Heavy metal and antibiotic resistance in four Indian and UK rivers with different levels and types of water pollution. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
689301.0000Heavy metal and antibiotic resistance in four Indian and UK rivers with different levels and types of water pollution. Heavy metal pollution can enhance the level of antibiotic resistance, posing concerns to ecosystem and public health. Here, we investigated heavy metal concentrations, heavy metal resistant bacteria and antibiotic resistant bacteria and their corresponding resistant genes, and integrons in four different river environments, i.e., low heavy metals and low wastewater, high heavy metals and low wastewater, low heavy metals and high wastewater, and high heavy metals and high wastewater levels. Heavy metals were found to show positive and significant correlations with heavy metal resistance and antibiotic resistance and integrons (r > 0.60, p < 0.05), indicating that heavy metal selective pressure can cause heavy metal and antibiotic resistance to be transmitted simultaneously via integrons, which can result in the development of multi-resistant bacteria in the heavy metal-polluted environments. Moreover, there were significant associations between heavy metal resistance and antibiotic resistance (r > 0.60, p < 0.05), demonstrating heavy metal and antibiotic resistance are connected via a same or related mechanism. Class 1 integrons were found to have strong correlations with heavy metals and heavy metal resistance and antibiotic resistance (r > 0.60, p < 0.05), indicating a higher occurrence of antibiotic resistance co-selection in the heavy metal-polluted environments.202336174689
689410.9999Profiles of antibiotic- and heavy metal-related resistance genes in animal manure revealed using a metagenomic analysis. Farmed animals produce excrement containing excessive amounts of toxic heavy metals as a result of consuming compound feed as well as receiving medical treatments, and the presence of these heavy metals may aggravate the risk of spreading drug-resistance genes through co-selection during manure treatment and application processes. However, research on the association between heavy metals and antimicrobial resistance is still lacking. In this study, metagenomic sequencing was used to explore the effects of the co-selection of environmentally toxic heavy metals on the resistome in manure. A relevance network analysis showed that metal-resistance genes (MRGs), especially for copper (Cu) and zinc (Zn), were positively correlated with multiple types of antibiotic-resistance genes (ARGs) and formed a complex network. Most bacteria that co-occurred with both MRGs and ARGs simultaneously are members of Proteobacteria and accounted for 54.7% of the total microbial species in the relevance network. The remaining bacteria belonged to Firmicutes, Bacteroidetes and Actinobacteria. Among the four phyla, Cu- and Zn-resistance genes had more complex correlations with ARGs than other MRG types, reflecting the occurrence of ARG co-selection under the selective pressure of high Cu and Zn levels. In addition, approximately 64.8%, 59.1% and 68.4% of MRGs that correlated with the presence of plasmids, viruses and prophages, respectively, are Cu- or Zn-resistant, and they co-occurred with various ARGs, indicating that mobile genetic elements participate in mediating ARG co-selection in response to Cu and Zn pressure. The results indicated that the use of heavy-metal additives in feed induces the increases of drug resistance genes in manure through co-selection, aggravating the risk of antimicrobial resistance diffusion from animal farm to manure land applications.202235617901
689520.9999Effects of heavy metals pollution on the co-selection of metal and antibiotic resistance in urban rivers in UK and India. Heavy metal pollution and the potential for co-selection of resistance to antibiotics in the environment is growing concern. However, clear associations between heavy metals and antibiotic resistance in river systems have not been developed. Here we investigated relationships between total and bioavailable heavy metals concentrations; metal resistance gene (MRG) and antibiotic resistance gene (ARG) abundances; mobile genetic elements; and the composition of local bacterial communities in low and high metal polluted rivers in UK and India. The results indicated that MRGs conferring resistance to cobalt (Co) and nickel (Ni) (rcnA), and Co, zinc (Zn), and cadmium (Cd) (czcA), and ARGs conferring resistance to carbapenem and erythromycin were the dominating resistant genes across the samples. The relative MRGs, ARGs, and integrons abundances tended to increase at high metal polluted environments, suggesting high metals concentrations have a strong potential to promote metal and antibiotic resistance by horizontal gene transmission and affecting bacterial communities, leading to the development of