# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6907 | 0 | 1.0000 | Deciphering the impact of organic loading rate and digestate recirculation on the occurrence patterns of antibiotics and antibiotic resistance genes in dry anaerobic digestion of kitchen waste. Organic loading rate (OLR) is crucial for determining the stability of dry anaerobic digestion (AD). Digestate recirculation contributes to reactor stability and enhances methane production. Nevertheless, the understanding of how OLR and digestate recirculation affect the abundance and diversity of antibiotics and antibiotic resistance genes (ARGs), as well as the mechanisms involved in the dissemination of ARGs, remains limited. This study thoroughly investigated this critical issue through a long-term pilot-scale experiment. The metabolome analyses revealed the enrichment of various antibiotics, such as aminoglycoside, tetracycline, and macrolide, under low OLR conditions (OLR ≤ 4.0 g·VS/L·d) and the reactor instability. Antibiotics abundance decreased by approximately 19.66-31.69 % during high OLR operation (OLR ≥ 6.0 g·VS/L·d) with digestate recirculation. The metagenome analyses demonstrated that although low OLR promoted reactor stability, it facilitated the proliferation of antibiotic-resistant bacteria, such as Pseudomonas, and triggered functional profiles related to ATP generation, oxidative stress response, EPS secretion, and cell membrane permeability, thereby facilitating horizontal gene transfer (HGT) of ARGs. However, under stable operation at an OLR of 6.0 g·VS/L·d, there was a decrease in ARGs abundance but a notable increase in human pathogenic bacteria (HPB) and mobile genetic elements (MGEs). Subsequently, during reactor instability, the abundance of ARGs and HPB increased. Notably, during digestate recirculation at OLR levels of 6.0 and 7.0 g·VS/L·d, the process attenuated the risk of ARGs spread by reducing the diversity of ARGs hosts, minimizing interactions among ARGs hosts, ARGs, and MGEs, and weakening functional profiles associated with HGT of ARGs. Overall, digestate recirculation aids in reducing the abundance of antibiotics and ARGs under high OLR conditions. These findings provide advanced insights into how OLR and digestate recirculation affect the occurrence patterns of antibiotics and ARGs in dry AD. | 2024 | 38968733 |
| 8583 | 1 | 0.9994 | Microplastics Enhance the Prevalence of Antibiotic Resistance Genes in Anaerobic Sludge Digestion by Enriching Antibiotic-Resistant Bacteria in Surface Biofilm and Facilitating the Vertical and Horizontal Gene Transfer. Antibiotic resistance genes (ARGs) and microplastics (MPs) are recognized as emerging contaminants and threats to global human health. Despite both of them being significantly detected in their "hotspots", i.e., waste activated sludge (WAS), rare studies on how MPs affect ARGs and antibiotic-resistant bacteria (ARB) in anaerobic sludge digestion are available. Herein, the fate of ARGs and ARB after exposure to MPs of three dosages (10, 30, and 80 particles/g-TS), three polymer types (LDPE, PET, and PS), and three branching extents (LDPE, LLDPE, and HDPE) in anaerobic sludge digestion was investigated. Metagenomic results indicated that all variants of MPs resulted in an increase of the relative abundance of ARGs in the digester compared to the control. The abundance of ARGs demonstrated a dosage-dependent relationship within the range from 10 to 80 particles/g-TS, resulting in an increase from 4.5 to 27.9% compared to the control. Branching structure and polymer type influence ARG level in the sludge digester as well. Mechanism studies revealed that LDPE selectively enriched potential ARB and ARGs in the surface biofilm, possibly creating a favorable environment for ARB proliferation and ARG exchange. Furthermore, vertical transfer of ARGs was facilitated by LDPE through increasing bacterial cell proliferation accompanied by the enhancement of relevant functional genes. The elevated abundance of mobile genetic elements (MGEs) and ARGs-carrying plasmids also demonstrated that MGE-mediated horizontal transfer was promoted by LDPE at 80 particles/g-TS. This effect was compounded by increased oxidative stress, cell membrane permeability, and cell cohesion, collectively facilitating horizontal ARG transfer. Consequently, both vertical and horizontal transfer of ARGs could be concurrently promoted by LDPE an in anaerobic sludge digester. | 2023 | 37733635 |
