# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 689 | 0 | 1.0000 | Regulatory and DNA repair genes contribute to the desiccation resistance of Sinorhizobium meliloti Rm1021. Sinorhizobium meliloti can form a nitrogen-fixing symbiotic relationship with alfalfa after bacteria in the soil infect emerging root hairs of the growing plant. To be successful at this, the bacteria must be able to survive in the soil between periods of active plant growth, including when conditions are dry. The ability of S. meliloti to withstand desiccation has been known for years, but genes that contribute to this phenotype have not been identified. Transposon mutagenesis was used in combination with novel screening techniques to identify four desiccation-sensitive mutants of S. meliloti Rm1021. DNA sequencing of the transposon insertion sites identified three genes with regulatory functions (relA, rpoE2, and hpr) and a DNA repair gene (uvrC). Various phenotypes of the mutants were determined, including their behavior on several indicator media and in symbiosis. All of the mutants formed an effective symbiosis with alfalfa. To test the hypothesis that UvrC-related excision repair was important in desiccation resistance, uvrA, uvrB, and uvrC deletion mutants were also constructed. These strains were sensitive to DNA damage induced by UV light and 4-NQO and were also desiccation sensitive. These data indicate that uvr gene-mediated DNA repair and the regulation of stress-induced pathways are important for desiccation resistance. | 2009 | 19028909 |
| 688 | 1 | 0.9996 | The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae. High levels of copper are toxic and therefore bacteria must limit free intracellular levels to prevent cellular damage. In this study, we show that a number of pneumococcal genes are differentially regulated by copper, including an operon encoding a CopY regulator, a protein of unknown function (CupA) and a P1-type ATPase, CopA, which is conserved in all sequenced Streptococcus pneumoniae strains. Transcriptional analysis demonstrated that the cop operon is induced by copper in vitro, repressed by the addition of zinc and is autoregulated by the copper-responsive CopY repressor protein. We also demonstrate that the CopA ATPase is a major pneumococcal copper resistance mechanism and provide the first evidence that the CupA protein plays a role in copper resistance. Our results also show that copper homeostasis is important for pneumococcal virulence as the expression of the cop operon is induced in the lungs and nasopharynx of intranasally infected mice, and a copA(-) mutant strain, which had decreased growth in high levels of copper in vitro, showed reduced virulence in a mouse model of pneumococcal pneumonia. Furthermore, using the copA(-) mutant we observed for the first time in any bacteria that copper homeostasis also appears to be required for survival in the nasopharynx. | 2011 | 21736642 |
| 685 | 2 | 0.9996 | Implication of a Key Region of Six Bacillus cereus Genes Involved in Siroheme Synthesis, Nitrite Reductase Production and Iron Cluster Repair in the Bacterial Response to Nitric Oxide Stress. Bacterial response to nitric oxide (NO) is of major importance for bacterial survival. NO stress is a main actor of the eukaryotic immune response and several pathogenic bacteria have developed means for detoxification and repair of the damages caused by NO. However, bacterial mechanisms of NO resistance by Gram-positive bacteria are poorly described. In the opportunistic foodborne pathogen Bacillus cereus, genome sequence analyses did not identify homologs to known NO reductases and transcriptional regulators, such as NsrR, which orchestrate the response to NO of other pathogenic or non-pathogenic bacteria. Using a transcriptomic approach, we investigated the adaptation of B. cereus to NO stress. A cluster of 6 genes was identified to be strongly up-regulated in the early phase of the response. This cluster contains an iron-sulfur cluster repair enzyme, a nitrite reductase and three enzymes involved in siroheme biosynthesis. The expression pattern and close genetic localization suggest a functional link between these genes, which may play a pivotal role in the resistance of B. cereus to NO stress during infection. | 2021 | 34064887 |
