# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6889 | 0 | 1.0000 | Hot spots of resistance: Transit centers as breeding grounds for airborne ARG-carrying bacteriophages. The presence of pathogenic bacteria and antibiotic resistance genes (ARGs) in urban air poses a significant threat to public health. While prevailing research predominantly focuses on the airborne transmission of ARGs by bacteria, the potential influence of other vectors, such as bacteriophages, is often overlooked. This study aims to investigate the characteristics of phages and ARGs in aerosols originating from hospitals, public transit centers, wastewater treatment plants, and landfill sites. The average abundance of ARGs carried by phages in the public transit centers was 8.81 ppm, which was 2 to 3 times higher than that at the other three sites. Additionally, the abundance of ARGs across different risk levels at this site was also significantly higher than at the other three sites. The assembled phage communities bearing ARGs in public transit centers are chiefly governed by homogeneous selection processes, likely influenced by human movement. Furthermore, observations at public transit sites revealed that the average abundance ratio of virulent phages to their hosts was 1.01, and the correlation coefficient between their auxiliary metabolic genes and hosts' metabolic genes was 0.59, which were 20 times and 3 times higher, respectively, than those of temperate phages. This suggests that virulent phages may enhance their survival by altering host metabolism, thereby aiding the dispersion of ARGs and bacterial resistance. These revelations furnish fresh insights into phage-mediated ARG transmission, offering scientific substantiation for strategies aimed at preventing and controlling resistance within aerosols. | 2024 | 39418908 |
| 6878 | 1 | 0.9998 | Reduction in antimicrobial resistance in a watershed after closure of livestock farms. Natural environments play a crucial role in transmission of antimicrobial resistance (AMR). Development of methods to manage antibiotic resistance genes (ARGs) in natural environments are usually limited to the laboratory or field scale, partially due to the complex dynamics of transmission between different environmental compartments. Here, we conducted a nine-year longitudinal profiling of ARGs at a watershed scale, and provide evidence that restrictions on livestock farms near water bodies significantly reduced riverine ARG abundance. Substantial reductions were revealed in the relative abundance of genes conferring resistance to aminoglycosides (42%), MLSB (36%), multidrug (55%), tetracyclines (53%), and other gene categories (59%). Additionally, improvements in water quality were observed, with distinct changes in concentrations of dissolved reactive phosphorus, ammonium, nitrite, pH, and dissolved oxygen. Antibiotic residues and other pharmaceuticals and personal care products (PPCPs) maintain at a similarly low level. Microbial source tracking demonstrates a significant decrease in swine fecal indicators, while human fecal pollution remains unchanged. These results suggest that the reduction in ARGs was due to a substantial reduction in input of antibiotic resistant bacteria and genes from animal excreta. Our findings highlight the watershed as a living laboratory for understanding the dynamics of AMR, and for evaluating the efficacy of environmental regulations, with implications for reducing environmental risks associated with AMR on a global scale. | 2024 | 38925006 |
| 6891 | 2 | 0.9998 | Feedstock-dependent antibiotic resistance gene patterns and expression profiles in industrial scale biogas plants revealed by meta-omics technology. This study investigated antimicrobial resistance in the anaerobic digesters of two industrial-scale biogas plants processing agricultural biomass and municipal wastewater sludge. A combination of deep sequencing and genome-centric workflow was implemented for metagenomic and metatranscriptomics data analysis to comprehensively examine potential antimicrobial resistance in microbial communities. Anaerobic microbes were found to harbour numerous antibiotic resistance genes (ARGs), with 58.85% of the metagenome-assembled genomes (MAGs) harbouring antibiotic resistance. A moderately positive correlation was observed between the abundance and expression of ARGs. ARGs were located primarily on bacterial chromosomes. A higher expression of resistance genes was observed on plasmids than on chromosomes. Risk index assessment suggests that most ARGs identified posed a significant risk to human health. However, potentially pathogenic bacteria showed lower ARG expression than non-pathogenic ones, indicating that anaerobic treatment is effective against pathogenic microbes. Resistomes at the gene category level were associated with various antibiotic resistance categories, including multidrug resistance, beta-lactams, glycopeptides, peptides, and macrolide-lincosamide-streptogramin (MLS). Differential expression analysis revealed specific genes associated with potential pathogenicity, emphasizing the importance of active gene expression in assessing the risks associated with ARGs. | 2025 | 39461216 |
