# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6927 | 0 | 1.0000 | Manure application: A trigger for vertical accumulation of antibiotic resistance genes in cropland soils. The application of livestock manure increases the dissemination risk of antibiotic resistance genes (ARGs) in farmland soil environment. However, the vertical migration behavior and driving factor of ARGs in manured soil under swine manure application remains undefined. Here, the dynamics of ARGs, mobile genetic elements (MGEs) and bacterial communities in different soil depths (0 - 80 cm) with long-term swine manure application were tracked and conducted using real-time qPCR. Results showed that long-term application of swine manure remarkably facilitated the vertical accumulation of ARGs and MGEs, in particular that the relative abundance of bla(ampC) showed significant enrichment with increasing depth. ARGs abundance was similar in the three fields with long-term application of swine manure. (p>0.05). Procrustes analysis indicated that microbial communities were the dominant drivers of ARGs variation in topsoil, and the changes of environmental factors played a vital role in vertical migration ARGs in cropland soils. Additionally, the variation patterns of high-risk ARGs (i.e., bla(ampC), bla(TEM-1)) were influenced by the dominant bacteria (Actinomycetes) and pH. This study illustrated that the swine manure application promoted the vertical migration of ARGs, including multidrug resistance determinants, highlighting the ecological risk caused by long-term manure application. | 2022 | 35483148 |
| 6926 | 1 | 0.9999 | Insights into the driving factors of vertical distribution of antibiotic resistance genes in long-term fertilized soils. The prevalence of antibiotic resistance genes (ARGs) in soils has aroused wide attention. However, the influence of long-term fertilization on the distribution of ARGs in different soil layers and its dominant drivers remain largely unknown. In this study, a total of 203 ARGs were analyzed in greenhouse vegetable soils (0-100 cm from a 13-year field experiment applied with different fertilizers (control, chemical fertilizer, organic manure, and mixed fertilizer). Compared with unfertilized and chemically fertilized soils, manure application significantly increased the abundance and alpha diversity of soil ARGs, where the assembly of ARG communities was strongly driven by stochastic processes. The distribution of ARGs was significantly driven by manure application within 60 cm, while it was insignificantly changed in soil below 60 cm under different fertilization regimes. The inter-correlations of ARGs with mobile genetic elements (MGEs) and microbiota were strengthened in manured soil, indicating manure application posed a higher risk for ARGs diffusion in subsurface soil. Bacteria abundance and MGEs directly influenced ARG abundance and composition, whereas soil depth and manure application indirectly influenced ARG abundance and composition by affecting antibiotics. These results strengthen our understanding of the long-term anthropogenic influence on the vertical distribution of soil ARGs and highlight the ecological risk of ARGs in subsurface soil induced by long-term manure application. | 2023 | 37247491 |
| 6925 | 2 | 0.9999 | Multiple driving factors contribute to the variations of typical antibiotic resistance genes in different parts of soil-lettuce system. The application of manure compost may cause the transmission of antibiotic resistance genes (ARGs) in agroecological environment, which poses a global threat to public health. However, the driving factors for the transmission of ARGs from animal manure to agroecological systems remains poorly understood. Here, we explored the spatiotemporal variation in ARG abundance and bacterial community composition as well as relative driving factors in a soil-lettuce system amended with swine manure compost. The results showed that ARGs abundance had different variation trends in soil, lettuce phylloplane and endophyere after the application of swine manure compost. The temporal variations of total ARGs abundance had no significant different in soil and lettuce phylloplane, while lettuce endosphere enriched half of ARGs to the highest level at harvest. There was a significant linear correlation between ARGs and integrase genes (IGs). In contrast to the ARGs variation trend, the alpha diversity of soil and phylloplane bacteria showed increasing trends over planting time, and endosphere bacteria remained stable. Correlation analysis showed no identical ARG-related genera in the three parts, but the shared Proteobacteria, Pseudomonas, Halomonas and Chelativorans, from manure compost dominated ARG profile in the soil-lettuce system. Moreover, redundancy analysis and structural equation modelling showed the variations of ARGs may have resulted from the combination of multiple driving factors in soil-lettuce system. ARGs in soil were more affected by the IGs, antibiotic and heavy metals, and bacterial community structure and IGs were the major influencing factors of ARG profiles in the lettuce. The study provided insight into the multiple driving factors contribute to the variations of typical ARGs in different parts of soil-lettuce system, which was conducive to the risk assessment of ARGs in agroecosystem and the development of effective prevention and control measures for ARGs spread in the environment. | 2021 | 34562788 |