multi-metal and multi-antibiotic resistance. Network analysis demonstrated the positive and significant relationships between MRGs and ARGs as well as the potential for integrons playing a role in the co-transmission of MRGs and ARGs (r > 0.80, p < 0.05). Additionally, the major host bacteria of various MRGs and ARGs that could be accountable for greater MRGs and ARGs levels at high metal polluted environments were also identified by network analysis. Spearman's rank-order correlations and RDA analysis further confirm relationships between total and bioavailable heavy metals concentrations and the relative MRG, ARG, and integron abundances, as well as the composition of related bacterial communities (r > 0.80 (or < -0.80), p < 0.05). These findings are critical for assessing the possible human health concerns associated with metal-driven antibiotic resistance and highlight the need of considering metal pollution for developing appropriate measures to control ARG transmission.202235491000
731330.9999Effect of the selective pressure of sub-lethal level of heavy metals on the fate and distribution of ARGs in the catchment scale. Our previous study demonstrated that high levels of antibiotic resistance genes (ARGs) in the Haihe River were directly attributed to the excessive use of antibiotics in animal agriculture. The antibiotic residues of the Xiangjiang River determined in this study were much lower than those of the Haihe River, but the relative abundance of 16 detected ARGs (sul1, sul2 and sul3, qepA, qnrA, qnrB, qnrD and qnrS, tetA, tetB, tetW, tetM, tetQ and tetO, ermB and ermC), were as high as the Haihe River particularly in the downstream of the Xiangjiang River which is close to the extensive metal mining. The ARGs discharged from the pharmaceutical wastewater treatment plant (PWWTP) are a major source of ARGs in the upstream of the Xiangjiang River. In the downstream, selective stress of heavy metals rather than source release had a significant influence on the distinct distribution pattern of ARGs. Some heavy metals showed a positive correlation with certain ARG subtypes. Additionally, there is a positive correlation between individual ARG subtypes and heavy metal resistance genes, suggesting that heavy metals may co select the ARGs on the same plasmid of antibiotic resistant bacteria. The co-selection mechanism between specific metal and antibiotic resistance was further confirmed by these isolations encoding the resistance genotypes to antibiotics and metals. To our knowledge, this is the first study on the fate and distribution of ARGs under the selective pressure exerted by heavy metals in the catchment scale. These results are beneficial to understand the fate, and to discern the contributors of ARGs from either the source release or the selective pressure by sub-lethal levels of environmental stressors during their transport on a river catchment scale.201727876226
690340.9998Heavy Metal Tolerance Genes Associated With Contaminated Sediments From an E-Waste Recycling River in Southern China. Heavy metal pollution that results from electronic waste (e-waste) recycling activities has severe ecological environmental toxicity impacts on recycling areas. The distribution of heavy metals and the impact on the bacteria in these areas have received much attention. However, the diversity and composition of the microbial communities and the characteristics of heavy metal resistance genes (HMRGs) in the river sediments after long-term e-waste contamination still remain unclear. In this study, eight river sediment samples along a river in a recycling area were studied for the heavy metal concentration and the microbial community composition. The microbial community consisted of 13 phyla including Firmicutes (ranging from 10.45 to 36.63%), Proteobacteria (11.76 to 32.59%), Actinobacteria (14.81 to 27.45%), and unclassified bacteria. The abundance of Firmicutes increased along with the level of contaminants, while Actinobacteria decreased. A canonical correspondence analysis (CCA) showed that the concentration of mercury was significantly correlated with the microbial community and species distribution, which agreed with an analysis of the potential ecological risk index. Moreover, manually curated HMRGs were established, and the HMRG analysis results according to Illumina high-throughput sequencing showed that the abundance of HMRGs was positively related to the level of contamination, demonstrating a variety of resistance mechanisms to adapt, accommodate, and live under heavy metal-contaminated conditions. These findings increase the understanding of the changes in microbial communities in e-waste recycling areas and extend our knowledge of the HMRGs involved in the recovery of the ecological environment.202134054770