| 7323 | 3 | 0.9998 | Identification and quantification of bacterial genomes carrying antibiotic resistance genes and virulence factor genes for aquatic microbiological risk assessment. Aquatic ecosystems have been increasingly threatened by anthropogenic activities, e.g., wastewater discharge and farm operation. Several methods are adopted to evaluate the effects of anthropogenic activities on biological risk in the environment, such as qPCR and amplicon next-generation sequencing. However, these methods fall short of providing genomic information of target species, which is vital for risk assessment from genomic aspect. Here, we developed a novel approach integrating metagenomic analysis and flow cytometry to identify and quantify potential pathogenic antibiotic resistant bacteria (PARB; carrying both antibiotic resistance genes (ARGs) and virulence factor genes (VFGs)) in the environment, which are of particular concern due to their infection ability and antibiotic resistance. Based on the abundance/density of PARB, we evaluated microbiological risk in a river impacted by both municipal drainage and agriculture runoff. We collected samples upstream (mountainous area) as the control. Results showed that 81.8% of dominant PARB (33) recovered using our approach were related to known pathogenic taxa. In addition, intragenomic ARGs-VFGs coexistence patterns in the dominant Pseudomonas genomes (20 out of 71 PARB) showed high similarity with the most closely related Pseudomonas genomes from the NCBI RefSeq database. These results reflect acceptable reliability of the approach for (potential) pathogen identification in environmental samples. According to the PARB density, microbiological risk in samples from the agricultural area was significantly higher than in samples from the urban area. We speculated that this was due to the higher antibiotic usage in agriculture as well as intragenomic ARGs-VFGs co-evolution under antibiotic selective pressure. This study provides an alternative approach for the identification and quantification of PARB in aquatic environments, which can be applied for microbiological risk assessment. | 2020 | 31614233 |
| 3198 | 4 | 0.9998 | Enhance antibiotic resistance and human health risks in aerosols during the COVID-19 pandemic. Aerosols are an important route for the transmission of antibiotic resistance genes (ARGs). Since the 2019 (COVID-19) pandemic, the large-scale use of disinfectants has effectively prevented the spread of environmental microorganisms, but studies regarding the antibiotic resistance of airborne bacteria remain limited. This study focused on four functional urban areas (commercial areas, educational areas, residential areas and wastewater treatment plant) to study the variations in ARG abundances, bacterial community structures and risks to human health during the COVID-19 pandemic in aerosol. The results indicated the abundance of ARGs during the COVID-19 period were up to approximately 13-fold greater than before the COVID-19 period. Large-scale disinfection resulted in a decrease in total bacterial abundance. However, chlorine-resistant bacteria tended to be survived. Among the four functional areas, the diversity and abundance of aerosol bacteria were highest in commercial aera. Antibiotic susceptibility assays suggested elevated resistance of isolated bacteria to several tested antibiotics due to disinfection exposure. The potential exposure risks of ARGs to human health were 2 times higher than before the COVID-19 pandemic, and respiratory intake was the main exposure route. The results highlighted the elevated antibiotic resistance of bacteria in aerosols that were exposed to disinfectants after the COVID-19 pandemic. This study provides theoretical guidance for the rational use of disinfectants and control of antimicrobial resistance. | 2023 | 36754321 |