| 7006 | 3 | 0.9999 | Metagenomic Profiles of Yak and Cattle Manure Resistomes in Different Feeding Patterns before and after Composting. Antibiotic resistance is a global threat to public health, with antibiotic resistance genes (ARGs) being one of the emerging contaminants; furthermore, animal manure is an important reservoir of biocide resistance genes (BRGs) and metal resistance genes (MRGs). However, few studies have reported differences in the abundance and diversity of BRGs and MRGs between different types of animal manure and the changes in BRGs and MRGs before and after composting. This study employed a metagenomics-based approach to investigate ARGs, BRGs, MRGs, and mobile genetic elements (MGEs) of yak and cattle manure before and after composting under grazing and intensive feeding patterns. The total abundances of ARGs, clinical ARGs, BRGs, MRGs, and MGEs were lower in the manure of grazing livestock than in the manure of the intensively fed group. After composting, the total abundances of ARGs, clinical ARGs, and MGEs in intensively fed livestock manure decreased, whereas those of ARGs, clinical ARGs, MRGs, and MGEs increased in grazing livestock manure. The synergy between MGEs mediated horizontal gene transfer and vertical gene transmission via host bacteria proliferation, which was the main driver that altered the abundance and diversity of ARGs, BRGs, and MRGs in livestock manure and compost. Additionally, tetQ, IS91, mdtF, and fabK were potential indicators for estimating the total abundance of clinical ARGs, BRGs, MRGs, and MGEs in livestock manure and compost. These findings suggest that grazing livestock manure can be directly discharged into the fields, whereas intensively fed livestock manure should be composted before returning to the field. IMPORTANCE The recent increase in the prevalence of antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and metal resistance genes (MRGs) in livestock manure poses risks to human health. Composting is known to be a promising technology for reducing the abundance of resistance genes. This study investigated the differences and changes in the abundances of ARGs, BRGs, and MRGs between yak and cattle manure under grazing and intensive feeding patterns before and after composting. The results indicate that the feeding pattern significantly affected the abundances of resistance genes in livestock manure. Manure in intensive farming should be composted before being discharged into the field, while grazing livestock manure is not suitable for composting due to an increased number of resistance genes. | 2023 | 37409977 |
| 7025 | 4 | 0.9999 | Aerobic composting as an effective cow manure management strategy for reducing the dissemination of antibiotic resistance genes: An integrated meta-omics study. Livestock manure is considered as an important source for spreading antibiotic resistance genes (ARGs) into the environment, and therefore poses a direct threat to public health. Whereas the effects of reused manure on soil microbial communities and ARGs have been studied extensively, comprehensive characterizations of microbial communities and ARGs of manure produced by different management methods are not well understood. Here, we analyzed the fate of microbial communities and ARGs of cow manure treated by three conventional management strategies: aerobic composting, mechanical drying and precipitation, applying an integrated-omics approach combining metagenomics and metaproteomics. Integrated-omics demonstrated that composted manure contained the lowest diversity of microbial community and ARGs compared with manure treated by other two strategies. Quantitative PCR methods revealed that the abundances of ARGs were reduced by over 83 % after composting for 14 days, regardless of the season. Besides, the potential ARG hosts Acinetobacter and Pseudomonas dominating mechanical drying process were sharply decreased in abundances after composting. The significant co-occurrence networks among bacteria, ARGs and transposase gene tnpA-01 in composting samples indicated the important role of these bacteria in the dissemination of ARGs. These findings offer insight into potential strategies to control the spread of ARGs during livestock manure reuse. | 2020 | 31884359 |