| 8589 | 2 | 0.9994 | Impacts of microplastic type on the fate of antibiotic resistance genes and horizontal gene transfer mechanism during anaerobic digestion. Microplastics (MPs) and antibiotic resistance genes (ARGs) are important pollutants in waste activated sludge (WAS), but their interactions during anaerobic digestion (AD) still need to be further explored. This study investigated variations in ARGs, mobile genetic elements (MGEs), and host bacteria during AD under the pressure of polyamide (PA), polyethylene (PE), and polypropylene (PP). The results showed that the MPs increased methane production by 11.7-35.5%, and decreased ARG abundance by 5.6-24.6%. Correlation analysis showed that the decrease of MGEs (plasmid, prophage, etc.) promoted the decrease of the abundance of multidrug, aminoglycoside and tetracycline resistance genes. Metagenomic annotation revealed that the reduction of key host bacteria (Arenimonas, Lautropia, etc.) reduced the abundance of major ARGs (rsmA, rpoB2, etc.). Moreover, PP MPs contributed to a reduction in the abundance of functional genes related to the production of reactive oxygen species, ATP synthesis, and cell membrane permeability, which was conducive to reducing the potential for horizontal gene transfer of ARGs. These findings provide insights into the treatment of organic waste containing MPs. | 2024 | 38772228 |
| 8577 | 3 | 0.9994 | Viral and thermal lysis facilitates transmission of antibiotic resistance genes during composting. While the distribution of extracellular ARGs (eARGs) in the environment has been widely reported, the factors governing their release remain poorly understood. Here, we combined multi-omics and direct experimentation to test whether the release and transmission of eARGs are associated with viral lysis and heat during cow manure composting. Our results reveal that the proportion of eARGs increased 2.7-fold during composting, despite a significant and concomitant reduction in intracellular ARG abundances. This relative increase of eARGs was driven by composting temperature and viral lysis of ARG-carrying bacteria based on metagenome-assembled genome (MAG) analysis. Notably, thermal lysis of mesophilic bacteria carrying ARGs was a key factor in releasing eARGs at the thermophilic phase, while viral lysis played a relatively stronger role during the non-thermal phase of composting. Furthermore, MAG-based tracking of ARGs in combination with direct transformation experiments demonstrated that eARGs released during composting pose a potential transmission risk. Our study provides bioinformatic and experimental evidence of the undiscovered role of temperature and viral lysis in co-driving the spread of ARGs in compost microbiomes via the horizontal transfer of environmentally released DNA. IMPORTANCE: The spread of antibiotic resistance genes (ARGs) is a critical global health concern. Understanding the factors influencing the release of extracellular ARGs (eARGs) is essential for developing effective strategies. In this study, we investigated the association between viral lysis, heat, and eARG release during composting. Our findings revealed a substantial increase in eARGs despite reduced intracellular ARG abundance. Composting temperature and viral lysis were identified as key drivers, with thermal lysis predominant during the thermophilic phase and viral lysis during non-thermal phases. Moreover, eARGs released during composting posed a transmission risk through horizontal gene transfer. This study highlights the significance of temperature and phage lysis in ARG spread, providing valuable insights for mitigating antibiotic resistance threats. | 2024 | 39078126 |
| 6906 | 4 | 0.9993 | Insights into the mobility and bacterial hosts of antibiotic resistance genes under dinotefuran selection pressure in aerobic granular sludge based on metagenomic binning and functional modules. Dinotefuran (DIN) is toxic to non-target organisms and accelerates the evolution of antibiotic resistance, which poses a problem for the stable operation of the activated sludge process in wastewater treatment plants (WWTPs). However, the emergence and the transfer mechanism of antibiotic resistance genes (ARGs) in activated sludge systems under DIN stress remains unclear. Thus, in the study, the potential impact of DIN on ARGs and virulence factor genes (VFGs) in aerobic granular sludge (AGS) was investigated in depth using metagenomic binning and functional modules. It was found that DIN stress increased the total abundance of ARGs, mobile genetic elements (MGEs), and VFGs in the AGS system, with the highest abundance of fabG (4.6%), tnpA (55.6%) and LPS (39.0%), respectively. The proliferation of the enteric pathogens Salmonella enterica and Escherichia coli in the system indicates that DIN induces exposure of harmless bacteria to the infected environment. The genera Nitrospira (1169 ARG subtypes) and Dechloromonas (663 ARG subtypes) were identified as the potentially antibiotic-resistant bacteria carrying the most ARGs and MGEs in the metagenome-assembled genomes. Co-localization patterns of some ARGs, MGEs, and the SOS response-related gene lexA were observed on metagenome-assembled contigs under high levels of DIN exposure, suggesting DIN stimulated ROS production (101.8% increase over control), altered cell membrane permeability, and increased the potential for horizontal gene transfer (HGT). Furthermore, the DNA damage caused by DIN in AGS led to the activation of the antioxidant system and the SOS repair response, which in turn promoted the expression of the type IV secretion system and HGT through the flagellar channel. This study extends the previously unappreciated DIN understanding of the spread and associated risks of ARGs and VFGs in the AGS system of WWTPs. It elucidates how DIN facilitates HGT, offering a scientific basis for controlling emerging contaminant-induced resistance. | 2025 | 39798650 |