| 3177 | 5 | 0.9998 | Metagenomic investigation of antibiotic resistance genes and resistant bacteria contamination in pharmaceutical plant sites in China. Pharmaceutical plant sites play a significant role in the dissemination of antibiotic resistance genes (ARGs) into the environment. It is imperative to comprehensively monitor of ARGs across various environmental media at these sites. This study focused on three pharmaceutical plants, two located in North China and one in South China. Through metagenomic approaches, we examined the composition, mobility potential, and bacterial hosts of ARGs in diverse media such as process water, groundwater, topsoil, soil cores, and pharmaceutical fermentation residues across diverse environmental matrices, including topsoil, soil cores, process water, groundwater, and pharmaceutical fermentation residues. We identified a wide array of ARGs, comprising 21 types and 740 subtypes, with process water exhibiting the highest abundance and diversity. Treatment processes varied in their efficacy in eliminating ARGs, and the clinically relevant ARGs should also be considered when evaluating wastewater treatment plant efficiency. Geographical distinctions in groundwater ARG distribution between northern and southern regions were observed. Soil samples from the three sites showed minimal impact from pharmaceutical activity, with vancomycin-resistance genes being the most prevalent. High levels of ARGs in pharmaceutical fermentation residues underscore the necessity for improved waste management practices. Metagenomic assembly revealed that plasmid-mediated ARGs were more abundant than chromosome-mediated ARGs. Metagenome-assembled genomes (MAGs) analysis identified 166 MAGs, with 62 harboring multiple ARGs. Certain bacteria tended to carry specific types of ARGs, revealing distinct host-resistance associations. This study enhances our understanding of ARG dissemination across different environmental media within pharmaceutical plants and underscores the importance of implementing strict regulations for effluent and residue discharge to control ARG spread. | 2024 | 38960118 |
| 7336 | 6 | 0.9998 | Pathogenic and Indigenous Denitrifying Bacteria are Transcriptionally Active and Key Multi-Antibiotic-Resistant Players in Wastewater Treatment Plants. The global rise and spread of antibiotic resistance greatly challenge the treatment of bacterial infections. Wastewater treatment plants (WWTPs) harbor and discharge antibiotic resistance genes (ARGs) as environmental contaminants. However, the knowledge gap on the host identity, activity, and functionality of ARGs limits transmission and health risk assessment of the WWTP resistome. Hereby, a genome-centric quantitative metatranscriptomic approach was exploited to realize high-resolution qualitative and quantitative analyses of bacterial hosts of ARGs (i.e., multiresistance, pathogenicity, activity, and niches) in the 12 urban WWTPs. We found that ∼45% of 248 recovered genomes expressed ARGs against multiple classes of antibiotics, among which bacitracin and aminoglycoside resistance genes in Proteobacteria were the most prevalent scenario. Both potential pathogens and indigenous denitrifying bacteria were transcriptionally active hosts of ARGs. The almost unchanged relative expression levels of ARGs in the most resistant populations (66.9%) and the surviving ARG hosts including globally emerging pathogens (e.g., Aliarcobacter cryaerophilus) in treated WWTP effluent prioritize future examination on the health risks related to resistance propagation and human exposure in the receiving environment. | 2021 | 34282905 |
| 6869 | 7 | 0.9998 | Contaminant-degrading bacteria are super carriers of antibiotic resistance genes in municipal landfills: A metagenomics-based study. Municipal landfills are hotspot sources of antimicrobial resistance (AMR) and are also important habitats of contaminant-degrading bacteria. However, high diversity of antibiotic resistance genes (ARGs) in landfills hinders assessing AMR risks in the affected environment. More concerned, whether there is co-selection or enrichment of antibiotic-resistant bacteria and contaminant-degrading bacteria in these extremely polluted environments is far less understood. Here, we collected metagenomic datasets of 32 raw leachate and 45 solid waste samples in 22 municipal landfills of China. The antibiotic resistome, antibiotic-resistant bacteria and contaminant-degrading bacteria were explored, and were then compared with other environmental types. Results showed that the antibiotic resistome in landfills contained 1,403 ARG subtypes, with the total abundance over the levels in natural environments and reaching the levels in human feces and sewage. Therein, 49 subtypes were listed as top priority ARGs for future surveillance