| 7003 | 5 | 0.9999 | Vermicompost: In situ retardant of antibiotic resistome accumulation in cropland soils. The dissemination of antibiotic resistance genes (ARGs) in soil has become a global environmental issue. Vermicomposting is gaining prominence in agricultural practices as a soil amendment to improve soil quality. However, its impact on soil ARGs remains unclear when it occurs in farmland. We comprehensively explored the evolution and fate of ARGs and their hosts in the field soil profiles under vermicompost application for more than 3 years. Vermicompost application increased several ARG loads in soil environment but decreased the high-risk bla-ARGs (bla(ampC), bla(NDM), and bla(GES-1)) by log(0.04 - 0.43). ARGs in soil amended with vermicompost primarily occurred in topsoil (approximately 1.04-fold of unfertilized soil), but it is worth noting that their levels in the 40-60 cm soil layer were the same or even less than in the unfertilized soil. The microbial community structure changed in soil profiles after vermicompost application. Vermicompost application altered the microbial community structure in soil profiles, showing that the dominant bacteria (i.e., Proteobacteria, Actinobacteriota, Firmicutes) were decreased 2.62%-5.48% with the increase of soil depth. A network analysis further revealed that most of ARG dominant host bacteria did not migrate from surface soil to deep soil. In particular, those host bacteria harboring high-risk bla-ARGs were primarily concentrated in the surface soil. This study highlights a lower risk of the propagation of ARGs caused by vermicompost application and provides a novel approach to reduce and relieve the dissemination of ARGs derived from animals in agricultural production. | 2024 | 38408828 |
| 6999 | 6 | 0.9999 | Different impacts of manure and chemical fertilizers on bacterial community structure and antibiotic resistance genes in arable soils. Both manure and chemical fertilizers are widely used in modern agriculture. However, the impacts of different fertilizers on bacterial community structure and antibiotic resistance genes (ARGs) in arable soils still remain unclear. In this study, high-throughput sequencing and quantitative PCR were employed to investigate the bacterial community structure, ARGs and mobile genetic elements (MGEs) influenced by the application of different fertilizers, including chemical fertilizers, piggery manure and straw ash. The results showed that the application of fertilizers could significantly change the soil bacterial community and the abundance of Gaiella under phylum Actinobacteria was significantly reduced from 12.9% in unfertilized soil to 4.1%-7.4% in fertilized soil (P < 0.05). It was also found that the application of manure could cause a transient effect on soil resistome composition and the relative abundance of ARGs increased from 7.37 ppm to 32.10 ppm. The abundance of aminoglycoside, sulfonamide and tetracycline resistance genes greatly increased after manure fertilization and then gradually returned to normal levels with the decay of some intestinal bacteria carrying ARGs. In contrast, the application of chemical fertilizers and straw ash significantly changed the bacterial community structure but exerted little effect on soil resistome. Overall, the results of this study illustrated the different effects of different fertilizers on the soil resistome and revealed that the changes of soil resistome induced by manure application mainly resulted from alteration of bacteria community rather than the horizontal gene transfer. | 2017 | 28898777 |
| 7041 | 7 | 0.9999 | Antibiotic and heavy metal resistance genes in sewage sludge survive during aerobic composting. Municipal sewage sludge has been generated in increasing amounts with the acceleration of urbanization and economic development. The nutrient rich sewage sludge can be recycled by composting that has a great potential to produce stabilized organic fertilizer and substrate for plant cultivation. However, little is known about the metals, pathogens and antibiotic resistance transfer risks involved in applying the composted sludge in agriculture. We studied changes in and relationships between heavy metal contents, microbial communities, and antibiotic resistance genes (ARGs), heavy metal resistance genes (HMRGs) and mobile genetic elements (MGEs) in aerobic composting of sewage sludge. The contents of most of the analyzed heavy metals were not lower after composting. The bacterial α-diversity was lower, and the community composition was different after composting. Firmicutes were enriched, and Proteobacteria and potential pathogens in the genera Arcobacter and Acinetobacter were depleted in the composted sludge. The differences in bacteria were possibly due to the high temperature phase during the composting which was likely to affect temperature-sensitive bacteria. The number of detected ARGs, HMRGs and MGEs was lower, and the relative abundances of several resistance genes were lower after composting. However, the abundance of seven ARGs and six HMRGs remained on the same level after composting. Co-occurrence analysis of bacterial taxa and the genes suggested that the ARGs may spread via horizontal gene transfer during composting. In summary, even though aerobic composting is effective for managing sewage sludge and to decrease the relative abundance of potential pathogens, ARGs and HMRGs, it might include a potential risk for the dissemination of ARGs in the environment. | 2023 | 36608829 |