| 7927 | 5 | 0.9993 | Different microplastics distinctively enriched the antibiotic resistance genes in anaerobic sludge digestion through shifting specific hosts and promoting horizontal gene flow. Both microplastics (MPs) and antibiotic resistance genes (ARGs) are intensively detected in waste activated sludge (WAS). However, the distinctive impacts of different MPs on ARGs emergence, dissemination, and its potential mechanisms remain unclear. In this study, long-term semi-continuous digesters were performed to examine the profiles of ARGs and antibiotic-resistant bacteria (ARB) in response to two different typical MPs (polyethylene (PE) and polyvinyl chloride (PVC)) in anaerobic sludge digestion. Metagenomic results show that PE- and PVC-MPs increase ARGs abundance by 14.8% and 23.6% in digester, respectively. ARB are also enriched by PE- and PVC-MPs, Acinetobacter sp. and Salmonella sp. are the dominant ARB. Further exploration reveals that PVC-MPs stimulates the acquisition of ARGs by human pathogen bacteria (HPB) and functional microorganisms (FMs), but PE-MPs doesn't. Network analysis shows that more ARGs tend to co-occur with HBP and FMs after MPs exposure, and more importantly, new bacteria are observed to acquire ARGs possibly via horizontal gene flow (HGF) in MPs-stressed digester. The genes involved in the HGF process, including reactive oxygen species (ROS) production, cell membrane permeability, extracellular polymeric substances (EPS) secretion, and ATP synthesis, are also enhanced by MPs, thereby attributing to the promoted ARGs dissemination. These findings offer advanced insights into the distinctive contribution of MPs to fate, host, dissemination of ARGs in anaerobic sludge digestion. | 2023 | 36423550 |
| 8588 | 6 | 0.9993 | Does lipid stress affect performance, fate of antibiotic resistance genes and microbial dynamics during anaerobic digestion of food waste? The dissemination of antibiotic resistance genes (ARGs) in food waste (FW) disposal can pose severe threats to public health. Lipid is a primary composition in FW, while whether lipid stress can affect ARGs dynamics during anaerobic digestion (AD) process of FW is uncertain. This study focused on the impacts of lipid stress on methane production, fate of ARGs and its microbial mechanisms during AD of FW. Results showed that high lipid content increased methane yield but prolonged hydrolysis and lag time of methane production compared to AD of FW without oil. Moreover, variations of ARGs were more susceptible to lipid stress. Lipid stress could facilitate the reduction of total ARGs abundances compared to the group without oil, particularly restraining the proliferation of sul1, aadA1 and mefA in AD systems (P < 0.05). Mantel test suggested that integrons (intl1 and intl2) were significantly correlated with all detected ARGs (r: 0.33, P < 0.05), indicating that horizontal gene transfer mediated by integrons could be the driving force on ARGs dissemination. Network analysis suggested that Firmicutes, Bacteroidetes, Synergistetes and Proteobacteria were the main potential hosts of ARGs. In addition, under the lipid stress, the reduction of host bacteria was responsible for the elimination of several specific ARGs, thereby affecting ARGs profiles. These findings firstly deciphered ARGs dynamics and their driving factors responding to lipid stress during anaerobic biological treatment of FW. | 2021 | 33250254 |
| 7978 | 7 | 0.9993 | Metagenomic insight into the enrichment of antibiotic resistance genes in activated sludge upon exposure to nanoplastics. Activated sludge is an important reservoir for the co-occurring emerging contaminants including nanoplastics (NPs) and antibiotic resistance genes (ARGs). However, the impacts and potential mechanisms of NPs on the fate of ARGs in activated sludge are not fully understood. Herein, we used metagenomic approach to investigate the responses of ARGs, host bacteria, mobile genetic elements (MGEs), and functional genes to polystyrene (PS) NPs at environmentally relevant (0.5 mg/L) and high stress concentrations (50 mg/L) in activated sludge. The results showed that 0.5 and 50 mg/L PS NPs increased the relative abundance