based on the criteria of enrichment in landfills, mobilizable and present in pathogens. By comparing to those in less contaminated river environments, we elucidated an enrichment of antibiotic-resistant bacteria with contaminant-degrading potentials in landfills. Bacteria in Pseudomonadaceae, Moraxellaceae, Xanthomonadaceae and Enterobacteriaceae deserved the most concerns since 72.2 % of ARG hosts were classified to them. Klebsiella pneumoniae, Acinetobacter nosocomialis and Escherichia coli were abundant multidrug-resistant pathogenic species in raw leachate (∼10.2 % of total microbiomes), but they rarely carried contaminant-degradation genes. Notably, several bacterial genera belonging to Pseudomonadaceae had the most antibiotic-resistant, pathogenic, and contaminant-degrading potentials than other bacteria. Overall, the findings highlight environmental selection for contaminant-degrading antibiotic-resistant pathogens, and provide significant insights into AMR risks in municipal landfills. | 2025 | 39729867 |
| 6877 | 8 | 0.9998 | Exploring urban coastal areas: Investigating the urban coastal areas as a reservoirs of antibiotic resistance Genes★. Antibiotic resistance genes (ARGs) have long served as adaptive defensive mechanisms among bacteria, enabling their survival and propagation in challenging environments. The consequences of inefficient wastewater treatment have culminated the emergence of untreatable and lethal extensively drug-resistant. To understand the relationship between wastewater effluent and marine ecosystems, we conducted a study to monitor the diversity and prevalence of common ARGs in Hong Kong's urban coastal areas at different seasons. Our findings revealed that sul 1 was the most abundant resistance gene, with an average relative abundance of 4.45 × 10(-2) per 16s rRNA gene copy. Moreover, temperature, dissolved oxygen, and salinity were key factors influencing seasonal variations in total ARGs abundance. The influence of environmental factors varied based on ARGs' association with Intl1, with Intl1-associated ARGs strongly correlating with temperature and dissolved oxygen. Notably, despite their abundance, sul1 and mphA exhibited similar correlations with both Intl1 and key environmental factors, suggesting these ARGs share a common dissemination mechanism. Moreover, the robust association between resistance genes and mobile genetic elements (MGE) could potentially act as a valuable indicator for assessing the efficacy of removing ARGs in wastewater treatment methods when operating under carefully optimized environmental parameters. | 2025 | 39642594 |
| 7391 | 9 | 0.9998 | Antibiotic resistance genes in China: occurrence, risk, and correlation among different parameters. Antibiotic resistance has become a widely concerned issue due to the huge risk on the ecological environment and human health. China has the highest production and consumption of antibiotics than other countries. Thus, antibiotic resistance genes (ARGs) have been detected in various environmental settings (e.g., surface water, wastewater, sediment) in China. The occurrence of ARGs in these matrixes was summarized and discussed in this review. Sulfonamide resistance genes and tetracycline resistance genes were the most frequently detected ARGs in China. According to the abundance of these two classes of ARGs in the natural environment, sulfonamide resistance genes seem to be more stable than tetracycline resistance genes. Furthermore, the relationships between ARGs and antibiotics, antibiotic resistance bacteria (ARB), heavy metals, and environmental parameters (e.g., pH, organics) were also investigated. Specifically, relative abundance of total ARGs was found to correlate well with concentration of total antibiotics in aqueous phase but not in the solid phase (soil, sediment, sludge, and manure). As for relationship between ARGs and ARB, metals, and environmental parameters in different media, due to complex and variable environment, some exhibit positive correlation, some negative, while others no correlation at all. Three potential risks are discussed in the text: transmission to human, synergistic effect of different ARGs, and variability of ARGs. However, due to the complexity of the environment, more work is needed to establish a quantitative approach of ARG risk assessment, which can provide a theoretical support for the management of antibiotics and the protection of human health. | 2018 | 29948704 |