| 7002 | 8 | 0.9999 | Response of soil antibiotic resistance genes and bacterial communities to fresh cattle manure and organic fertilizer application. Livestock manure use in agriculture contributes to pollutants like antibiotic resistance genes (ARGs) and resistant bacteria. This practice could potentially facilitate ARGs development in soil ecosystems. Our study aimed to explore ARGs and bacterial communities in cattle manure from Ningxia beef cattle farms with varying breeding periods. We also assessed the impact of different application rates of cattle manure compost, created by mixing manure with different growing periods, on soil's physicochemical and heavy metal properties. High-throughput PCR and sequencing were used to analyze ARGs and bacterial communities. We aimed to understand ARGs dynamics in cattle manure during breeding stages and the impact of different fertilizer application rates on soil bacteria and resistance genes. We found 212 ARGs from cattle manure, spanning tetracycline, aminoglycoside, multidrug, and MLSB categories. Relative ARGs abundance was presented across breeding stages: lactation (C1), breeding (C3), pre-fattening (C4), calving (C2), and late fattening (C5). pH, total nitrogen (TN), electrical conductivity (EC), arsenic (As) and cadmium (Cd) presence significantly impacted ARGs quantity and microbial community structure in manure. Mobile genetic elements (MGEs) were the primary factor altering ARGs in manure (65.56%). Heavy metals contributed to 18.60% of ARGs changes. Manure application changed soil ARGs abundance, notably in soils with high application rates, primarily associated with aminoglycoside, multidrug and sulfonamide resistance. Soils with higher manure rates had elevated MGEs, positively correlated with most ARGs, suggesting MGEs' role in ARGs dissemination. Soil microbial community structure was influenced by fertilization, particularly with the highest application rate. Heavy metals (specifically Cd, contributing to 23.12%), microbial community changes (17.42%), and MGEs (17.38%) were the main factors affecting soil antibiotic resistance. Our study establishes a framework for understanding ARGs emergence in manure and treated soils. This informs strategies to mitigate environmental ARGs transmission and guides diverse livestock manure application and management. | 2023 | 39492397 |
| 7255 | 9 | 0.9999 | Distribution of quinolone and macrolide resistance genes and their co-occurrence with heavy metal resistance genes in vegetable soils with long-term application of manure. The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has become an increasingly serious global public health issue. This study investigated the distribution characteristics and influencing factors of ARB and ARGs in greenhouse vegetable soils with long-term application of manure. Five typical ARGs, four heavy metal resistance genes (MRGs), and two mobile genetic elements (MGEs) were quantified by real-time quantitative polymerase chain reaction (qPCR). The amount of ARB in manure-improved soil greatly exceeded that in control soil, and the bacterial resistance rate decreased significantly with increases in antibiotic concentrations. In addition, the resistance rate of ARB to enrofloxacin (ENR) was lower than that of tylosin (TYL). Real-time qPCR results showed that long-term application of manure enhanced the relative abundance of ARGs in vegetable soils, and the content and proportion of quinolone resistance genes were higher than those of macrolide resistance genes. Redundancy analysis (RDA) showed that qepA and qnrS significantly correlated with total and available amounts of Cu and Zn, highlighting that certain heavy metals can influence persistence of ARGs. Integrase gene intI1 correlated significantly with the relative abundance of qepA, qnrS, and ermF, suggesting that intI1 played an important role in the horizontal transfer of ARGs. Furthermore, there was a weakly but not significantly positive correlation between specific detected MRGs and ARGs and MGEs. The results of this study enhance understanding the potential for increasing ARGs in manure-applied soil, assessing ecological risk and reducing the spread of ARGs. | 2022 | 34559332 |
| 7005 | 10 | 0.9999 | The mobility, host, and co-occurrence of antibiotic resistance genes in multi-type pig manure-soil systems: Metagenome assembly analysis. Antibiotic resistance genes (ARGs) pose significant threats to public health and environmental safety, yet the mobility and hosts of ARGs in animal manure-soil systems remain poorly understood. Here, we evaluated the environmental risks of tilmicosin (TIL) and investigated ARG profiles, mobility, and drivers in pig manure-soil systems using metagenomic assembly. TIL was effectively degraded during aerobic composting and fertilization via hydroxylation, demethylation, and deglycosylation. Notably, the total abundance of ARGs significantly decreased during aerobic composting and fertilization, and manure types affected the distribution and composition of ARGs in fertilized soils. There was a special correlation between the genetic location and type of ARGs. In addition, the results showed co-localization of some specific ARGs and mobile genetic elements (MGEs) (tetA-tetR- transposase; tetR-floR- Tn3 family). A significant correlation was found between Escherichia coli and multiple ARG types, especially multidrug ARGs. Microbial community was the dominant factor driving the variations of ARGs in pig manure-soil systems, followed by MGEs, environmental factors, and antibiotic concentration. This study advances the understanding on the environmental risk assessment of TIL and elucidates the key drivers of ARG dissemination in pig manure-soil systems, providing critical insights and actionable strategies for sustainable livestock management and environmental risk control. | 2025 | 40865323 |