684450.9998Antibiotic resistance genes correlate with metal resistances and accumulate in the deep water layers of the Black Sea. Seas and oceans are a global reservoir of antibiotic resistance genes (ARGs). Only a few studies investigated the dynamics of ARGs along the water column of the Black Sea, a unique environment, with a peculiar geology, biology and history of anthropogenic pollution. In this study, we analyzed metagenomic data from two sampling campaigns (2013 and 2019) collected across three different sites in the Western Black Sea at depths ranging from 5 to 2000 m. The data were processed to annotate ARGs, metal resistance genes (MRGs) and integron integrase genes. The ARG abundance was significantly higher in the deep water layers and depth was the main driver of beta-diversity both for ARGs and MRGs. Moreover, ARG and MRG abundances strongly correlated (r = 0.95). The integron integrase gene abundances and composition were not influenced by the water depth and did not correlate with ARGs. The analysis of the obtained MAGs showed that some of them harbored intI gene together with several ARGs and MRGs, suggesting the presence of multidrug resistant bacteria and that MRGs and integrons could be involved in the selection of ARGs. These results demonstrate that the Black Sea is not only an important reservoir of ARGs, but also that they accumulate in the deep water layers where co-selection with MRGs could be assumed as a relevant mechanism of their persistence.202236030962
740660.9998Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Increasing drug-resistant infections have drawn research interest towards examining environmental bacteria and the discovery that many factors, including elevated metal conditions, contribute to proliferation of antibiotic resistance (AR). This study examined 90 garden soils from Western Australia to evaluate predictions of antibiotic resistance genes from total metal conditions by comparing the concentrations of 12 metals and 13 genes related to tetracycline, beta-lactam and sulphonamide resistance. Relationships existed between metals and genes, but trends varied. All metals, except Se and Co, were related to at least one AR gene in terms of absolute gene numbers, but only Al, Mn and Pb were associated with a higher percentage of soil bacteria exhibiting resistance, which is a possible indicator of population selection. Correlations improved when multiple factors were considered simultaneously in a multiple linear regression model, suggesting the possibility of additive effects occurring. Soil-metal concentrations must be considered when determining risks of AR in the environment and the proliferation of resistance.201727822686
689270.9998Metagenomic deciphers the mobility and bacterial hosts of antibiotic resistance genes under antibiotics and heavy metals co-selection pressures in constructed wetlands. Both antibiotics and heavy metals exert significant selection pressures on antibiotic-resistance genes (ARGs). This study aimed to investigate the co-selection effects of doxycycline (DC) and cadmium (Cd) on ARGs in constructed wetlands (CWs). The results demonstrated that under antibiotic and heavy metal co-selection pressures, single high concentration DC/Cd or double high, relative abundances of metagenomics assembled genomes all reached 55.1%; meanwhile, the average ratio of ARG-containing contigs located on chromosomes was 61.8% (ranging from 50.4% to 70.6%) suggesting a more stable inheritance of ARGs. Antibiotic and heavy metal co-selection in single high concentration DC/Cd or double high groups stimulate the enrichment of ARG host bacteria, which exhibited complex multiple-resistant patterns accompanied by a host-specific pattern. Additionally, the potential transfer abilities of ARGs mediated by plasmids and integrative and conjugative elements (ICEs) were enhanced under single high-concentration DC/Cd or double high stresses. Together, antibiotic and heavy metal co-selection pressures increased occurrence frequencies of ARGs, MGEs, and their combinations and altered structural communities of ARG host bacteria, increasing the risk of the spread of ARGs. This study was helpful in understanding the dissemination of ARGs and simultaneously preventing the spread of heavy metal-resistant bacteria and ARGs under antibiotic and heavy metal co-selection in small- and micro-wetlands.202539848523
