# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6955 | 0 | 1.0000 | Soil antibiotic resistance genes accumulate at different rates over four decades of manure application. Manure can be a source of antibiotic resistance genes (ARGs) that enter the soil. However, previous studies assessing ARG persistence in soil have generally lacked continuity over sampling times, consistency of location, and assessing the impact of discontinuing manure application. We evaluated both short- and long-term ARG accumulation dynamics in soil with a 40-year known history of manure use. Manure application caused a greater abundance of tetracycline, macrolide, and sulfonamide ARGs in the soil. There was an initial spike in ARG abundance resulting from manure bacteria harboring ARGs being introduced to soil, followed by resident soil bacteria out-competing them, which led to ARG dissipation within a year. However, over four decades, annual manure application caused linear or exponential ARG accumulation, and bacteria associated with ARGs differed compared to those in the short term. Eleven years after discontinuing manure application, most soil ARG levels declined but remained elevated. We systematically explored the historical accumulation of ARGs in manured soil, and provide insight into factors that affect their persistence. | 2023 | 36444046 |
| 6954 | 1 | 0.9999 | Temporal effects of repeated application of biogas slurry on soil antibiotic resistance genes and their potential bacterial hosts. Biogas slurry, a liquid end product of animal manure fermentation, is widely used as fertilizer in crop fields. Land application may introduce antibiotics and related resistance genes from livestock production into agricultural soil. Nevertheless, changes in antimicrobial resistance in soil where biogas slurry has been repeatedly applied are not fully understood. In the present study, 13 veterinary antibiotics were analyzed in soils that were repeatedly sprayed with biogas slurry, and simultaneously, temporal changes in antibiotic resistance genes (ARGs) and bacterial community composition were investigated using a real-time quantitative PCR assay and MiSeq sequencing. Long-term repeated application of biogas slurry did not result in excessive accumulation of antibiotic residuals in the soil but increased the abundance of ARGs and facilitated ARG transfer among potential hosts. Although the quantitative PCR assay showed a decreasing trend for the relative abundance of ARGs over time, a relevance network analysis revealed highly complex bacteria-ARG co-occurrence after long-term application, which implied that repeated application might intensify horizontal gene transfer (HGT) of ARGs among different bacterial hosts in soil. The increased relative abundance of the intl1 gene supported the shift in ARG-bacteria co-occurrence. Furthermore, ordination analysis showed that the distributions of antibiotic resistance bacteria (ARB) and ARGs were closely related to application duration than to the influence of antibiotic residuals in the biogas slurry-treated soil environment. Additionally, natural level of ARG abundance in untreated soils indirectly suggested the presence/absence of antibiotics was not a key determinant causing the spread of antimicrobial resistance. This study provides improved insight into the effects of long-term repeated application of biogas slurry on the shift in ARG abundances and bacteria-ARG co-occurrence in soils, highlighting the need to focus on the influence of changed soil environment on the ARG transfer. | 2020 | 31818620 |
| 6953 | 2 | 0.9999 | Long-term biogas slurry application increased antibiotics accumulation and antibiotic resistance genes (ARGs) spread in agricultural soils with different properties. Animal manures are commonly applied to soil which possibly promote the spread of antibiotic resistance from soil to human beings via food chains. Biogas slurry is an end product of anaerobic digestion of animal manures, which has been widely applied as fertilizers in the agricultural soil. However, effect of long-term biogas slurry application on the soil antibiotic resistance and the associated mechanism still remains unclear. The present study characterized antibiotics, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and bacterial community, in different agricultural soils unamended (BS-) and amended (BS+) with biogas slurry (8-18 years) in five field experiments. Our results indicated that long-term application of biogas slurry largely increased the concentrations of tetracyclines in soils, and greatly increased the abundances of ARGs, transposase gene (Tn916/1545) and ARGs-associated bacteria. Long-term application of biogas slurry led to tetracyclines accumulation and ARGs enrichment in agricultural soil, and the selection pressure from tetracyclines and the increase of Tn916/1545 abundace become potential contributors for the increase of soil antibiotic resistance via promoting the enrichment of ARG-associated bacteria. The results of the present study should be taken into consideration to develop policy and practice for mitigating the enrichment and spread of antibiotic resistance during the recycling of biogas slurry into agricultural soil. | 2021 | 33203566 |