| 690 | 3 | 0.9996 | Characterization of oxidative stress-resistant mutants of Streptococcus thermophilus CNRZ368. During industrial processes, the dairy organism Streptococcus thermophilus is exposed to stress conditions. Its ability to survive and grow in an aerobic environment indicates that it must possess defensive mechanisms against reactive oxygen species. To identify the genes involved in oxidative stress defence, a collection of mutants was generated by random insertional mutagenesis and screened for menadione sensitivity and resistance. Results obtained for resistant clones allowed the identification of eight loci. The insertions affected genes whose homologues in other bacteria were previously identified as being involved in stress response(deoB, gst) or transcription regulation (rggC) and five ORFs of unknown function. The tolerance of the eight mutants to air-exposure, methyl viologen and H2O2 was studied. Real-time quantitative PCR was used to analyse the transcript level of mutated genes and revealed that most were down-regulated during oxidative stress. | 2004 | 15378231 |
| 8228 | 4 | 0.9996 | Brucella abortus genes identified following constitutive growth and macrophage infection. The chronicity of Brucella abortus infection in humans and animals depends on the organism's ability to escape host defenses by gaining entry and surviving inside the macrophage. Although no human vaccine exists for Brucella, vaccine development in other bacteria has been based on deletions of selective nutritional as well as regulatory systems. Our goal is to develop a vaccine for Brucella. To further this aim, we have used a green fluorescent protein (GFP) reporter system to identify constitutively and intracellularly induced B. abortus genes. Constitutively producing gfp clones exhibited sequence homology with genes associated with protein synthesis and metabolism (initiation factor-1 and tRNA ribotransferase) and detoxification (organic hydroperoxidase resistance). Of greater interest, clones negative for constitutively produced gfp in agar were examined by fluorescence microscopy to detect promoter activity induced within macrophages 4 and 24 h following infection. Bacterial genes activated in macrophages 4 h postinfection appear to be involved in adapting to intracellular environmental conditions. Included in this group were genes for detoxification (lactoglyglutathione lyase gene), repair (formamidopyrimidine-DNA glycosylase gene), osmotic protection (K(+) transport gene), and site-specific recombination (xerD gene). A gene involved in metabolism and biosynthesis (deoxyxylulose 5' phosphate synthase gene) was also identified. Genes activated 24 h following infection were biosynthesis- and metabolism-associated genes (iron binding protein and rhizopine catabolism). Identification of B. abortus genes that are activated following macrophage invasion provides insight into Brucella pathogenesis and thus is valuable in vaccine design utilizing selective targeted deletions of newly identified Brucella genes. | 2001 | 11705955 |
| 687 | 5 | 0.9995 | RpoS-Regulated Genes and Phenotypes in the Phytopathogenic Bacterium Pectobacterium atrosepticum. The alternative sigma factor RpoS is considered to be one of the major regulators providing stress resistance and cross-protection in bacteria. In phytopathogenic bacteria, the effects of RpoS have not been analyzed with regard to cross-protection, and genes whose expression is directly or indirectly controlled by RpoS have not been determined at the whole-transcriptome level. Our study aimed to determine RpoS-regulated genes and phenotypes in the phytopathogenic bacterium Pectobacterium atrosepticum. Knockout of the rpoS gene in P. atrosepticum affected the long-term starvation response, cross-protection, and virulence toward plants with enhanced immune status. The whole-transcriptome profiles of the wild-type P. atrosepticum strain and its ΔrpoS mutant were compared under different experimental conditions, and functional gene groups whose expression was affected by RpoS were determined. The RpoS promoter motif was inferred within the promoter regions of the genes affected by rpoS deletion, and the P. atrosepticum RpoS regulon was predicted. Based on RpoS-controlled phenotypes, transcriptome profiles, and RpoS regulon composition, the regulatory role of RpoS in P. atrosepticum is discussed. | 2023 | 38139177 |
| 289 | 6 | 0.9995 | A genetic system that reports transient activation of genes in Bacillus. Site-specific recombination is a powerful tool for precise excision of DNA fragments. We used this characteristic to construct a genetic system to report the transient activation of a promoter by promoting the stable acquisition of an antibiotic resistance marker by the bacterium. The system is composed of two compatible plasmid derivatives from Gram-positive bacteria. One of the plasmids allows the insertion of promoters upstream from tnpI, which encodes the site-specific recombinase of Tn4430. The second plasmid carries two selectable resistance genes: one is flanked by two site-specific recombination sequences and is lost following recombination; in contrast, the other resistance gene becomes functional after the site-specific recombination event. By inserting conditionally controlled promoters (the xylose-inducible xylA promoter or the plcA promoter whose expression is dependent on the growth medium) upstream of tnpI, we demonstrated that our genetic system responds to signals inducing transcription by conferring a new resistance phenotype to the host bacteria. Thus, this system can be used to identify genes which are transiently or conditionally expressed. | 1997 | 9427554 |