| 7389 | 10 | 0.9998 | Temporal changes of antibiotic-resistance genes and bacterial communities in two contrasting soils treated with cattle manure. The emerging environmental spread of antibiotic-resistance genes (ARGs) and their subsequent acquisition by clinically relevant microorganisms is a major threat to public health. Animal manure has been recognized as an important reservoir of ARGs; however, the dissemination of manure-derived ARGs and the impacts of manure application on the soil resistome remain obscure. Here, we conducted a microcosm study to assess the temporal succession of total bacteria and a broad spectrum of ARGs in two contrasting soils following manure application from cattle that had not been treated with antibiotics. High-capacity quantitative PCR detected 52 unique ARGs across all the samples, with β-lactamase as the most dominant ARG type. Several genes of soil indigenous bacteria conferring resistance to β-lactam, which could not be detected in manure, were found to be highly enriched in manure-treated soils, and the level of enrichment was maintained over the entire course of 140 days. The enriched β-lactam resistance genes had significantly positive relationships with the relative abundance of the integrase intI1 gene, suggesting an increasing mobility potential in manure-treated soils. The changes in ARG patterns were accompanied by a significant effect of cattle manure on the total bacterial community compositions. Our study indicates that even in the absence of selective pressure imposed by agricultural use of antibiotics, manure application could still strongly impact the abundance, diversity and mobility potential of a broad spectrum of soil ARGs. Our findings are important for reliable prediction of ARG behaviors in soil environment and development of appropriate strategies to minimize their dissemination. | 2016 | 26712351 |
| 6890 | 11 | 0.9998 | The dynamic of the potential pathogenic bacteria, antibiotic-resistant bacteria, and antibiotic resistance genes in the water at different growth stages of grass carp pond. Pond aquaculture has become the most important and broadest breeding model in China, and an extremely important source of aquatic products, but the potential hazard factors of potential pathogenic bacteria (PPB), antibiotic resistance bacteria (ARB), and antibiotic resistance genes (ARGs) in aquaculture environment are largely invisible. In the present study, the bacterial communities in the larvae, juvenile, rearing, and harvesting culture stages of great grass carp (Ctenopharyngodon idellus) ponds were investigated and the structure of microbial flora analysis showed that the larvae culture stage has the highest abundance and the most dominant phyla were Proteobacteria (27.8%). A total of 123 significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations and the relative abundance of nine bacterial phenotypes implied that the larvae culture stage had the most abundance of pathogenic potential and mobile elements. The correlation analyses of environmental factors showed that temperature, stocking density, pH, and transparency showed the significant impacts on both the distribution of microbiome and the PPB. More importantly, a total of 40 ARB were identified, and 16 ARGs have the detection rates of 100%, which revealed that they are widely distributed and highly enriched in the aquaculture production. Notably, this is the first robust report to analyze and understand the PPB, ARB, and ARGs characteristics and dynamic changes in the pond aquaculture. | 2022 | 34817812 |
| 6883 | 12 | 0.9998 | Metagenomic insights into the profile of antibiotic resistomes in sediments of aquaculture wastewater treatment system. To meet the rapidly growing global demand for aquaculture products, large amounts of antibiotics were used in aquaculture, which might accelerate the evolution of antibiotic-resistant bacteria (ARB) and the propagation of antibiotic genes (ARGs). In our research, we revealed the ARGs profiles, their co-occurrence with mobile genetic elements (MGEs), and potential hosts in sediments of a crab pond wastewater purification system based on metagenomic analysis. The residual antibiotic seems to increase the propagation of ARGs in the crab pond, but there was no clear relationship between a given antibiotic type and the corresponding resistance genes. The effect of aquaculture on sediment was not as profound as that of other anthropogentic activities, but increased the relative abundance of sulfonamide resistance gene. A higher abundance of MGEs, especially plasmid, increased the potential ARGs dissemination risk in crab and purification ponds. Multidrug and sulfonamide resistance genes had greater potential to transfer because they were more frequently carried by MGEs. The horizontal gene transfer was likely to occur among a variety of microorganisms, and various ARGs hosts including Pseudomonas, Acinetobacter, Escherichia, and Klebsiella were identified. Bacterial community influenced the composition of ARG hosts, and Proteobacteria was the predominant hosts. Overall, our study provides novel insights into the environmental risk of ARGs in sediments of aquaculture wastewater treatment system. | 2022 | 34963542 |