| 6981 | 3 | 0.9999 | Decline in the Relative Abundance of Antibiotic Resistance Genes in Long-Term Fertilized Soil and Its Driving Factors. The changes in antibiotic resistance genes (ARGs) in long-term fertilized soil remain controversial. We aimed to analyze the variation characteristics of ARGs in long-term fertilized soil using metagenomic sequencing. The relative abundance of ARGs did not increase significantly after 7 years of fertilization. However, a clear decline in the relative abundance of ARGs was observed compared to the data from the 4th year. Microbial adaptation strategies in response to changes in the ARG abundance were associated with shifts in microbiome composition and function. Among these, bacterial abundance was the primary driving factor. Additionally, total heavy metal content might serve as the most significant co-selective pressure influencing ARG number. We believe that increasing the selective pressure from heavy metals and antibiotics might result in the loss of certain microbial species and a decrease in ARG abundance. This study provides novel insights into the variations of soil resistance genes under long-term fertilization. | 2025 | 40785530 |
| 7506 | 4 | 0.9999 | Risk assessment and dissemination mechanism of antibiotic resistance genes in compost. In recent years, the excessive of antibiotics in livestock and poultry husbandry, stemming from extensive industry experience, has resulted in the accumulation of residual antibiotics and antibiotic resistance genes (ARGs) in livestock manure. Composting, as a crucial approach for the utilization of manure resources, has the potential to reduce the levels of antibiotics and ARGs in manure, although complete elimination is challenging. Previous studies have primarily focused on the diversity and abundance of ARGs in compost or have solely examined the correlation between ARGs and their carriers, potentially leading to a misjudgment of the actual risk associated with ARGs in compost. To address this gap, this study investigated the transfer potential of ARGs in compost and their co-occurrence with opportunistic pathogenic bacteria by extensively analyzing metagenomic sequencing data of compost worldwide. The results demonstrated that the potential risk of ARGs in compost was significantly lower than in manure, suggesting that composting effectively reduces the risk of ARGs. Further analysis showed that the microbes shifted their life history strategy in manure and compost due to antibiotic pressure and formed metabolic interactions dominated by antibiotic-resistant microbes, increasing ARG dissemination frequency. Therefore, husbandry practice without antibiotic addition was recommended to control ARG evolution, dissemination, and abatement both at the source and throughout processing. | 2023 | 37562342 |
| 6983 | 5 | 0.9999 | Deciphering Potential Roles of Earthworms in Mitigation of Antibiotic Resistance in the Soils from Diverse Ecosystems. Earthworms are capable of redistributing bacteria and antibiotic resistance genes (ARGs) through soil profiles. However, our understanding of the earthworm gut microbiome and its interaction with the antibiotic resistome is still lacking. Here, we characterized the earthworm gut and soil microbiome and antibiotic resistome in natural and agricultural ecosystems at a national scale, and microcosm studies and field experiments were also employed to test the potential role of earthworms in dynamics of soil ARGs. The diversity and structure of bacterial communities were different between the earthworm gut and soil. A significant correlation between bacterial community dissimilarity and spatial distance between sites was identified in the earthworm gut. The earthworm gut consistently had lower ARGs than the surrounding soil. A significant reduction in the relative abundance of mobile genetic elements and dominant bacterial phylotypes that are the likely hosts of ARGs was observed in the earthworm gut compared to the surrounding soil, which might contribute to the decrease of ARGs in the earthworm gut. The microcosm studies and field experiments further confirmed that the presence of earthworms significantly reduced the number and abundance of ARGs in soils. Our study implies that earthworm-based bioremediation may be a method to reduce risks associated with the presence of ARGs in soils. | 2021 | 33977709 |