| 6916 | 11 | 0.9999 | Mobile genetic elements in potential host microorganisms are the key hindrance for the removal of antibiotic resistance genes in industrial-scale composting with municipal solid waste. During the municipal solid waste (MSW) composting, antibiotic resistance genes (ARGs) could be one of the concerns to hinder the application of MSW composting. However, the understanding of enrichment and dissemination of ARGs during the industrial-scale composting is still not clear. Hence, this study aimed to investigate the ARG distributions at different stages in an industrial-scale MSW composting plant. Seven target ARGs and four target mobile genetic elements (MGEs) and bacterial communities were investigated. The abundances of ARGs and MGEs increased during two aerobic thermophilic stages, but they decreased in most ARGs and MGEs after composting. Network analysis showed that potential host bacteria of ARGs were mainly Firmicutes and Actinobacteria. The reduction of potential host bacteria was important to remove ARGs. MGEs were an important factor hindering ARG removal. Water-extractable S and pH were two main physicochemical factors in the changes of microbial community and the abundance of ARGs. | 2020 | 31962245 |
| 6923 | 12 | 0.9998 | Soil types influence the fate of antibiotic-resistant bacteria and antibiotic resistance genes following the land application of sludge composts. Sewage sludge was generally considered a significant reservoir of antibiotic resistance genes (ARGs) and could enter agricultural systems as fertilizer after composting. Soil types and the discrepancy of sludge composts could have influenced the fate of antibiotic-resistant bacteria (ARB) following the land application of sludge composts, which deserved to be clarified. Thus, the fate of ARB and ARGs following the land application of three types of sludge composts (A, B, and C) to three different soils (red soil, loess, and black soil) was investigated. The results showed that tetX, which was enriched the most during composting, did not affect the soil resistome, whereas tetG did. Soil types influenced the dynamics of ARB and ARGs significantly, whereas no significant difference was observed among compost types. The advantage of reducing ARGs during the composting process in compost B did not extend to land application. Land application of composts influenced the microbial community significantly at the early stage, but the microbial community returned to the control pattern gradually. Changes in the microbial community contributed more to the dynamics of ARGs in red and black soil compared with other factors, including co-selection from heavy metals, horizontal gene transfer, biomass and environmental factors, whereas horizontal gene transfer, reflected by intI1 levels, contributed the most in loess. | 2018 | 29793114 |
| 6917 | 13 | 0.9998 | Response characteristics of antibiotic resistance genes and bacterial communities during agricultural waste composting: Focusing on biogas residue combined with biochar amendments. This research investigated biogas residue and biochar addition on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and changes in bacterial community during agricultural waste composting. Sequencing technique investigated bacterial community structure and ARGs, MGEs changes. Correlations among physicochemical factors, ARGs, MGEs, and bacterial community structure were determined using redundancy analysis. Results confirmed that biochar and biogas residue amendments effectively lowered the contents of ARGs and MGEs. The main ARGs detected was sul1. Proteobacteria and Firmicutes were the main host bacteria strongly associated with the dissemination of ARGs. The dynamic characteristics of the bacterial community were strongly correlated with pile temperature and pH (P < 0.05). Redundancy and network analysis revealed that nitrate, intI1, and Firmicutes mainly affected the in ARGs changes. Therefore, regulating these key variables would effectively suppress the ARGs spread and risk of compost use. | 2023 | 36657587 |