of ARGs in the activated sludge by 58.68% and 46.52%, respectively (p < 0.05). Host tracking analysis elucidated that the hosts of ARGs were significantly enriched by PS NPs (p < 0.05), with Proteobacteria being the predominant host bacteria. Additionally, the occurrence of new ARGs hosts and the enrichment of MGEs and functional genes (i.e., genes related to SOS response, cell membrane permeability, and secretion system, etc.) indicated that PS NPs promoted horizontal gene transfer (HGT) of ARGs. Finally, path modeling analysis revealed that the proliferation of ARGs caused by PS NPs was primarily attributed to the enhancement of HGT and the enrichment of host bacteria. Our findings contribute to a comprehensive understanding of the spread risk of ARGs in activated sludge under NPs pollution. | 2024 | 39510298 |
| 8571 | 8 | 0.9993 | Efficient elimination of antibiotics and antibiotic resistance genes in hyperthermophilic sludge composting. Composting is widely applied in recycling ever-increasing sewage sludge. However, the insufficient elimination of antibiotics and antibiotic resistance genes (ARGs) in conventional compost fertilizer poses considerable threat to agriculture safety and human health. Here we investigated the efficacy and potential mechanisms in the removal of antibiotics and ARGs from sludge in hyperthermophilic composting (HTC) plant. Our results demonstrated that the HTC product was of high maturity. HTC led to complete elimination of antibiotics and potential pathogens, as well as removal of 98.8 % of ARGs and 88.1 % of mobile genetic elements (MGEs). The enrichment of antibiotic-degrading candidates and related metabolic functions during HTC suggested that biodegradation played a crucial role in antibiotic removal. Redundancy analysis (RDA) and structural equation modelling (SEM) revealed that the reduction of ARGs was attributed to the decline of ARG-associated bacteria, mainly due to the high-temperature selection. These findings highlight the feasibility of HTC in sludge recycling and provide a deeper understanding of its mechanism in simultaneous removal of antibiotics and ARGs. | 2024 | 39217943 |
| 6920 | 9 | 0.9993 | Dynamics and key drivers of antibiotic resistance genes during aerobic composting amended with plant-derived and animal manure-derived biochars. Plant-derived and animal manure-derived biochars have been used to improve the quality of compost but the differences in their effects on antibiotic resistance genes (ARGs) during composting are unclear. This study selected two types of biochar (RB and PB) produced from abundant agricultural waste to be added to the compost. Adding plant-derived RB performed better in ARGs, mobile genetic elements, and human pathogenic bacteria removal during aerobic composting, whereas adding manure-derived PB even increased ARGs abundance. Vertical gene transfer was possibly the key mechanism for persistent ARGs, and easily removed ARGs were regulated by horizontal and vertical gene transfer. Adding plant-derived RB reduced the abundances of persistent ARG hosts (e.g., Pseudomonas and Longispora) and ARG-related metabolic pathways and genes. The higher nitrogen content of manure-derived PB may have promoted the proliferation of ARG hosts. Overall, adding manure-derived biochar during composting may not be the optimal option for eliminating ARGs. | 2022 | 35487450 |
| 8578 | 10 | 0.9993 | Impact of earthworms on suppressing dissemination of antibiotic resistance genes during vermicomposting treatment of excess sludge. Earthworms play a crucial role in suppressing the dissemination of antibiotic resistance genes (ARGs) during vermicomposting. However, there is still a lack of how earthworms influence the spread of ARGs. To address this gap, a microcosm experiment was conducted, incorporating earthworms and utilizing metagenomics and quantitative PCR to assess the impact of earthworms on microbial interactions and the removal of plasmid-induced ARGs. The findings revealed that vermicomposting led to a reduction in the relative abundance of ARGs by altering microbial communities and interactions. Significantly, vermicomposting demonstrated an impressive capability, reducing 92% of ARGs donor bacteria and impeding the transmission of 94% of the RP4 plasmid. Furthermore, through structural equation model analysis, it was determined that mobile genetic elements and environmental variables were the primary influencers of ARG reduction. Overall, this study offers a fresh perspective on the effects of vermicomposting and its potential to mitigate the spread of ARGs. | 2024 | 38885722 |
