time and affected by flooding. Network analyses between ARGs and bacteria taxa revealed that Actinobacteria and Myxococcia were the main hosts of intrinsic ARGs, some taxa may play a role in inhibiting extrinsic ARGs colonization in the soils. These findings unveil that saturate soil with water may play a positive role in reducing potential risk of Salmonella and ARGs in the farmland environment. | 2022 | 36436254 |
| 6958 | 12 | 0.9996 | Impacts of sulfamethoxazole stress on vegetable growth and rhizosphere bacteria and the corresponding mitigation mechanism. Antibiotics are an important pharmaceutical class excessively used by humans. Its presence in the soil can impact plant growth and induce antibiotic resistance. This research studies the effect of sulfamethoxazole (SMX) on plant growth, rhizosphere bacteria composition, and resistance genes. Two sets of vegetables (basil, cilantro, and spinach) were treated separately with water and SMX solution. The plant growth data and soil samples were collected and analyzed. The results revealed that SMX increased spinach leaf length (34.0%) while having no significant impacts on basil and cilantro. On the other hand, SMX improved the bacterial diversity in all samples. The shifts in the abundance of plant growth-promoting bacteria could indirectly affect vegetable stem and leaf length. SMX also significantly increased the abundance of resistance genes Sul1 and Sul2. A further study into the correlation between bacteria highlights the importance of Shingomonas and Alfipia for inhibiting the spread of key resistance gene hosts, namely, Pseudomonas, Stenotrophomonas, and Agrobacterium. This research provides insight into SMX's impact on vegetable growth and microbial diversity. It also points out important microbial interactions that could potentially be utilized to mitigate ARG proliferation. | 2024 | 38390364 |
| 6988 | 13 | 0.9996 | Plant cultivar determined bacterial community and potential risk of antibiotic resistance gene spread in the phyllosphere. The global increased antibiotic resistance level in pathogenic microbes has posed a significant threat to human health. Fresh vegetables have been recognized to be an important vehicle of antibiotic resistance genes (ARGs) from environments to human beings. Phyllosphere ARGs have been indicated to be changed with plant species, yet the influence of plant cultivar on the phyllospheric resistome is still unclear. Here, we detected the ARGs and bacterial communities in the phyllosphere of two cultivars of cilantros and their corresponding soils using high-throughput quantitative PCR technique and bacterial 16S rRNA gene-based high-throughput sequencing, respectively. We further identified the potential bacterial pathogens and analyzed the effects of plant cultivar on ARGs, mobile genetic elements (MGEs), microbiome and potential bacterial pathogens. The results showed that the cultivars did not affect the ARG abundance and composition, but significantly shaped the abundance of MGEs and the composition structure of bacteria in the phyllosphere. The relative abundance of potential bacterial pathogens was significantly higher in the phyllosphere than that in soils. Mantel test showed that the ARG patterns were significantly correlated to the patterns of potential bacterial pathogens. Our results suggested that the horizontal gene transfer of ARGs in the phyllosphere might be different between the two cultivars of cilantro and highlighted the higher risk of phyllospheric microorganisms compared with those in soils. These findings extend our knowledge on the vegetable microbiomes, ARGs, and potential pathogens, suggesting more agricultural and hygiene protocols are needed to control the risk of foodborne ARGs. | 2023 | 36522081 |
| 6948 | 14 | 0.9996 | Fate of antibiotic resistance genes and metal resistance genes during the thermophilic fermentation of solid and liquid swine manures in an ectopic fermentation system. Environmental pollution due to resistance genes from livestock manure has become a serious issue that needs to be resolved. However, little studies focused on the removal of resistance genes in simultaneous processing of livestock feces and urine. This study investigated the fate of antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and class 1 integron-integrase gene (intI1) during thermophilic fermentation of swine manure in an ectopic fermentation system (EFS), which has been regarded as a novel system for efficiently treating both feces and urine. The