| 6882 | 13 | 0.9998 | Deciphering the mobility and bacterial hosts of antibiotic resistance genes under antibiotic selection pressure by metagenomic assembly and binning approaches. The presence of antibiotics can exert significant selection pressure on the emergence and spread of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB). However, co-selection effects for ARGs, the mobility of ARGs and the identification of ARG hosts under high antibiotic selection pressures are poorly understood. Here, metagenomic assembly and binning approaches were used to comprehensively decipher the prevalence of ARGs and their potential mobility and hosts in activated sludge reactors treating antibiotic production wastewater. We found the abundance of different ARG types in antibiotic treatments varied greatly and certain antibiotic pressure promoted the co-selection for the non-corresponding types of ARGs. Antibiotic selection pressures significantly increased the abundance and proportions of ARGs mediated by plasmids (57.9%), which were more prevalent than those encoded in chromosomes (19.2%). The results indicated that plasmids and chromosomes had a tendency to carry different types of ARGs. Moreover, higher co-occurrence frequency of ARGs and MGEs revealed that antibiotics enhanced the mobility potential of ARGs mediated by both plasmids and integrative and conjugative elements. Among the 689 metagenome-assembled genomes (MAGs) with high estimated quality, 119 MAGs assigning to nine bacterial phyla were identified as the ARG hosts and 33 MAGs exhibited possible multi-resistance to antibiotics. Some ARG types tended to be carried by certain bacteria (e.g. bacitracin resistance genes carried by the family Burkholderiaceae) and thus showed a pronounced host-specific pattern. This study enhances the understanding of the mobility and hosts of ARGs and provides important insights into the risk assessment and management of antibiotic resistance. | 2020 | 32871290 |
| 3176 | 14 | 0.9998 | Comprehensive profiling and risk assessment of antibiotic resistance genes in a drinking water watershed by integrated analysis of air-water-soil. The prevalence of antibiotic resistance genes (ARGs) in diverse habitats threatens public health. Watersheds represent critical freshwater ecosystems that interact with both the soil and atmosphere. However, a holistic understanding of ARGs distribution across these environmental media is currently inadequate. We profiled ARGs and bacterial communities in air-water-soil in the same watershed area during four seasons using high-throughput qPCR and 16S rRNA gene sequencing. Our findings demonstrated that aminoglycoside resistance genes (58.5%) were dominant in water, and multidrug resistance genes (55.2% and 54.2%) were dominant in soil and air. Five ARGs and nineteen bacterial genera were consistently detected in all samples, were named as shared genes or bacteria. Co-occurrence Network analysis revealed the co-occurrence module of resistance genes, mobile genetic elements (MGEs), and potential bacterial hosts, indicating that shared genes and bacteria may persist and co-spread across different environmental media. The risk assessment framework, based on ARGs' abundance, detection rate, and mobility, identified 33 high-risk ARGs. This is essential to evaluate the health risks of ARGs and to develop strategies to limit the threat of antibiotic resistance. Our study offers new insights into the risks associated with ARGs in the environment and suggests that ARGs may depend on specific bacterial cohabitants that co-exist with MGEs to facilitate their spread across environmental interfaces. | 2023 | 37742410 |