| 7456 | 6 | 0.9999 | Anaerobic digestion of nitrogen rich poultry manure: Impact of thermophilic biogas process on metal release and microbial resistances. Poultry manure is a nitrogen rich fertilizer, which is usually recycled and spread on agricultural fields. Due to its high nutrient content, chicken manure is considered to be one of the most valuable animal wastes as organic fertilizer. However, when chicken litter is applied in its native form, concerns are raised as such fertilizers also include high amounts of antibiotic resistant pathogenic Bacteria and heavy metals. We studied the impact of an anaerobic thermophilic digestion process on poultry manure. Particularly, microbial antibiotic resistance profiles, mobile genetic elements promoting the resistance dissemination in the environment as well as the presence of heavy metals were focused in this study. The initiated heat treatment fostered a community shift from pathogenic to less pathogenic bacterial groups. Phenotypic and molecular studies demonstrated a clear reduction of multiple resistant pathogens and self-transmissible plasmids in the heat treated manure. That treatment also induced a higher release of metals and macroelements. Especially, Zn and Cu exceeded toxic thresholds. Although the concentrations of a few metals reached toxic levels after the anaerobic thermophilic treatment, the quality of poultry manure as organic fertilizer may raise significantly due to the elimination of antibiotic resistance genes (ARG) and self-transmissible plasmids. | 2017 | 27932039 |
| 6977 | 7 | 0.9999 | Tracking virulence genes and their interaction with antibiotic resistome during manure fertilization. Antibiotic resistance genes, collectively termed as antibiotic resistome, are regarded as emerging contaminants. Antibiotics resistome can be highly variable in different environments, imposing environmental safety concern and public health risk when it is in conjunction with pathogenic bacteria. However, it remains elusive how pathogenic bacteria interact with antibiotic resistome, making it challenging to assess microbial risk. Here, we examined the presence and relative abundance of bacterial virulence genes representing potential pathogens in swine manure, compost, compost-amended soil, and unamended agricultural soil in five suburban areas of Beijing, China. The absolute abundances of virulence genes were marginally significantly (p < 0.100) increased in compost-amended soils than unamended soil, revealing potential health risks in manure fertilization. The composition of potential pathogens differed by sample types and was linked to temperature, antibiotics, and heavy metals. As antibiotics can confer pathogens the resistance to clinic treatment, it was alarming to note that virulence genes tended to co-exist with antibiotic resistance genes, as shown by prevalently positive links among them. Collectively, our results demonstrate that manure fertilization in agriculture might give rise to the development of potentially antibiotic-resistant pathogens, unveiling an environmental health risk that has been frequently overlooked. | 2022 | 35810986 |
| 7069 | 8 | 0.9999 | Native soil microorganisms hinder the soil enrichment with antibiotic resistance genes following manure applications. Bacterial genes responsible for resistance to antibiotic agents (ARG) are spread from livestock to soil through application of manure, threatening environmental and human health. We investigated the mechanisms of ARG dissemination and persistence to disentangle i) the influence of nutrients and microorganisms on the soil tetracycline (TET) resistome, and ii) the role of indigenous soil microbiota in preventing ARG spread. We analysed short-term (7 days) and persistent (84 days) effects of manure on the resistome of three antibiotic-free pasture soils. Four microcosm treatments were evaluated: control, mineral nutrient fertilization, and deposition of a layer of fresh manure onto soil or γ-irradiated soil. We quantified five TET-resistance genes, isolated 135 TET-resistant bacteria and sequenced both culturable TET-resistant and whole bacterial communities. Manure amendments, but not nutrient addition, increased the abundance of TET-r genes such as tet(Y). Such changes persisted with time, in contrast with the TET-resistant bacterial composition, which partially recovered after manure amendments. Manured γ-irradiated soils showed significantly lower nutrient content and higher TET-r gene abundance than non-irradiated soils, suggesting that native soil bacteria are essential for the fertilization effect of manure on soil as well as control the dissemination of potentially risky TET-r genes. | 2019 | 31043618 |