| 287 | 7 | 0.9995 | Reversion of mutations in the thymidine kinase gene in herpes simplex viruses resistant to phosphonoacetate. Mutations in the DNA polymerase locus of phage, bacteria, and eukaryotic may change the mutation rates at other loci of the genome. We used resistance to phosphonoacetate to select mutants of herpes simplex virus with mutated DNA polymerase and then determined the reversion frequency of viral thymidine kinase mutation in mutants and recombinants. The results obtained indicate that mutations causing resistance to phosphonoacetate do not affect the mutation rate of the viral genes. This finding is consistent with the existence of two functional regions in the DNA polymerase molecule, one involving the pyrophosphate acceptor site and responsible for resistance to phosphonoacetate and another involved in the editing ability and recognition specificity of the enzyme. | 1984 | 6331620 |
| 6339 | 8 | 0.9995 | Novel acid resistance genes from the metagenome of the Tinto River, an extremely acidic environment. Microorganisms that thrive in acidic environments are endowed with specialized molecular mechanisms to survive under this extremely harsh condition. In this work, we performed functional screening of six metagenomic libraries from planktonic and rhizosphere microbial communities of the Tinto River, an extremely acidic environment, to identify genes involved in acid resistance. This approach has revealed 15 different genes conferring acid resistance to Escherichia coli, most of which encoding putative proteins of unknown function or previously described proteins not known to be related to acid resistance. Moreover, we were able to assign function to one unknown and three hypothetical proteins. Among the recovered genes were the ClpXP protease, the transcriptional repressor LexA and nucleic acid-binding proteins such as an RNA-binding protein, HU and Dps. Furthermore, nine of the retrieved genes were cloned and expressed in Pseudomonas putida and Bacillus subtilis and, remarkably, most of them were able to expand the capability of these bacteria to survive under severe acid stress. From this set of genes, four presented a broad-host range as they enhance the acid resistance of the three different organisms tested. These results expand our knowledge about the different strategies used by microorganisms to survive under extremely acid conditions. | 2013 | 23145860 |
| 446 | 9 | 0.9995 | Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Lactobacilli are common inhabitants of the gastrointestinal tracts of mammals and have received considerable attention due to their putative health-promoting properties. Little is known about the traits that enhance the ability of these bacteria to inhabit the gastrointestinal tract. In this paper we describe the development and application of a strategy based on in vivo expression technology (IVET) that enables detection of Lactobacillus reuteri genes specifically induced in the murine gut. A plasmid-based system was constructed containing 'ermGT (which confers lincomycin resistance) as the primary reporter gene for selection of promoters active in the gastrointestinal tract of mice treated with lincomycin. A second reporter gene, 'bglM (beta-glucanase), allowed differentiation between constitutive and in vivo inducible promoters. The system was successfully tested in vitro and in vivo by using a constitutive promoter. Application of the IVET system with chromosomal DNA of L. reuteri 100-23 and reconstituted lactobacillus-free mice revealed three genes induced specifically during colonization. Two of the sequences showed homology to genes encoding xylose isomerase (xylA) and peptide methionine sulfoxide reductase (msrB), which are involved in nutrient acquisition and stress responses, respectively. The third locus showed homology to the gene encoding a protein whose function is not known. Our IVET system has the potential to identify genes of lactobacilli that have not previously been functionally characterized but which may be essential for growth of these bacteria in the gastrointestinal ecosystem. | 2003 | 12676681 |