| 6918 | 11 | 0.9993 | Variations in antibiotic resistance genes and removal mechanisms induced by C/N ratio of substrate during composting. For a comprehensive insight into the potential mechanism of the removal of antibiotic resistance genes (ARGs) removal induced by initial substrates during composting, we tracked the dynamics of physicochemical properties, bacterial community composition, fungal community composition, the relative abundance of ARGs and mobile genetic genes (MGEs) during reed straw and cow manure composting with different carbon to nitrogen ratio. The results showed that the successive bacterial communities were mainly characterized by the dynamic balance between Firmicutes and Actinobacteria, while the fungal communities were composed of Ascomycota. During composting, the interactions between bacteria and fungi were mainly negative. After composting, the removal efficiency of ARGs in compost treatment with C/N ≈ 26 (LL) was higher than that in compost treatment with C/N ≈ 35 (HL), while MGEs were completely degraded in HL and enriched by 2.3% in LL. The large reduction in the relative abundance of ARGs was possibly due to a decrease in the potential host bacterial genera, such as Advenella, Tepidimicrobium, Proteiniphilum, Acinetobacter, Pseudomonas, Flavobacteria and Arcbacter. Partial least-squares path modeling (PLS-PM) revealed that the succession of bacterial communities played a more important role than MGEs in ARGs removal, while indirect factors of the fungal communities altered the profile of ARGs by affecting the bacterial communities. Both direct and indirect factors were affected by composting treatments. This study provides insights into the role of fungal communities in affecting ARGs and highlights the role of different composting treatments with different carbon to nitrogen ration on the underlying mechanism of ARGs removal. | 2021 | 34375241 |
| 6919 | 12 | 0.9993 | Enhanced removal of antibiotic resistance genes during chicken manure composting after combined inoculation of Bacillus subtilis with biochar. This study explored the combined effects of Bacillus subtilis inoculation with biochar on the evolution of bacterial communities, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) during the composting of chicken manure. The results showed that B. subtilis inoculation combined with biochar increased bacterial abundance and diversity as well as prolonged the compost thermophilic period. Promoted organic matter biodegradation and facilitated the organic waste compost humification process, reduced the proliferation of ARGs by altering the bacterial composition. Firmicutes and Actinobacteriota were the main resistant bacteria related to ARGs and MGEs. The decrease in ARGs and MGEs was associated with the reduction in the abundance of related host bacteria. Compost inoculation with B. subtilis and the addition of biochar could promote nutrient transformation, reduce the increase in ARGs and MGEs, and increase the abundance of beneficial soil taxa. | 2024 | 37778803 |
| 8591 | 13 | 0.9993 | Nanoscale zero-valent iron alleviate antibiotic resistance risk during managed aquifer recharge (MAR) by regulating denitrifying bacterial network. The frequent occurrence of antibiotics in reclaimed water is concerning, in the case of managed aquifer recharge (MAR), it inevitably hinders further water purification and accelerates the evolutionary resistance in indigenous bacteria. In this study, we constructed two column reactors and nanoscale zero-valent iron (nZVI) amendment was applied for its effects on water quality variation, microbial community succession, and antibiotic resistance genes (ARGs) dissemination, deciphered the underlying mechanism of resistance risk reduction. Results showed that nZVI was oxidized to iron oxides in the sediment column, and total effluent iron concentration was within permissible limits. nZVI enhanced NO(3)(-)-N removal by 15.5% through enriching denitrifying bacteria and genes, whereas made no effects on oxacillin (OXA) removal. In addition, nZVI exhibited a pivotal impact on ARGs and plasmids decreasing. Network analysis elucidated that the diversity and richness of ARG host declined with nZVI amendment. Denitrifying bacteria play a key role in suppressing horizontal gene transfer (HGT). The underlying mechanisms of inhibited HGT included the downregulated SOS response, the inhibited Type-Ⅳ secretion system and the weakened driving force. This study afforded vital insights into ARG spread control, providing a reference for future applications of nZVI in MAR. | 2024 | 38134694 |