| 6983 | 14 | 0.9998 | Deciphering Potential Roles of Earthworms in Mitigation of Antibiotic Resistance in the Soils from Diverse Ecosystems. Earthworms are capable of redistributing bacteria and antibiotic resistance genes (ARGs) through soil profiles. However, our understanding of the earthworm gut microbiome and its interaction with the antibiotic resistome is still lacking. Here, we characterized the earthworm gut and soil microbiome and antibiotic resistome in natural and agricultural ecosystems at a national scale, and microcosm studies and field experiments were also employed to test the potential role of earthworms in dynamics of soil ARGs. The diversity and structure of bacterial communities were different between the earthworm gut and soil. A significant correlation between bacterial community dissimilarity and spatial distance between sites was identified in the earthworm gut. The earthworm gut consistently had lower ARGs than the surrounding soil. A significant reduction in the relative abundance of mobile genetic elements and dominant bacterial phylotypes that are the likely hosts of ARGs was observed in the earthworm gut compared to the surrounding soil, which might contribute to the decrease of ARGs in the earthworm gut. The microcosm studies and field experiments further confirmed that the presence of earthworms significantly reduced the number and abundance of ARGs in soils. Our study implies that earthworm-based bioremediation may be a method to reduce risks associated with the presence of ARGs in soils. | 2021 | 33977709 |
| 7000 | 15 | 0.9998 | Animal manures application increases the abundances of antibiotic resistance genes in soil-lettuce system associated with shared bacterial distributions. An increasing amount of animal manures is being used in agriculture, and the effect of animal manures application on the abundance of antibiotics resistance genes (ARGs) in soil-plant system has attracted widespread attention. However, the impacts of animal manures application on the various types of bacterial distribution that occur in soil-lettuce system are unclear. To address this topic, the effects of poultry manure, swine manure or chemical fertilizer application on ARG abundance and the distribution of shared bacteria were investigated in this study. In a lettuce pot experiment, 13 ARGs and 2 MGEs were quantified by qPCR, and bacterial communities in the soil, lettuce endosphere and lettuce phyllosphere were analysed by 16S rRNA sequence analysis. The results showed that the application of poultry or swine manure significantly increased ARG abundance in the soil, a result attributed mainly to increases in the abundances of tetG and tetC. The application of poultry manure, swine manure and chemical fertilizer significantly increased ARG abundance in the lettuce endosphere, and tetG abundance was significantly increased in the poultry and swine manure groups. However, animal manures application did not significantly increase ARG abundance in the lettuce phyllosphere. Flavobacteriaceae, Sphingomonadaceae and 11 other bacterial families were the shared bacteria in the soil, lettuce endosphere, and phyllosphere. The Streptomycetaceae and Methylobacteriaceae were significantly positively correlated with intI1 in both the soil and endosphere. Chemical fertilizer application increased both the proportions of Sphingomonadaceae and tetX abundance, which were positively correlated in the endosphere. Comamonadaceae and Flavobacteriaceae were not detected in the lettuce endosphere under swine manure application. Cu was related to Flavobacteriaceae in the lettuce endosphere. Overall, poultry and swine manure application significantly increased ARG abundance in the soil-lettuce system, which might be due to the shared bacterial distribution. | 2021 | 34004530 |
| 7254 | 16 | 0.9998 | Field-based evidence for enrichment of antibiotic resistance genes and mobile genetic elements in manure-amended vegetable soils. The increasing prevalence of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in the soil environment represents a serious threat to public health. In this study, the diversity and abundance of ARGs and mobile genetic elements (MGEs) in different years of manure-amended vegetable soils were investigated. A total of eight genes, including four tetracycline resistance genes: tetW, tetM, tetO and tetT; two sulfonamide resistance genes: sul1 and sul2; and two MGEs: intI1 and intI2; were quantified in ten vegetable soils. The relative abundance of ARGs in soils amended with manure was significantly higher than that in soils without manure application. The relative abundance of the intI1 and intI2 genes had significantly positive correlations with the relative abundance of the tetW, tetO, sul1 and sul2 genes. Under different concentrations of antibiotics, the resistant bacteria rates of manure-amended soil were much higher than the control soil. Bacillus and Chryseobacterium, more likely to be multi-drug-resistant bacteria, were detected in both two antibiotics. Moreover, the significant correlation was found between the concentrations of Cu and Zn and the ARGs. Our findings provide empirical evidence that the dissemination risk of ARGs and ARB in long-term manure-amended vegetable soils, which might promote to the development of effective strategies to reduce the spread of ARGs in agro-ecosystems. | 2019 | 30453260 |