| 686 | 10 | 0.9995 | SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. One of the strongest and most noticeable responses of Bacillus subtilis cells to a range of stress and starvation stimuli is the dramatic induction of about 150 SigB-dependent general stress genes. The activity of SigB itself is tightly regulated by a complex signal transduction cascade with at least three main signaling pathways that respond to environmental stress, energy depletion, or low temperature. The SigB-dependent response is conserved in related gram-positive bacteria but is missing in strictly anaerobic or in some facultatively anaerobic gram-positive bacteria. It covers functions from nonspecific and multiple stress resistance to the control of virulence in pathogenic bacteria. A comprehensive understanding of this crucial stress response is essential not only for bacterial physiology but also for applied microbiology, including pathogenicity and pathogen control. | 2007 | 18035607 |
| 9339 | 11 | 0.9995 | A functional genomics approach to identify and characterize oxidation resistance genes. In order to develop a more complete understanding of the genes required for resistance to oxidative DNA damage, we devised methods to identify genes that can prevent or repair oxidative DNA damage. These methods use the oxidative mutator phenotype of a repair deficient E. coli strain to measure the antimutator effect resulting from the expression of human cDNAs. The method can be adapted to characterize the function, and to determine the active site domains, of putative antimutator genes. Since bacteria do not contain subcellular compartments, genes that function in mitochondria, the cytoplasm, or the nucleus can be identified. Methods to determine the localization of genes in their normal host organism are also described. | 2008 | 19082958 |
| 292 | 12 | 0.9995 | Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Tetracycline-resistance determinants encoding active efflux of the drug are widely distributed in gram-negative bacteria and unique with respect to genetic organization and regulation of expression. Each determinant consists of two genes called tetA and tetR, which are oriented with divergent polarity, and between them is a central regulatory region with overlapping promoters and operators. The amino acid sequences of the encoded proteins are 43-78% identical. The resistance protein TetA is a tetracycline/metal-proton antiporter located in the cytoplasmic membrane, while the regulatory protein TetR is a tetracycline inducible repressor. TetR binds via a helix-turn-helix motif to the two tet operators, resulting in repression of both genes. A detailed model of the repressor-operator complex has been proposed on the basis of biochemical and genetic data. The tet genes are differentially regulated so that repressor synthesis can occur before the resistance protein is expressed. This has been demonstrated for the Tn10-encoded tet genes and may be a common property of all tet determinants, as suggested by the similar locations of operators with respect to promoters. Induction is mediated by a tetracycline-metal complex and requires only nanomolar concentrations of the drug. This is the most sensitive effector-inducible system of transcriptional regulation known to date. The crystal structure of the TetR-tetracycline/metal complex shows the Tet repressor in the induced, non-DNA binding conformation. The structural interpretation of many noninducible TetR mutants has offered insight into the conformational changes associated with the switch between inducing and repressing structures of TetR. Tc is buried in the core of TetR, where it is held in place by multiple contacts to the protein. | 1994 | 7826010 |
| 8897 | 13 | 0.9994 | Clinically relevant mutant DNA gyrase alters supercoiling, changes the transcriptome, and confers multidrug resistance. Bacterial DNA is maintained in a supercoiled state controlled by the action of topoisomerases. Alterations in supercoiling affect fundamental cellular processes, including transcription. Here, we show that substitution at position 87 of GyrA of Salmonella influences sensitivity to antibiotics, including nonquinolone drugs, alters global supercoiling, and results in an altered transcriptome with increased expression of stress response pathways. Decreased susceptibility to multiple antibiotics seen with a GyrA Asp87Gly mutant was not a result of increased efflux activity or reduced reactive-oxygen production. These data show that a frequently observed and clinically relevant substitution within GyrA results in altered expression of numerous genes, including those important in bacterial survival of stress, suggesting that GyrA mutants may have a selective advantage under specific conditions. Our findings help contextualize the high rate of quinolone resistance in pathogenic strains of bacteria and may partly explain why such mutant strains are evolutionarily successful. IMPORTANCE: Fluoroquinolones are a powerful group of antibiotics that target bacterial enzymes involved in helping bacteria maintain the conformation of their chromosome. Mutations in the target enzymes allow bacteria to become resistant to these antibiotics, and fluoroquinolone resistance is common. We show here that these mutations also provide protection against a broad range of other antimicrobials by triggering a defensive stress response in the cell. This work suggests that fluoroquinolone resistance mutations may be beneficial under a range of conditions. | 2013 | 23882012 |