| 6924 | 9 | 0.9999 | Diversity of antibiotic resistance genes in soils with four different fertilization treatments. Although the enrichment of resistance genes in soil has been explored in recent years, there are still some key questions to be addressed regarding the variation of ARG composition in soil with different fertilization treatments, such as the core ARGs in soil after different fertilization treatments, the correlation between ARGs and bacterial taxa, etc. For soils after different fertilization treatments, the distribution and combination of ARG in three typical fertilization methods (organic fertilizer alone, chemical fertilizer alone, and conventional fertilizer) and non-fertilized soils were investigated in this study using high-throughput fluorescence quantitative PCR (HT-qPCR) technique. The application of organic fertilizers significantly increased the abundance and quantity of ARGs and their subtypes in the soil compared to the non-fertilized soil, where sul1 was the ARGs specific to organic fertilizers alone and in higher abundance. The conventional fertilizer application also showed significant enrichment of ARGs, which indicated that manure addition often had a more decisive effect on ARGs in soil than chemical fertilizers, and three bacteria, Pseudonocardia, Irregularibacter, and Castllaniella, were the key bacteria affecting ARG changes in soil after fertilization. In addition, nutrient factors and heavy metals also affect the distribution of ARGs in soil and are positively correlated. This paper reveals the possible reasons for the increase in the number of total soil ARGs and their relative abundance under different fertilization treatments, which has positive implications for controlling the transmission of ARGs through the soil-human pathway. | 2023 | 37928655 |
| 7438 | 10 | 0.9998 | Abundance of Antibiotic Resistance Genes in Bacteriophage following Soil Fertilization with Dairy Manure or Municipal Biosolids, and Evidence for Potential Transduction. Animal manures and municipal biosolids recycled onto crop production land carry antibiotic-resistant bacteria that can influence the antibiotic resistome of agricultural soils, but little is known about the contribution of bacteriophage to the dissemination of antibiotic resistance genes (ARGs) in this context. In this work, we quantified a set of ARGs in the bacterial and bacteriophage fractions of agricultural soil by quantitative PCR. All tested ARGs were present in both the bacterial and phage fractions. We demonstrate that fertilization of soil with dairy manure or human biosolids increases ARG abundance in the bacterial fraction but not the bacteriophage fraction and further show that pretreatment of dairy manure can impact ARG abundance in the bacterial fraction. Finally, we show that purified bacteriophage can confer increased antibiotic resistance to soil bacteria when combined with selective pressure. The results indicate that soilborne bacteriophage represents a substantial reservoir of antibiotic resistance and that bacteriophage could play a significant role in the horizontal transfer of resistance genes in the context of an agricultural soil microbiome. Overall, our work reinforces the advisability of composting or digesting fecal material prior to field application and suggests that application of some antibiotics at subclinical concentrations can promote bacteriophage-mediated horizontal transfer of ARGs in agricultural soil microbiomes. | 2015 | 26341211 |
| 6930 | 11 | 0.9998 | Effect of fertilizer type on antibiotic resistance genes by reshaping the bacterial community and soil properties. Conventional and bio-organic fertilizers play an important role in maintaining soil health and promoting crop growth. However, the effect of organic fertilizers on the prevalence of antibiotic resistance genes (ARGs) in the vegetable cropping system has been largely overlooked. In this study, we investigated the impacts of soil properties and biotic factors on ARG profiles by analyzing ARG and bacterial communities in vegetable copping soils with a long-term history of manure and bio-organic fertilizer application. The ARG abundance in the soil was significantly increased by 116% with manure application compared to synthetic NPK fertilizer application. This finding was corroborated by our meta-analysis that the longer the duration of manure application, the greater the response of increased soil ARG abundance. However, bio-organic fertilizers containing Trichoderma spp. Significantly reduced ARG contamination by 31% compared to manure application. About half of the ARG variation was explained by changes in bacterial abundance and structure, followed by soil properties. The mitigation of ARG by Trichoderma spp. Is achieved by altering the structure of the bacterial community and weakening the close association between bacteria and ARG prevalence. Taken together, these findings shed light on the contribution of bio-organic fertilizers in mitigating ARG contamination in agricultural soils, which can help manage the ecological risk posed by ARG inputs associated with manure application. | 2023 | 37343633 |