690180.9998Polycyclic aromatic hydrocarbons (PAHs) enriching antibiotic resistance genes (ARGs) in the soils. The prevalence of antibiotic resistance genes (ARGs) in modern environment raises an emerging global health concern. In this study, soil samples were collected from three sites in petrochemical plant that represented different pollution levels of polycyclic aromatic hydrocarbons (PAHs). Metagenomic profiling of these soils demonstrated that ARGs in the PAHs-contaminated soils were approximately 15 times more abundant than those in the less-contaminated ones, with Proteobacterial being the preponderant phylum. Resistance profile of ARGs in the PAHs-polluted soils was characterized by the dominance of efflux pump-encoding ARGs associated with aromatic antibiotics (e.g., fluoroquinolones and acriflavine) that accounted for more than 70% of the total ARGs, which was significantly different from representative sources of ARG pollution due to wide use of antibiotics. Most of ARGs enriched in the PAHs-contaminated soils were not carried by plasmids, indicating the low possibilities of them being transferred between bacteria. Significant correlation was observed between the total abundance of ARGs and that of Proteobacteria in the soils. Proteobacteria selected by PAHs led to simultaneously enriching of ARGs carried by them in the soils. Our results suggested that PAHs could serve as one of selective stresses for greatly enriching of ARGs in the human-impacted environment.201727876418
741490.9998Structure of the manure resistome and the associated mobilome for assessing the risk of antimicrobial resistance transmission to crops. In this study, the impact of bovine and poultry manure on the quantitative and qualitative composition of antibiotic resistance genes (ARGs) and the environmental mobilome associated with antimicrobial resistance in soil and crops was determined with the use of next generation sequencing methods. The aim of the study was to perform a metagenomic analysis of manure to estimate the risk of the transmission of ARGs and bacterial drug resistance carriers to fertilized soil and crops. The total copy number of ARGs was nearly four times higher in poultry manure (555 ppm) than in bovine manure (140 ppm), and this relationship was also noted in fertilized soil. Poultry manure induced a much greater increase in the concentrations of ARGs in the soil environment (196.4 ppm) than bovine manure (137.8 ppm) immediately after supplementation. The application of poultry manure led to the highest increase in the abundance of genes encoding resistance to tetracyclines (9%), aminoglycosides (3.5%), sulfonamides (3%), bacitracin (2%), chloramphenicol (2%), and macrolide-lincosamide-streptogramin antibiotics (1%). Heavy metals were stronger promoters of antibiotic resistance in the environment than antibiotics. Antibiotics exerted a greater influence on maintaining the diversity of ARGs than on increasing their abundance in soil. Large quantities of insertion sequences (IS), including those associated with the mobility of ARGs in the population of ESKAPEE pathogens, are introduced to soil with manure. These IS remain stable for up to several months, which indicates that manure, in particular poultry manure, significantly increases the risk of rapid ARG transfer to the environment. Manure also largely contributes to an increase in the diversity of the resistome and mobilome in the metagenome of bacteria isolated from crops. Bacteria of the phylum Proteobacteria appear to play a major role in the transmission of multiple ARGs in crops grown for human and animal consumption.202234864022
6902100.9998Antibiotic resistance genes in surface water and groundwater from mining affected environments. Mining activities are known to generate a large amount of mine tailings and acid mine drainage which contain varieties of heavy metals. Heavy metals play an important role in co-selection for bacterial antibiotic resistance. However, the characteristics of antibiotic resistance genes (ARGs) in mining-affected water environments are still unclear. Here we investigated the pollution of metals, profiles of ARGs, mobile genetic elements (MGEs) and microbial community in mining-affected surface water and groundwater. The results showed that in the tested water samples, the concentrations of Zn and Mn were the highest, and Ni was the lowest. Higher abundances of ARGs with great proportion of sulfonamides, chloramphenicols and tetracyclines resistance genes were found in mining-affected water when compared with those without mining activities. Additionally, there were positive correlations between heavy metals (especially Ni, Zn and Mn) and these ARGs. Linear regression analysis suggested that MGEs were positively correlated with ARGs. In addition, total phosphorus was correlated with ARGs (p < 0.05). The microbial community was different between the mining-affected water and the reference (p < 0.05). Proteobacteria, Bacteroidetes and Actinobacteria were dominant phyla in the surface water and groundwater. Network analysis showed that many ARGs were significantly associated with these dominant bacteria, which suggested they might be potential hosts for these ARGs. These findings provide a clear evidence that the mining activities in the study area had a significant impact on surface water and groundwater to different degrees.202133571766