abundances of MRGs and tetracycline resistance genes were 34.44-97.71% lower in the EFS. The supplementation of heavy metals significantly increased the abundance of intI1, with the enhancement effect of copper being more prominent than that of zinc. The highest abundances of resistance genes and intI1 were observed at high Cu levels (A2), indicating that Cu can increase the spreading of resistance genes through integrons. Network analysis revealed the co-occurrence of ARGs, MRGs, and intI1, and these genes potentially shared the same host bacteria. Redundancy analysis showed that the bacterial community explained most of the variations in ARGs, and environmental factors had influences on ARGs abundances by modulating the bacterial community composition. The decreased Sphingomonas, Comamonas, Acinetobacter, Lactobacillus, Bartonella, Rhizobium, and Bacteroides were mainly responsible for the reduced resistance genes. These results demonstrate that EFS can reduce resistance genes in simultaneous processing of livestock feces and urine. | 2021 | 33592372 |
| 7456 | 15 | 0.9996 | Anaerobic digestion of nitrogen rich poultry manure: Impact of thermophilic biogas process on metal release and microbial resistances. Poultry manure is a nitrogen rich fertilizer, which is usually recycled and spread on agricultural fields. Due to its high nutrient content, chicken manure is considered to be one of the most valuable animal wastes as organic fertilizer. However, when chicken litter is applied in its native form, concerns are raised as such fertilizers also include high amounts of antibiotic resistant pathogenic Bacteria and heavy metals. We studied the impact of an anaerobic thermophilic digestion process on poultry manure. Particularly, microbial antibiotic resistance profiles, mobile genetic elements promoting the resistance dissemination in the environment as well as the presence of heavy metals were focused in this study. The initiated heat treatment fostered a community shift from pathogenic to less pathogenic bacterial groups. Phenotypic and molecular studies demonstrated a clear reduction of multiple resistant pathogens and self-transmissible plasmids in the heat treated manure. That treatment also induced a higher release of metals and macroelements. Especially, Zn and Cu exceeded toxic thresholds. Although the concentrations of a few metals reached toxic levels after the anaerobic thermophilic treatment, the quality of poultry manure as organic fertilizer may raise significantly due to the elimination of antibiotic resistance genes (ARG) and self-transmissible plasmids. | 2017 | 27932039 |
| 7386 | 16 | 0.9996 | Regulation of Antibiotic Resistance Genes on Agricultural Land Is Dependent on Both Choice of Organic Amendment and Prevalence of Predatory Bacteria. Antibiotic resistance genes (ARGs) are widespread in the environment, and soils, specifically, are hotspots for microorganisms with inherent antibiotic resistance. Manure and sludge used as fertilizers in agricultural production have been shown to contain vast amounts of ARGs, and due to continued applications, ARGs accumulate in agricultural soils. Some soils, however, harbor a resilience capacity that could depend on specific soil properties, as well as the presence of predatory bacteria that are able to hydrolyse living bacteria, including bacteria of clinical importance. The objectives of this study were to (i) investigate if the antibiotic resistance profile of the soil microbiota could be differently affected by the addition of cow manure, chicken manure, and sludge, and (ii) investigate if the amendments had an effect on the presence of predatory bacteria. The three organic amendments were mixed separately with a field soil, divided into pots, and incubated in a greenhouse for 28 days. Droplet digital PCR (ddPCR) was used to quantify three ARGs, two predatory bacteria, and total number of bacteria. In this study, we demonstrated that the choice of organic amendment significantly affected the antibiotic resistance profile of soil, and promoted the growth of predatory bacteria, while the total number of bacteria was unaffected. | 2024 | 39200050 |