| 3196 | 15 | 0.9998 | An emerging unrated mobile reservoir for antibiotic resistant genes: Does transportation matter to the spread. The regional distribution of antibiotic resistance genes has been caused by the use and preference of antibiotics. Not only environmental factors, but also the population movement associated with transportation development might have had a great impact, but yet less is known regarding this issue. This research study has investigated and reported that the high-speed railway train was a possible mobile reservoir of bacteria with antibiotic resistance, based on the occurrence, diversity, and abundance of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs), and mobile gene elements (MGEs) in untreated train wastewater. High-throughput 16S rRNA sequencing analyses have indicated that opportunistic pathogens like Pseudomonas and Enterococcuss were the predominant bacteria in all samples, especially in cultivable multi-antibiotic resistant bacteria. The further isolated Enterococcus faecalis and Enterococcus faecium exhibited multi-antibiotic resistance ability, potentially being an indicator for disinfection proficiency. Positive correlations amongst ARGs and MGEs were observed, such as between intI1 and tetW, tetA, blaTEM, among Tn916/154 and mefA/F, qnrS, implying a broad dissemination of multi-ARGs during transportation. The study findings suggested that the high-speed railway train wastewater encompassed highly abundant antibiotic-resistant pathogens, and the wastewater discharge without effective treatment may pose severe hazards to human health and ecosystem safety. | 2022 | 35697082 |
| 7365 | 16 | 0.9998 | A case study on the distribution of the environmental resistome in Korean shrimp farms. Hundreds of tons of antibiotics are widely used in aquaculture to prevent microbial infections and promote fish growth. However, the overuse of antibiotics and chemical products can lead to the selection and spreading of antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), which are of great concern considering the threat to public health worldwide. Here, in-depth metagenome sequencing was performed to explore the environmental resistome and ARB distribution across farming stages in shrimp farms and examine anthropogenic effects in nearby coastal waters. A genome-centric analysis using a metagenome binning approach allowed us to accurately investigate the distribution of pathogens and ARG hosts in shrimp farms. The diversity of resistomes was higher in shrimp farms than in coastal waters, and the distribution of resistomes was dependent on the farming stage. In particular, the tetracycline resistance gene was found mainly at the early post-larval stage regardless of the farm. The metagenome-assembled genomes of Vibrio spp. were dominant at this stage and harbored tet34, which is known to confer resistance to oxytetracycline. In addition, opportunistic pathogens such as Francisella, Mycoplasma, Photobacterium, and Vibrio were found in abundance in shrimp farms, which had multiple virulence factors. This study highlights the increased resistance diversity and environmental selection of pathogens in shrimp farms. The use of environmental pollutants on farms may cause an increase in resistome diversity/abundance and the transmission of pathogens to the surrounding environment, which may pose future risks to public health and aquatic organisms. | 2021 | 34653940 |
| 7370 | 17 | 0.9998 | Distinct Resistomes and Microbial Communities of Soils, Wastewater Treatment Plants and Households Suggest Development of Antibiotic Resistances Due to Distinct Environmental Conditions in Each Environment. The use of antibiotics in humans and animals results in a release of excess antibiotic residues into the environment through wastewaters and insufficient removal in wastewater treatment plants (WWTP), leading to increasing numbers of bacteria enriched in antibiotic resistance genes (ARG). However, the potential transfer of ARG and their host bacteria between different environments remains largely unexplored. Since many factors need to be fulfilled for a transfer between different environments, we hypothesized that antibiotic resistance (ABR) is less frequently transferred between environments in the same geographical region but rather develops and clusters in each distinct environment, leading to characteristic metagenome patterns in samples of different environments. We sampled agricultural soils, a WWTP and private households and performed metagenomic analyses to evaluate differences and potential overlaps in bacterial communities and resistomes of different environments. Wastewater revealed significantly higher richness of ARG (n = 40) and mobile genetic elements (n = 52) than soil and household samples. Bacterial communities differed between the environments and antibiotic resistance factors clustered distinctly. Overall, only few overlaps of ARG between the environments were observed, leading to the conclusion that ABR predominantly develops in individual environments as caused by environmental filtering for ARG, while a transfer between different environments is less likely. | 2021 | 34062756 |