| 722 | 14 | 0.9994 | Evolution of Escherichia coli for maximum HOCl resistance through constitutive expression of the OxyR regulon. Exposure of cells to stress impairs cellular functions and may cause killing or adaptation. Adaptation can be facilitated by stress-induced mutagenesis or epigenetic changes, i.e. phenotypic variation without mutations. Upon exposure to HOCl, which is produced by the innate immune system upon bacterial infection, bacteria trigger stress responses that enable increased survival against the stress. Here, we addressed the question whether bacteria can adapt to high HOCl doses and if so, how the acquired resistance is facilitated. We evolved Escherichia coli cells for maximum HOCl resistance by successively increasing the HOCl concentration in the cultivation medium. HOCl-resistant cells showed broad stress resistance but did not carry any chromosomal mutations as revealed by whole-genome sequencing. According to proteome analysis and analysis of transcript levels of stress-related genes, HOCl resistance was accompanied by altered levels of outer-membrane proteins A, C, F and W, and, most prominently, a constitutively expressed OxyR regulon. Induction of the OxyR regulon is facilitated by a partially oxidized OxyR leading to increased levels of antioxidant proteins such as Dps, AhpC/AhpF and KatG. These changes were maintained in evolved strains even when they were cultivated without stress for a prolonged time, indicating epigenetic changes contributed to stress resistance. This indicated that maximum HOCl resistance was conferred by the accumulated action of the OxyR stress response and other factors such as altered levels of outer-membrane proteins. | 2014 | 24899627 |
| 713 | 15 | 0.9994 | OxyR-activated expression of Dps is important for Vibrio cholerae oxidative stress resistance and pathogenesis. Vibrio cholerae is the causative agent of cholera, a dehydrating diarrheal disease. This Gram-negative pathogen is able to modulate its gene expression in order to combat stresses encountered in both aquatic and host environments, including stress posed by reactive oxygen species (ROS). In order to further the understanding of V. cholerae's transcriptional response to ROS, we performed an RNA sequencing analysis to determine the transcriptional profile of V. cholerae when exposed to hydrogen hydroperoxide. Of 135 differentially expressed genes, VC0139 was amongst the genes with the largest induction. VC0139 encodes a protein homologous to the DPS (DNA-binding protein from starved cells) protein family, which are widely conserved and are implicated in ROS resistance in other bacteria. Using a promoter reporter assay, we show that during exponential growth, dps is induced by H2O2 in a manner dependent on the ROS-sensing transcriptional regulator, OxyR. Upon entry into stationary phase, the major stationary phase regulator RpoS is required to transcribe dps. Deletion of dps impaired V. cholerae resistance to both inorganic and organic hydroperoxides. Furthermore, we show that Dps is involved in resistance to multiple environmental stresses. Finally, we found that Dps is important for V. cholerae adult mouse colonization, but becomes dispensable in the presence of antioxidants. Taken together, our results suggest that Dps plays vital roles in both V. cholerae stress resistance and pathogenesis. | 2017 | 28151956 |
| 8323 | 16 | 0.9994 | The impact of environmental stress on Listeria monocytogenes virulence. Listeria monocytogenes, a significant food-borne pathogen, must defy a variety of conditions encountered in the food environment and during the infection process. In reaction to adverse conditions, the bacteria significantly change their metabolism, inducing a stress response which is mediated by a range of alternative sigma factors. The extent of the response to stress was shown to vary in the L. monocytogenes population. According to recent evidence a major L. monocytogenes alternative sigma factor, designated sigma B (sigma B), regulates some virulence genes in response to stress, which supports an older hypothesis that stress-resistant strains should be more pathogenic. The induction of sigma B-dependent genes may also be important from the point of view of food hygiene. It seems that stress response activation can paradoxically enhance resistance to agents used in food preservation. Therefore, monitoring the expression of sigma B-dependent genes can serve as a useful marker to assess the innate resistance of L. monocytogenes strains. This knowledge will allow the design of new methods with sequential preservation steps that could inactivate the bacteria without inducing their stress response. | 2009 | 20169937 |