| 6954 | 17 | 0.9998 | Temporal effects of repeated application of biogas slurry on soil antibiotic resistance genes and their potential bacterial hosts. Biogas slurry, a liquid end product of animal manure fermentation, is widely used as fertilizer in crop fields. Land application may introduce antibiotics and related resistance genes from livestock production into agricultural soil. Nevertheless, changes in antimicrobial resistance in soil where biogas slurry has been repeatedly applied are not fully understood. In the present study, 13 veterinary antibiotics were analyzed in soils that were repeatedly sprayed with biogas slurry, and simultaneously, temporal changes in antibiotic resistance genes (ARGs) and bacterial community composition were investigated using a real-time quantitative PCR assay and MiSeq sequencing. Long-term repeated application of biogas slurry did not result in excessive accumulation of antibiotic residuals in the soil but increased the abundance of ARGs and facilitated ARG transfer among potential hosts. Although the quantitative PCR assay showed a decreasing trend for the relative abundance of ARGs over time, a relevance network analysis revealed highly complex bacteria-ARG co-occurrence after long-term application, which implied that repeated application might intensify horizontal gene transfer (HGT) of ARGs among different bacterial hosts in soil. The increased relative abundance of the intl1 gene supported the shift in ARG-bacteria co-occurrence. Furthermore, ordination analysis showed that the distributions of antibiotic resistance bacteria (ARB) and ARGs were closely related to application duration than to the influence of antibiotic residuals in the biogas slurry-treated soil environment. Additionally, natural level of ARG abundance in untreated soils indirectly suggested the presence/absence of antibiotics was not a key determinant causing the spread of antimicrobial resistance. This study provides improved insight into the effects of long-term repeated application of biogas slurry on the shift in ARG abundances and bacteria-ARG co-occurrence in soils, highlighting the need to focus on the influence of changed soil environment on the ARG transfer. | 2020 | 31818620 |
| 6950 | 18 | 0.9998 | Ceftiofur in swine manure contributes to reducing pathogens and antibiotic resistance genes during composting. Aerobic composting is a common way for the disposal of feces produced in animal husbandry, and can reduce the release of antibiotic resistance genes (ARGs) from feces into the environment. In this study, we collected samples from two distinct treatments of swine manure compost with and without ceftiofur (CEF), and identified the ARGs, mobile genetic elements (MGEs), and bacterial community by metagenomic sequencing. The impacts of CEF on the bacterial community composition and fate of ARGs and MGEs were investigated. With increasing composting temperature and pH, the concentration of CEF in the manure decreased rapidly, with a degradation half-life of 1.12 d and a 100% removal rate after 10 d of aerobic composting. Metagenomics demonstrated that CEF in the manure might inhibit the growth of Firmicutes and Proteobacteria, thereby reducing some ARGs and MGEs hosted by these two bacteria, which was further confirmed by the variations of ARGs and MGEs. A further redundancy analysis suggested that pH and temperature are key environmental factors affecting ARG removal during composting, and intI1 and bacterial communities also have significant influence on ARG abundance. These results are of great significance for promoting the removal of some ARGs from animal manure by controlling some key environmental factors and the type of antibiotics used in animals. | 2024 | 38685300 |
| 6982 | 19 | 0.9998 | Viral Communities Suppress the Earthworm Gut Antibiotic Resistome by Lysing Bacteria on a National Scale. Earthworms are critical in regulating soil processes and act as filters for antibiotic resistance genes (ARGs). Yet, the geographic patterns and main drivers of earthworm gut ARGs remain largely unknown. We collected 52 earthworm and soil samples from arable and forest ecosystems along a 3000 km transect across China, analyzing the diversity and abundance of ARGs using shotgun metagenomics. Earthworm guts harbored a lower diversity and abundance of ARGs compared to soil, resulting in a stronger distance-decay rate of ARGs in the gut. Greater deterministic assembly processes of ARGs were found in the gut than in soil. The earthworm gut had a lower frequency of co-occurrence patterns between ARGs and mobile genetic elements (MGEs) in forest than in arable systems. Viral diversity was higher in the gut compared to soil and was negatively correlated with bacterial diversity. Bacteria such as Streptomyces and Pseudomonas were potential hosts of both viruses and ARGs. Viruses had negative effects on the diversity and abundance of ARGs, likely due to the lysis on ARG-bearing bacteria. These findings provide new insights into the variations of ARGs in the earthworm gut and highlight the vital role of viruses in the regulation of ARGs in the soil ecosystem. | 2024 | 39037720 |