| 7324 | 18 | 0.9998 | Microbial and Viral Communities and Their Antibiotic Resistance Genes Throughout a Hospital Wastewater Treatment System. Antibiotic resistance poses a serious threat to global public health, and antibiotic resistance determinants can enter natural aquatic systems through discharge of wastewater effluents. Hospital wastewater in particular is expected to contain high abundances of antibiotic resistance genes (ARGs) compared to municipal wastewater because it contains human enteric bacteria that may include antibiotic-resistant organisms originating from hospital patients, and can also have high concentrations of antibiotics and antimicrobials relative to municipal wastewater. Viruses also play an important role in wastewater treatment systems since they can influence the bacterial community composition through killing bacteria, facilitating transduction of genetic material between organisms, and modifying the chromosomal content of bacteria as prophages. However, little is known about the fate and connections between ARGs, viruses, and their associated bacteria in hospital wastewater systems. To address this knowledge gap, we characterized the composition and persistence of ARGs, dsDNA viruses, and bacteria from influent to effluent in a pilot-scale hospital wastewater treatment system in Israel using shotgun metagenomics. Results showed that ARGs, including genes conferring resistance to antibiotics of high clinical relevance, were detected in all sampling locations throughout the pilot-scale system, with only 16% overall depletion of ARGs per genome equivalent between influent and effluent. The most common classes of ARGs detected throughout the system conferred resistance to aminoglycoside, cephalosporin, macrolide, penam, and tetracycline antibiotics. A greater proportion of total ARGs were associated with plasmid-associated genes in effluent compared to in influent. No strong associations between viral sequences and ARGs were identified in viral metagenomes from the system, suggesting that phage may not be a significant vector for ARG transfer in this system. The majority of viruses in the pilot-scale system belonged to the families Myoviridae, Podoviridae, and Siphoviridae. Gammaproteobacteria was the dominant class of bacteria harboring ARGs and the most common putative viral host in all samples, followed by Bacilli and Betaproteobacteria. In the total bacterial community, the dominant class was Betaproteobacteria for each sample. Overall, we found that a variety of different types of ARGs and viruses were persistent throughout this hospital wastewater treatment system, which can be released to the environment through effluent discharge. | 2020 | 32140141 |
| 7415 | 19 | 0.9998 | Transfer and accumulation of antibiotic resistance genes and bacterial pathogens in the mice gut due to consumption of organic foods. Over the last few decades, organic food demand has grown largely because of increasing personal health concerns. Organic farming introduces antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) into foods. However, potential effects of organic foods on the gut microbiome and ARGs have been overlooked. Using high-throughput quantitative PCR and 16S rRNA high-throughput sequencing technology, we examined 132 ARGs from major classes, eight transposase genes, universal class I integron-integrase gene (intI), clinical class I integron-integrase gene (cintI), and the bacterial community in mouse gut after 8 weeks with an either organic or inorganic lettuce and wheat diet. A total of 8 types of major ARGs and 10 mobile genetic elements (MGEs) were detected in mice gut, including tetracycline, multidrug, sulfonamide, aminoglycoside, beta-lactamase, chloramphenicol, MLSB and vancomycin resistance genes. We found that abundance and diversity of ARGs, mobile gene elements, and potential ARB in the gut increased with time after consumption of organic foods, whereas no significant changes were observed in inorganic treated groups. Moreover, MGEs, including IS613, Tp614 and tnpA_03 were found to play an important role in regulating ARG profiles in the gut microbiome following consumption of organic foods. Importantly, feeding organic food increased the relative abundance of the potentially antibiotic-resistant pathogens, Bacteroides and Streptococcus. Our results confirm that there is an increasing risk of ARGs and ARB in the gut microbiome, which highlights the importance of organic food industries taking into account the potential accumulation and transmission of ARGs as a risk factor. | 2024 | 38215844 |