| 6913 | 14 | 0.9993 | Antibiotic resistance genes link to nitrogen removal potential via co-hosting preference for denitrification genes in a subtropical estuary. Estuaries are important sinks for antibiotic resistance genes (ARGs) and hotspots of nitrogen cycling. However, the interactions between nitrogen cycling functional genes (NCGs) and ARGs in estuaries remain poorly understood. This study employed metagenomic sequencing to explore potential interactions between nitrogen, ARGs, and microbial-mediated nitrogen cycling processes in estuarine waters. Results showed beta-lactam was the predominant subtype of ARGs (407 species), and sul1 exhibited the highest relative abundance (4.11 %). Nitrogen was the important factor driving spatiotemporal variation of ARGs, promoting their proliferation and dispersal by enhancing microbial growth and reproduction. Network analysis revealed wide and complex correlations between ARGs and NCGs. Nitrate-reducing bacteria were the main hosts of ARGs, and the greatest number of potential hosts were those involved in assimilatory nitrate reduction to ammonium (17.44 %), dissimilatory nitrate reduction to nitrite (16.59 %), and denitrification (15.71 %). Compared with dissimilatory nitrite reduction to ammonium genes, ARGs prefer to form co-hosting relationships with denitrification genes, indicating that ARGs had a stronger effect on the nitrogen removal potential than on the nitrogen retention potential. This study highlights the complex interactions between ARGs and nitrogen cycling processes in subtropical estuaries, and will provide a scientific base for couple management strategies of nitrogen and antibiotic pollution. | 2025 | 40934587 |
| 7930 | 15 | 0.9993 | Fates of extracellular and intracellular antibiotic resistance genes in activated sludge and plastisphere under sulfadiazine pressure. Microplastics, antibiotics, and antibiotic resistance genes (ARGs) represent prominent emerging contaminants that can potentially hinder the efficacy of biological wastewater treatment and pose health risks. Plastisphere as a distinct ecological niche for microorganisms, acts as a repository for ARGs and potential pathogenic bacteria. Nonetheless, the spread pattern of extracellular ARGs (eARGs) and intracellular ARGs (iARGs) in plastisphere under antibiotic exposure was not yet known. This study aimed to investigate disparities in extracellular polymeric substances (EPS) production, extracellular and intracellular microbial community structures, as well as the transmission of eARGs and iARGs between activated sludge and plastisphere in an anaerobic/anoxic/oxic system under sulfadiazine (SDZ) exposure. SDZ was found to enhance EPS production in activated sludge and plastisphere. Interestingly, as SDZ removal efficiency increased, EPS content decreased in activated sludge and plastisphere collected from oxic zone, and continued to increase in plastisphere samples collected from anaerobic and anoxic zones. There were significant differences in microbial community structure between activated sludge and plastisphere, and the DNA fragments of potential pathogenic bacteria were detected in extracellular samples. SDZ exhibited a promoting effect on the propagation of eARGs, which were more abundant in the plastisphere than in activated sludge, thus heightening the risk of ARGs dissemination. Extracellular mobile genetic elements played a pivotal role in driving the spread of eARGs, while the microbial community induced the changes of iARGs. Potential pathogenic bacteria emerged as potential hosts for ARGs and mobile genetic elements within activated sludge and plastisphere, leading to more serious environmental threats. | 2023 | 37898001 |
| 7551 | 16 | 0.9993 | Microbial community evolution and fate of antibiotic resistance genes during sludge treatment in two full-scale anaerobic digestion plants with thermal hydrolysis pretreatment. Anaerobic digestion (AD) with thermal hydrolysis pretreatment is widely used as an efficient sludge treatment nowadays. However, the evolution of microbial community (especially for the archaea community), the fate of antibiotic resistance genes (ARGs), and their associations during such process in full-scale sludge treatment plants are rarely reported. Therefore, these scientific questions were explored at two full-scale sludge treatment plants through high-throughput sequencing and quantitative PCR. Results showed that Methanobacterium and Methanosphaera were the dominant archaea in thermal hydrolyzed sludge. The predominant bacteria in the sludge first shifted from nutrients removal functional bacteria to spore-forming bacteria after thermal hydrolysis, and then shifted to fermentative bacteria after AD. The full-scale plants could select ermB, ermF, mefA/E, qnrS and tetM. Though the bacteria and archaea biomass and community largely influenced the fate of ARGs, multiple linear regression analysis showed that the total ARGs were mainly affected by mobile genetic elements (MGEs). | 2019 | 31158777 |