| 7025 | 12 | 0.9998 | Aerobic composting as an effective cow manure management strategy for reducing the dissemination of antibiotic resistance genes: An integrated meta-omics study. Livestock manure is considered as an important source for spreading antibiotic resistance genes (ARGs) into the environment, and therefore poses a direct threat to public health. Whereas the effects of reused manure on soil microbial communities and ARGs have been studied extensively, comprehensive characterizations of microbial communities and ARGs of manure produced by different management methods are not well understood. Here, we analyzed the fate of microbial communities and ARGs of cow manure treated by three conventional management strategies: aerobic composting, mechanical drying and precipitation, applying an integrated-omics approach combining metagenomics and metaproteomics. Integrated-omics demonstrated that composted manure contained the lowest diversity of microbial community and ARGs compared with manure treated by other two strategies. Quantitative PCR methods revealed that the abundances of ARGs were reduced by over 83 % after composting for 14 days, regardless of the season. Besides, the potential ARG hosts Acinetobacter and Pseudomonas dominating mechanical drying process were sharply decreased in abundances after composting. The significant co-occurrence networks among bacteria, ARGs and transposase gene tnpA-01 in composting samples indicated the important role of these bacteria in the dissemination of ARGs. These findings offer insight into potential strategies to control the spread of ARGs during livestock manure reuse. | 2020 | 31884359 |
| 6982 | 13 | 0.9998 | Viral Communities Suppress the Earthworm Gut Antibiotic Resistome by Lysing Bacteria on a National Scale. Earthworms are critical in regulating soil processes and act as filters for antibiotic resistance genes (ARGs). Yet, the geographic patterns and main drivers of earthworm gut ARGs remain largely unknown. We collected 52 earthworm and soil samples from arable and forest ecosystems along a 3000 km transect across China, analyzing the diversity and abundance of ARGs using shotgun metagenomics. Earthworm guts harbored a lower diversity and abundance of ARGs compared to soil, resulting in a stronger distance-decay rate of ARGs in the gut. Greater deterministic assembly processes of ARGs were found in the gut than in soil. The earthworm gut had a lower frequency of co-occurrence patterns between ARGs and mobile genetic elements (MGEs) in forest than in arable systems. Viral diversity was higher in the gut compared to soil and was negatively correlated with bacterial diversity. Bacteria such as Streptomyces and Pseudomonas were potential hosts of both viruses and ARGs. Viruses had negative effects on the diversity and abundance of ARGs, likely due to the lysis on ARG-bearing bacteria. These findings provide new insights into the variations of ARGs in the earthworm gut and highlight the vital role of viruses in the regulation of ARGs in the soil ecosystem. | 2024 | 39037720 |
| 6952 | 14 | 0.9998 | Modeling the vertical transport of antibiotic resistance genes in agricultural soils following manure application. Antibiotic resistance genes (ARGs) may be introduced to agricultural soil through the land application of cattle manure. During a rainfall event, manure-borne ARGs may infiltrate into subsurface soil and leach into groundwater. The objective of this study was to characterize and model the vertical transport of manure-borne ARGs through soil following the land application of beef cattle manure on soil surface. In this study, soil column experiments were conducted to evaluate the influence of manure application on subsurface transport of four ARGs: erm(C), erm(F), tet(O) and tet(Q). An attachment-detachment model with the decay of ARGs in the soil was used to simulate the breakthrough of ARGs in leachates from the control column (without manure) and treatment (with manure) soil columns. Results showed that the first-order attachment coefficient (k(a)) was five to six orders of magnitude higher in the treatment column than in the control column. Conversely, the first-order detachment and decay coefficients (k(d) and μ(s)) were not significantly changed due to manure application. These findings suggest that in areas where manure is land-applied, some manure-borne bacteria-associated ARGs will be attached to the soil, instead of leaching to groundwater in near terms. | 2021 | 34087637 |