3471110.9998The prevalence of ampicillin-resistant opportunistic pathogenic bacteria undergoing selective stress of heavy metal pollutants in the Xiangjiang River, China. The emergence of clinically relevant β-lactam-resistant bacteria poses a serious threat to human health and presents a major challenge for medical treatment. How opportunistic pathogenic bacteria acquire antibiotic resistance and the prevalence of antibiotic-resistant opportunistic pathogenic bacteria in the environment are still unclear. In this study, we further confirmed that the selective pressure of heavy metals contributes to the increase in ampicillin-resistant opportunistic pathogens in the Xiangjiang River. Four ampicillin-resistant opportunistic pathogenic bacteria (Pseudomonas monteilii, Aeromonas hydrophila, Acinetobacter baumannii, and Staphylococcus epidermidis) were isolated on Luria-Bertani (LB) agar plates and identified by 16S rRNA sequencing. The abundance of these opportunistic pathogenic bacteria significantly increased in the sites downstream of the Xiangjiang River that were heavily influenced by metal mining activities. A microcosm experiment showed that the abundance of β-lactam resistance genes carried by opportunistic pathogenic bacteria in the heavy metal (Cu(2+) and Zn(2+)) treatment group was 2-10 times higher than that in the control. Moreover, heavy metals (Cu(2+) and Zn(2+)) significantly increased the horizontal transfer of plasmids in pathogenic bacteria. Of particular interest is that heavy metals facilitated the horizontal transfer of conjugative plasmids, which may lead to the prevalence of multidrug-resistant pathogenic bacteria in the Xiangjiang River.202133035873
7391120.9998Antibiotic resistance genes in China: occurrence, risk, and correlation among different parameters. Antibiotic resistance has become a widely concerned issue due to the huge risk on the ecological environment and human health. China has the highest production and consumption of antibiotics than other countries. Thus, antibiotic resistance genes (ARGs) have been detected in various environmental settings (e.g., surface water, wastewater, sediment) in China. The occurrence of ARGs in these matrixes was summarized and discussed in this review. Sulfonamide resistance genes and tetracycline resistance genes were the most frequently detected ARGs in China. According to the abundance of these two classes of ARGs in the natural environment, sulfonamide resistance genes seem to be more stable than tetracycline resistance genes. Furthermore, the relationships between ARGs and antibiotics, antibiotic resistance bacteria (ARB), heavy metals, and environmental parameters (e.g., pH, organics) were also investigated. Specifically, relative abundance of total ARGs was found to correlate well with concentration of total antibiotics in aqueous phase but not in the solid phase (soil, sediment, sludge, and manure). As for relationship between ARGs and ARB, metals, and environmental parameters in different media, due to complex and variable environment, some exhibit positive correlation, some negative, while others no correlation at all. Three potential risks are discussed in the text: transmission to human, synergistic effect of different ARGs, and variability of ARGs. However, due to the complexity of the environment, more work is needed to establish a quantitative approach of ARG risk assessment, which can provide a theoretical support for the management of antibiotics and the protection of human health.201829948704
7294130.9998The Sources and Potential Hosts Identification of Antibiotic Resistance Genes in the Yellow River, Revealed by Metagenomic Analysis. The fate of antibiotic resistance genes (ARGs) has been revealed in various environmental media in recent years. Namely, the emergence of genes that resist colistin and carbapenems has attracted wide attention. However, the pollution condition of ARGs and sources in the Yellow River is still little understood, despite the river being the second longest in China. The present study determined the levels of ARG pollution in the Henan section of the Yellow River and evaluated the role of the aquaculture industry in the spread of ARGs. As revealed by the results, a total of 9 types of ARGs were detected in the sediments of the Yellow River, and the total ARG content in the Yellow River ranges from 7.27 to 245.45 RPKM. Sul1 and sul2 are the dominant ARGs, and the huge usage of sulfonamides, horizontal gene transfer, and wide bacteria host contribute to the prevalence of these two genes. The results of Spearman correlation analysis indicate that the breeding industry has little influence on ARGs in the Yellow River. Network analysis reveals that the opportunistic pathogen Pseudomonas is the potential host of sul1, tetG, and ANT(3'')-IIa, which can pose a risk to human health.202236012061