| 8590 | 17 | 0.9993 | Metagenomic insights into role of red mud in regulating fate of compost antibiotic resistance genes mediated by both direct and indirect ways. In this study, the amendment of red mud (RM) in dairy manure composting on the fate of antibiotic resistance genes (ARGs) by both direct (bacteria community, mobile genetic elements and quorum sensing) and indirect ways (environmental factors and antibiotics) was analyzed. The results showed that RM reduced the total relative abundances of 10 ARGs and 4 mobile genetic elements (MGEs). And the relative abundances of total ARGs and MGEs decreased by 53.48% and 22.30% in T (with RM added) on day 47 compared with day 0. Meanwhile, the modification of RM significantly increased the abundance of lsrK, pvdQ and ahlD in quorum quenching (QQ) and decreased the abundance of luxS in quorum sensing (QS) (P < 0.05), thereby attenuating the intercellular genes frequency of communication. The microbial community and network analysis showed that 25 potential hosts of ARGs were mainly related to Firmicutes, Proteobacteria and Actinobacteria. Redundancy analysis (RDA) and structural equation model (SEM) further indicated that RM altered microbial community structure by regulating antibiotic content and environmental factors (temperature, pH, moisture content and organic matter content), which then affected horizontal gene transfer (HGT) in ARGs mediated by QS and MGEs. These results provide new insights into the dissemination mechanism and removal of ARGs in composting process. | 2023 | 36462475 |
| 8567 | 18 | 0.9993 | System-dependent divergence of microbial community and resistome in two anaerobic niches under sulfamethoxazole selection. The prevalence of sulfamethoxazole (SMX) in high-strength wastewater poses a significant threat to the stability and efficiency of anaerobic biological treatment systems, particularly when deployed as initial treatment units. However, the complex interactions arising from SMX biodegradation and their resultant effects on typical anaerobic digestion (AD) and sulfate-reducing (SR) systems are not thoroughly understood. This study revealed that SMX exposure stimulated methanogenesis in the AD system and sulfate reduction in the SR system, driven primarily by enriched key functional taxa (e.g., methanogens, sulfate-reducing bacteria). Organic matter removal efficiency increased significantly in the AD system under SMX stress, attributed to the enrichment of fermentative bacteria. Notably, the enriched class Actinomycetes was capable of SMX biodegradation, thereby likely mitigating SMX stress for other microorganisms. In contrast, the SR system exhibited significantly diminished organic matter removal despite developing a more functionally specialized community under SMX exposure. This community harbored fewer SMX degraders, perpetuating selective pressure on the microbiota. Increasing SMX concentrations failed to induce significant shifts in overall community structure in either system, while significantly promoted the proliferation of antibiotic resistance genes (ARGs), particularly pronounced in the SR system exhibiting high SMX accumulation. Moreover, mobile genetic elements mediated the horizontal transfer of the sulfonamide resistance gene sul1 and other co-occurring ARGs located on plasmids. This study provides novel insights into the convergent and divergent microbial responses in the AD and SR systems under SMX exposure, highlighting the dual effects (both stimulatory and inhibitory) of SMX on the functionality of these anaerobic systems. | 2025 | 41130171 |
| 8573 | 19 | 0.9993 | Nitrogen-transforming bacteria as key hosts and disseminators of antibiotic resistance genes in constructed wetlands: Metagenomic and metatranscriptomic evidence. Given global concerns over antibiotic resistance genes (ARGs), constructed wetlands (CWs) have emerged as a cost-effective strategy to remove nitrogen (N) and mitigate ARG-related ecological risks. The occurrence and dissemination of ARGs are mainly driven by microorganisms. Although nitrogen transformation is a key process in CWs, the relationship between nitrogen-transforming bacteria (NTB) and ARG dynamics remains unclear. In this study, metagenomic and metatranscriptomic analyses were employed to comprehensively examine the associations between N transformation and the abundance, hosts, and ecological risks of ARGs in full-scale CWs. NTB, particularly dissimilatory nitrate reducers and bacteria involved in N organic degradation and synthesis, were identified as the primary hosts of ARGs. Furthermore, CWs substantially reduced ARG-related ecological risks, achieving decreases of 79.5 % in ARG expression, 94.9 % in mobile genetic elements, and 88.0 % in antibiotic-resistant pathogens, and identified NTB as key contributors to these risks. Both the decline in NTB abundance and adaptive fitness costs were identified as key mechanisms driving ARG reduction and mitigating ecological risk. This study highlights the critical role of N transformation in shaping ARG dynamics from a microbial perspective, providing a theoretical foundation for engineering practice in the co-control of ARGs and nitrogen removal in CWs. | 2025 | 41138407 |