| 7041 | 15 | 0.9998 | Antibiotic and heavy metal resistance genes in sewage sludge survive during aerobic composting. Municipal sewage sludge has been generated in increasing amounts with the acceleration of urbanization and economic development. The nutrient rich sewage sludge can be recycled by composting that has a great potential to produce stabilized organic fertilizer and substrate for plant cultivation. However, little is known about the metals, pathogens and antibiotic resistance transfer risks involved in applying the composted sludge in agriculture. We studied changes in and relationships between heavy metal contents, microbial communities, and antibiotic resistance genes (ARGs), heavy metal resistance genes (HMRGs) and mobile genetic elements (MGEs) in aerobic composting of sewage sludge. The contents of most of the analyzed heavy metals were not lower after composting. The bacterial α-diversity was lower, and the community composition was different after composting. Firmicutes were enriched, and Proteobacteria and potential pathogens in the genera Arcobacter and Acinetobacter were depleted in the composted sludge. The differences in bacteria were possibly due to the high temperature phase during the composting which was likely to affect temperature-sensitive bacteria. The number of detected ARGs, HMRGs and MGEs was lower, and the relative abundances of several resistance genes were lower after composting. However, the abundance of seven ARGs and six HMRGs remained on the same level after composting. Co-occurrence analysis of bacterial taxa and the genes suggested that the ARGs may spread via horizontal gene transfer during composting. In summary, even though aerobic composting is effective for managing sewage sludge and to decrease the relative abundance of potential pathogens, ARGs and HMRGs, it might include a potential risk for the dissemination of ARGs in the environment. | 2023 | 36608829 |
| 7453 | 16 | 0.9998 | Long-term application of Swedish sewage sludge on farmland does not cause clear changes in the soil bacterial resistome. The widespread practice of applying sewage sludge to arable land makes use of nutrients indispensable for crops and reduces the need for inorganic fertilizer, however this application also provides a potential route for human exposure to chemical contaminants and microbial pathogens in the sludge. A recent concern is that such practice could promote environmental selection and dissemination of antibiotic resistant bacteria or resistance genes. Understanding the risks of sludge amendment in relation to antibiotic resistance development is important for sustainable agriculture, waste treatment and infectious disease management. To assess such risks, we took advantage of an agricultural field trial in southern Sweden, where land used for growing different crops has been amended with sludge every four years since 1981. We sampled raw, semi-digested and digested and stored sludge together with soils from the experimental plots before and two weeks after the most recent amendment in 2017. Levels of selected antimicrobials and bioavailable metals were determined and microbial effects were evaluated using both culture-independent metagenome sequencing and conventional culturing. Antimicrobials or bioavailable metals (Cu and Zn) did not accumulate to levels of concern for environmental selection of antibiotic resistance, and no coherent signs, neither on short or long time scales, of enrichment of antibiotic-resistant bacteria or resistance genes were found in soils amended with digested and stored sewage sludge in doses up to 12 metric tons per hectare. Likewise, only very few and slight differences in microbial community composition were observed after sludge amendment. Taken together, the current study does not indicate risks of sludge amendment related to antibiotic resistance development under the given conditions. Extrapolations should however be done with care as sludge quality and application practices vary between regions. Hence, the antibiotic concentrations and resistance load of the sludge are likely to be higher in regions with larger antibiotic consumption and resistance burden than Sweden. | 2020 | 32036119 |
| 7508 | 17 | 0.9998 | Residual chlorine persistently changes antibiotic resistance gene composition and increases the risk of antibiotic resistance in sewer systems. During the COVID-19 pandemic, excessive amounts of disinfectants and their transformation products entered sewer systems worldwide, which was an extremely rare occurrence before. The stress of residual chlorine and disinfection by-products is not only likely to promote the spread of antibiotic resistance genes (ARGs), but also leads to the enrichment of chlorine-resistant bacteria that may also be resistant to antibiotics. Therefore, the potential impact of such discharge on ARG composition should be studied and the health risks should be assessed. Thus, this study combined high-throughput 16S rRNA gene amplicon sequencing and metagenomic analysis with long-term batch tests that involved two stages of stress and recovery to comprehensively evaluate