7395140.9998Impacts of anthropogenic activity on the ecology of class 1 integrons and integron-associated genes in the environment. The impact of human activity on the selection for antibiotic resistance in the environment is largely unknown, although considerable amounts of antibiotics are introduced through domestic wastewater and farm animal waste. Selection for resistance may occur by exposure to antibiotic residues or by co-selection for mobile genetic elements (MGEs) which carry genes of varying activity. Class 1 integrons are genetic elements that carry antibiotic and quaternary ammonium compound (QAC) resistance genes that confer resistance to detergents and biocides. This study aimed to investigate the prevalence and diversity of class 1 integron and integron-associated QAC resistance genes in bacteria associated with industrial waste, sewage sludge and pig slurry. We show that prevalence of class 1 integrons is higher in bacteria exposed to detergents and/or antibiotic residues, specifically in sewage sludge and pig slurry compared with agricultural soils to which these waste products are amended. We also show that QAC resistance genes are more prevalent in the presence of detergents. Studies of class 1 integron prevalence in sewage sludge amended soil showed measurable differences compared with controls. Insertion sequence elements were discovered in integrons from QAC contaminated sediment, acting as powerful promoters likely to upregulate cassette gene expression. On the basis of this data, >1 × 10(19) bacteria carrying class 1 integrons enter the United Kingdom environment by disposal of sewage sludge each year.201121368907
3853150.9998Co-selection of antibiotic-resistant bacteria in a paddy soil exposed to As(III) contamination with an emphasis on potential pathogens. The increased acquisition of antibiotic resistance by pathogens is a global health concern. The environmental selection of antibiotic resistance can be caused by either antibiotic residues or co-selecting agents such as toxic metal(loid)s. This study explored the potential role of As(III) as a co-selecting driver in the spread of antibiotic resistance in paddy soils. By applying high-throughput sequencing, we found that the diversity and composition of soil microbial communities was significantly altered by As(III) exposure, resulting in an increased proportion of potential pathogens (9.9%) compared to the control soil (0.1%). Meanwhile, a total of 46 As(III)-resistant isolates were obtained from As(III)-exposure soil, among which potential pathogens accounted for 54.3%. These As(III)-resistant bacteria showed a high incidence of resistance to sulfanilamide (100%) and streptomycin (88-93%). The association between antibiotic and As(III) resistances was further investigated in a potentially pathogenic isolate by whole-genome sequencing and a transcription assay. The results showed that As(III) and antibiotic resistance genes might co-occur in a mobile genomic island and be co-regulated by As(III), implying that antibiotic resistance could be co-selected by As(III) via co-resistance and co-regulation mechanisms. Overall, these results suggest that As(III) exposure provides a strong selective pressure for the expansion of soil bacterial resistome.202032302839
6890160.9998The dynamic of the potential pathogenic bacteria, antibiotic-resistant bacteria, and antibiotic resistance genes in the water at different growth stages of grass carp pond. Pond aquaculture has become the most important and broadest breeding model in China, and an extremely important source of aquatic products, but the potential hazard factors of potential pathogenic bacteria (PPB), antibiotic resistance bacteria (ARB), and antibiotic resistance genes (ARGs) in aquaculture environment are largely invisible. In the present study, the bacterial communities in the larvae, juvenile, rearing, and harvesting culture stages of great grass carp (Ctenopharyngodon idellus) ponds were investigated and the structure of microbial flora analysis showed that the larvae culture stage has the highest abundance and the most dominant phyla were Proteobacteria (27.8%). A total of 123 significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations and the relative abundance of nine bacterial phenotypes implied that the larvae culture stage had the most abundance of pathogenic potential and mobile elements. The correlation analyses of environmental factors showed that temperature, stocking density, pH, and transparency showed the significant impacts on both the distribution of microbiome and the PPB. More importantly, a total of 40 ARB were identified, and 16 ARGs have the detection rates of 100%, which revealed that they are widely distributed and highly enriched in the aquaculture production. Notably, this is the first robust report to analyze and understand the PPB, ARB, and ARGs characteristics and dynamic changes in the pond aquaculture.202234817812