| 7389 | 17 | 0.9996 | Temporal changes of antibiotic-resistance genes and bacterial communities in two contrasting soils treated with cattle manure. The emerging environmental spread of antibiotic-resistance genes (ARGs) and their subsequent acquisition by clinically relevant microorganisms is a major threat to public health. Animal manure has been recognized as an important reservoir of ARGs; however, the dissemination of manure-derived ARGs and the impacts of manure application on the soil resistome remain obscure. Here, we conducted a microcosm study to assess the temporal succession of total bacteria and a broad spectrum of ARGs in two contrasting soils following manure application from cattle that had not been treated with antibiotics. High-capacity quantitative PCR detected 52 unique ARGs across all the samples, with β-lactamase as the most dominant ARG type. Several genes of soil indigenous bacteria conferring resistance to β-lactam, which could not be detected in manure, were found to be highly enriched in manure-treated soils, and the level of enrichment was maintained over the entire course of 140 days. The enriched β-lactam resistance genes had significantly positive relationships with the relative abundance of the integrase intI1 gene, suggesting an increasing mobility potential in manure-treated soils. The changes in ARG patterns were accompanied by a significant effect of cattle manure on the total bacterial community compositions. Our study indicates that even in the absence of selective pressure imposed by agricultural use of antibiotics, manure application could still strongly impact the abundance, diversity and mobility potential of a broad spectrum of soil ARGs. Our findings are important for reliable prediction of ARG behaviors in soil environment and development of appropriate strategies to minimize their dissemination. | 2016 | 26712351 |
| 6984 | 18 | 0.9996 | Seeds Act as Vectors for Antibiotic Resistance Gene Dissemination in a Soil-Plant Continuum. Though the evidence for antibiotic resistance spread via plant microbiome is mounting, studies regarding antibiotic resistome in the plant seed, a reproductive organ and important food resource, are still in their infancy. This study investigated the effects of long-term organic fertilization on seed bacterial endophytes, resistome, and their intergenerational transfer in the microcosm. A total of 99 antibiotic resistance genes (ARGs) and 26 mobile genetic elements (MGEs) were detected by high-throughput quantitative PCR. The amount of organic fertilizer applied was positively correlated to the number and relative abundance of seed-associated ARGs and MGEs. Moreover, the transmission of ARGs from the rhizosphere to the seed was mainly mediated by the shared bacteria and MGEs. Notably, the rhizosphere of progeny seedlings derived from seeds harboring abundant ARGs was found to have a higher relative abundance of ARGs. Using structural equation models, we further revealed that seed resistome and MGEs were key factors affecting the ARGs in the progeny rhizosphere, implying the seed was a potential resistome reservoir for rhizosphere soil. This study highlights the overlooked role of seed endophytes in the dissemination of resistome in the soil-plant continuum, and more attention should be paid to plant seeds as vectors of ARGs within the "One-Health" framework. | 2023 | 38078407 |
| 7382 | 19 | 0.9996 | Variation pattern of terrestrial antibiotic resistances and bacterial communities in seawater/freshwater mixed microcosms. The ocean is the final place where pollutants generated by human activities are deposited. As a result, the long-range transport of the ocean can facilitate the diffusion of terrestrial contaminants, including ARGs. However, to our knowledge, little research has been devoted to discussing the content change of terrestrial ARGs and the reason for the change in coastal area. This study established various microcosms, in which seawater and freshwater were mixed at different ratio to simulate the environmental conditions of different regions in coastal areas. Four ARGs were quantified, and 16S pyrosequencing was conducted. The results showed that the terrestrial ARGs influenced the concentration of the corresponding ARGs in coastal areas, and the content change pattern of each ARG was distinct. The influence of salinity on the ARG content was limited in most cases. Moreover, most dominant bacteria from freshwater had significant positive correlation (p < 0.05) with selected ARGs, except for bla(TEM). The dominant bacteria in freshwater diminished dramatically in microcosms with a high proportion of seawater. Freshwater may have a strong impact on the bacteria composition of seawater, and the materials from freshwater may prompt the growth of some bacteria (include potential hosts of ARGs) in coastal area. | 2018 | 29486359 |