| 293 | 17 | 0.9994 | Gene regulation by tetracyclines. Constraints of resistance regulation in bacteria shape TetR for application in eukaryotes. The Tet repressor protein (TetR) regulates transcription of a family of tetracycline (tc) resistance determinants in Gram-negative bacteria. The resistance protein TetA, a membrane-spanning H+-[tc.M]+ antiporter, must be sensitively regulated because its expression is harmful in the absence of tc, yet it has to be expressed before the drugs' concentration reaches cytoplasmic levels inhibitory for protein synthesis. Consequently, TetR shows highly specific tetO binding to reduce basal expression and high affinity to tc to ensure sensitive induction. Tc can cross biological membranes by diffusion enabling this inducer to penetrate the majority of cells. These regulatory and pharmacological properties are the basis for application of TetR to selectively control the expression of single genes in lower and higher eukaryotes. TetR can be used for that purpose in some organisms without further modifications. In mammals and in a large variety of other organisms, however, eukaryotic transcriptional activator or repressor domains are fused to TetR to turn it into an efficient regulator. Mechanistic understanding and the ability to engineer and screen for mutants with specific properties allow tailoring of the DNA recognition specificity, the response to inducer tc and the dimerization specificity of TetR-based eukaryotic regulators. This review provides an overview of the TetR properties as they evolved in bacteria, the functional modifications necessary to transform it into a convenient, specific and efficient regulator for use in eukaryotes and how the interplay between structure--function studies in bacteria and specific requirements of particular applications in eukaryotes have made it a versatile and highly adaptable regulatory system. | 2003 | 12869186 |
| 702 | 18 | 0.9994 | Cutting edge: the toll pathway is required for resistance to gram-positive bacterial infections in Drosophila. In Drosophila, the response against various microorganisms involves different recognition and signaling pathways, as well as distinct antimicrobial effectors. On the one hand, the immune deficiency pathway regulates the expression of antimicrobial peptides that are active against Gram-negative bacteria. On the other hand, the Toll pathway is involved in the defense against filamentous fungi and controls the expression of antifungal peptide genes. The gene coding for the only known peptide with high activity against Gram-positive bacteria, Defensin, is regulated by both pathways. So far, survival experiments to Gram-positive bacteria have been performed with Micrococcus luteus and have failed to reveal the involvement of one or the other pathway in host defense against such infections. In this study, we report that the Toll pathway, but not that of immune deficiency, is required for resistance to other Gram-positive bacteria and that this response does not involve Defensin. | 2002 | 11823479 |
| 294 | 19 | 0.9994 | Status quo of tet regulation in bacteria. The tetracycline repressor (TetR) belongs to the most popular, versatile and efficient transcriptional regulators used in bacterial genetics. In the tetracycline (Tc) resistance determinant tet(B) of transposon Tn10, tetR regulates the expression of a divergently oriented tetA gene that encodes a Tc antiporter. These components of Tn10 and of other natural or synthetic origins have been used for tetracycline-dependent gene regulation (tet regulation) in at least 40 bacterial genera. Tet regulation serves several purposes such as conditional complementation, depletion of essential genes, modulation of artificial genetic networks, protein overexpression or the control of gene expression within cell culture or animal infection models. Adaptations of the promoters employed have increased tet regulation efficiency and have made this system accessible to taxonomically distant bacteria. Variations of TetR, different effector molecules and mutated DNA binding sites have enabled new modes of gene expression control. This article provides a current overview of tet regulation in bacteria. | 2022 | 34713957 |