the impact of residual chlorine on the microbial community and ARG compositions in sewer systems. The tests demonstrated that the disturbance of the microbial community structure by residual chlorine was reversible, but the change in ARG composition was persistent. This study found that vertical propagation and horizontal gene transfer jointly drove ARG composition succession in the biofilm, while the driving force was mainly horizontal gene transfer in the sediment. In this process, the biocide resistance gene (BRG) subtype chtR played an important role in promoting co-selection with ARGs through plasmids and integrative and conjugative elements. Moreover, it was further shown that the addition of sodium hypochlorite increased the risk of ARGs to human health, even after discontinuation of dosing, signifying that the impact was persistent. In general, this study strengthens the co-selection theory of ARGs and BRGs, and calls for improved disinfection strategies and more environmentally friendly disinfectants. | 2023 | 37738943 |
| 6978 | 18 | 0.9998 | Climate warming increases the proportions of specific antibiotic resistance genes in natural soil ecosystems. Understanding the future distribution of antibiotic resistance in natural soil ecosystems is important to forecast their impacts on ecosystem and human health under projected climate change scenarios. Therefore, it is critical and timely to decipher the links between climate warming and antibiotic resistance, two of Earth's most imminent problems. Here, we explored the role of five-year simulated climate warming (+ 4 °C) on the diversity and proportions of soil antibiotic resistance genes (ARGs) across three seasons in both plantation and natural forest ecosystems. We found that the positive effects of warming on the number and proportions of ARGs were dependent on the sampling seasons (summer, autumn and winter), and seasonality was a key factor driving the patterns of ARG compositions in forest soils. Fifteen ARGs, conferring resistance to common antibiotics including aminoglycoside, beta-lactam, macrolide-lincosamide-streptogramin B, multidrug, sulfonamide, and tetracycline, were significantly enriched in the warming treatment. We showed that changes in soil properties and community compositions of bacteria, fungi and protists can explain the changes in soil ARGs under climate warming. Taken together, these findings advance our understanding of environmental ARGs under the context of future climate change and suggest that elevated temperature may promote the abundance of specific soil ARGs, with important implications for ecosystem and human health. | 2022 | 35158246 |
| 6925 | 19 | 0.9998 | Multiple driving factors contribute to the variations of typical antibiotic resistance genes in different parts of soil-lettuce system. The application of manure compost may cause the transmission of antibiotic resistance genes (ARGs) in agroecological environment, which poses a global threat to public health. However, the driving factors for the transmission of ARGs from animal manure to agroecological systems remains poorly understood. Here, we explored the spatiotemporal variation in ARG abundance and bacterial community composition as well as relative driving factors in a soil-lettuce system amended with swine manure compost. The results showed that ARGs abundance had different variation trends in soil, lettuce phylloplane and endophyere after the application of swine manure compost. The temporal variations of total ARGs abundance had no significant different in soil and lettuce phylloplane, while lettuce endosphere enriched half of ARGs to the highest level at harvest. There was a significant linear correlation between ARGs and integrase genes (IGs). In contrast to the ARGs variation trend, the alpha diversity of soil and phylloplane bacteria showed increasing trends over planting time, and endosphere bacteria remained stable. Correlation analysis showed no identical ARG-related genera in the three parts, but the shared Proteobacteria, Pseudomonas, Halomonas and Chelativorans, from manure compost dominated ARG profile in the soil-lettuce system. Moreover, redundancy analysis and structural equation modelling showed the variations of ARGs may have resulted from the combination of multiple driving factors in soil-lettuce system. ARGs in soil were more affected by the IGs, antibiotic and heavy metals, and bacterial community structure and IGs were the major influencing factors of ARG profiles in the lettuce. The study provided insight into the multiple driving factors contribute to the variations of typical ARGs in different parts of soil-lettuce system, which was conducive to the risk assessment of ARGs in agroecosystem and the development of effective prevention and control measures for ARGs spread in the environment. | 2021 | 34562788 |