3684170.9998Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms. Selection pressure generated by antibiotics released into the environment could enrich for antibiotic resistance genes and antibiotic resistant bacteria, thereby increasing the risk for transmission to humans and animals. Tetracyclines comprise an antibiotic class of great importance to both human and animal health. Accordingly, residues of tetracycline are commonly detected in aquatic environments. To assess if tetracycline pollution in aquatic environments promotes development of resistance, we determined minimal selective concentrations (MSCs) in biofilms of complex aquatic bacterial communities using both phenotypic and genotypic assays. Tetracycline significantly increased the relative abundance of resistant bacteria at 10 μg/L, while specific tet genes (tetA and tetG) increased significantly at the lowest concentration tested (1 μg/L). Taxonomic composition of the biofilm communities was altered with increasing tetracycline concentrations. Metagenomic analysis revealed a concurrent increase of several tet genes and a range of other genes providing resistance to different classes of antibiotics (e.g. cmlA, floR, sul1, and mphA), indicating potential for co-selection. Consequently, MSCs for the tet genes of ≤ 1 μg/L suggests that current exposure levels in e.g. sewage treatment plants could be sufficient to promote resistance. The methodology used here to assess MSCs could be applied in risk assessment of other antibiotics as well.201626938321
7292180.9998Class 1 integron and related antimicrobial resistance gene dynamics along a complex freshwater system affected by different anthropogenic pressures. The risk for human health posed by polluted aquatic environments, and especially those carrying antibiotic resistance genes (ARGs) of clinical interest, is still debated. This is because of our limited knowledge of the dynamics of antimicrobial resistance in the environment, the selection mechanisms underlying the spread of ARGs, and the ecological factors potentially favoring their return to humans. The Class 1 integron is one of the most effective platforms for the dissemination of ARGs. In this study we investigated a freshwater system consisting of a lake-river-lake continuum, determining the abundance of class 1 integrons and their associated ARGs by a modulated metagenomic approach. Bacterial abundance and community composition were used to identify the potential carriers of class 1 integrons and their associated ARGs over a period of six months. Class 1 integrons and their ARG cargoes were significantly more abundant in riverine sampling sites receiving treated wastewater. Further, class 1 integrons carried ARGs ranked at the highest risk for human health (e.g., catB genes), in particular, genes encoding resistance to aminoglycosides. Genera of potential pathogens, such as Pseudomonas and Escherichia-Shigella, were correlated with class 1 integrons. The lake-river-lake system demonstrated a clear relationship between the integrase gene of class 1 integrons (intI1) and anthropogenic impact, but also a strong environmental filtering that favored the elimination of intI1 once the human derived stressors were reduced. Overall, the results of this study underline the role class 1 integrons as proxy of anthropogenic pollution and suggest this genetic platform as an important driver of aminoglycoside resistance genes, including high risk ARGs, of potential concern for human health.202336351483
6898190.9998Co-selection and stability of bacterial antibiotic resistance by arsenic pollution accidents in source water. Frequent heavy-metal pollution accidents severely deteriorated the source water quality of drinking water treatment plants (DWTP). Limited data have explicitly addressed the impact of these incidents on bacterial antibiotic resistance (BAR). In present study, we investigated the shift of antibiotic resistome caused by heavy metal pollution incidents via simulating an arsenic shock loading [As (III)], along with the associated risks imposed on drinking water systems. The results indicated that a quick co-selection of antibiotic resistant bacteria (ARB) was achieved after exposure to 0.2-1 mg/L As (III) for only 6 h, meanwhile, there was an increase of relative abundance of antibiotic resistance genes (ARGs) and mobile genetic elements. Most of the co-selected BAR could be maintained for at least 4 days in the absence of As (III) and antibiotics, implying that the pollution in source water possibly contributed to the preservation and proliferation of antibiotic resistance determinants in the subsequent DWTP. Bacterial community structure analysis showed a strong correlation between bacterial community shift and BAR promotion, and enrichment of opportunistic bacteria (e.g. Escherichia-Shigella, Empedobacter sp. and Elizabethkingia sp.). The results indicated a potential epidemiological threat to the public due to accident-level arsenic contamination in the source water. This study gave insight into understanding the source water pollution accidents from the perspective of bio-hazard and biological risks, and highlighted a neglected important source of BAR in drinking water systems.202031794937