Viral Communities Contribute More to the Lysis of Antibiotic-Resistant Bacteria than the Transduction of Antibiotic Resistance Genes in Anaerobic Digestion Revealed by Metagenomics. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
688801.0000Viral Communities Contribute More to the Lysis of Antibiotic-Resistant Bacteria than the Transduction of Antibiotic Resistance Genes in Anaerobic Digestion Revealed by Metagenomics. Ecological role of the viral community on the fate of antibiotic resistance genes (ARGs) (reduction vs proliferation) remains unclear in anaerobic digestion (AD). Metagenomics revealed a dominance of Siphoviridae and Podoviridae among 13,895 identified viral operational taxonomic units (vOTUs) within AD, and only 21 of the vOTUs carried ARGs, which only accounted for 0.57 ± 0.43% of AD antibiotic resistome. Conversely, ARGs locating on plasmids and integrative and conjugative elements accounted for above 61.0%, indicating a substantial potential for conjugation in driving horizontal gene transfer of ARGs within AD. Virus-host prediction based on CRISPR spacer, tRNA, and homology matches indicated that most viruses (80.2%) could not infect across genera. Among 480 high-quality metagenome assembly genomes, 95 carried ARGs and were considered as putative antibiotic-resistant bacteria (pARB). Furthermore, lytic phages of 66 pARBs were identified and devoid of ARGs, and virus/host abundance ratios with an average value of 71.7 indicated extensive viral activity and lysis. The infectivity of lytic phage was also elucidated through laboratory experiments concerning changes of the phage-to-host ratio, pH, and temperature. Although metagenomic evidence for dissemination of ARGs by phage transduction was found, the higher proportion of lytic phages infecting pARBs suggested that the viral community played a greater role in reducing ARB numbers than spreading ARGs in AD.202438267392
688710.9999Horizontal gene transfer in activated sludge enhances microbial antimicrobial resistance and virulence. Activated sludge (AS) plays a vital role in removing organic pollutants and nutrients from wastewater. However, the risks posed by horizontal gene transfer (HGT) between bacteria in AS are still unclear. Here, a total of 478 high-quality non-redundant metagenome-assembled genomes (MAGs) were obtained. >50 % and 5 % of MAGs were involved in at least one HGT and recent HGT, respectively. Most of the transfers (82.4 %) of antimicrobial resistance genes (ARGs) occurred among the classes of Alphaproteobacteria and Gammaproteobacteria. The bacteria involved in the transfers of virulence factor genes (VFGs) mainly include Alphaproteobacteria (42.3 %), Bacteroidia (19.2 %), and Gammaproteobacteria (11.5 %). Moreover, the number of ARGs and VFGs in the classes of Alphaproteobacteria and Gammaproteobacteria was higher than that in other bacteria (P < 0.001). Mobile genetic elements were important contributors to ARGs and VFGs in AS bacteria. These results have implications for the management of antimicrobial resistance and virulence in activated sludge microorganisms.202438013098
698920.9998Viral Community and Virus-Associated Antibiotic Resistance Genes in Soils Amended with Organic Fertilizers. Antibiotic resistance is a global health concern. Long-term organic fertilization can influence the antibiotic resistome of agricultural soils, posing potential risks to human health. However, little is known about the contribution of viruses to the dissemination of antibiotic resistance genes (ARGs) in this context. Here, we profiled the viral communities and virus-associated ARGs in a long-term (over 10 years) organic fertilized field by viral metagenomic analysis. A total of 61,520 viral populations (viral operational taxonomic units, vOTUs) were retrieved, of which 21,308 were assigned at the family level. The viral community structures were significantly correlated with the bacterial community structures (P < 0.001) and the dosage of applied sewage sludge (r(2) = 0.782). A total of 16 unique ARGs were detected in soil viromes, and the number of virus-associated ARG subtypes was higher in sewage sludge treatments (except for 1 SS) than others. The network analysis showed that the application of the organic fertilizer increased the bacteria-virus interactions, suggesting that the chances of ARG exchange between viruses and their hosts may increase. Overall, our results provide a novel understanding about virus-associated ARGs and factors affecting the profile of viral community in fertilized soil.202134596377
688530.9998Abundant bacteria shaped by deterministic processes have a high abundance of potential antibiotic resistance genes in a plateau river sediment. Recent research on abundant and rare bacteria has expanded our understanding of bacterial community assembly. However, the relationships of abundant and rare bacteria with antibiotic resistance genes (ARGs) remain largely unclear. Here, we investigated the biogeographical patterns and assembly processes of the abundant and rare bacteria from river sediment at high altitudes (Lhasa River, China) and their potential association with the ARGs. The results showed that the abundant bacteria were dominated by Proteobacteria (55.4%) and Cyanobacteria (13.9%), while the Proteobacteria (33.6%) and Bacteroidetes (18.8%) were the main components of rare bacteria. Rare bacteria with a large taxonomic pool can provide function insurance in bacterial communities. Spatial distribution of persistent abundant and rare bacteria also exhibited striking differences. Strong selection of environmental heterogeneity may lead to deterministic processes, which were the main assembly processes of abundant bacteria. In contrast, the assembly processes of rare bacteria affected by latitude were dominated by stochastic processes. Abundant bacteria had the highest abundance of metabolic pathways of potential drug resistance in all predicted functional genes and a high abundance of potential ARGs. There was a strong potential connection between these ARGs and mobile genetic elements, which could increase the ecological risk of abundant taxa and human disease. These results provide insights into sedimental bacterial communities and ARGs in river ecosystems.202236406442
688240.9998Deciphering the mobility and bacterial hosts of antibiotic resistance genes under antibiotic selection pressure by metagenomic assembly and binning approaches. The presence of antibiotics can exert significant selection pressure on the emergence and spread of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB). However, co-selection effects for ARGs, the mobility of ARGs and the identification of ARG hosts under high antibiotic selection pressures are poorly understood. Here, metagenomic assembly and binning approaches were used to comprehensively decipher the prevalence of ARGs and their potential mobility and hosts in activated sludge reactors treating antibiotic production wastewater. We found the abundance of different ARG types in antibiotic treatments varied greatly and certain antibiotic pressure promoted the co-selection for the non-corresponding types of ARGs. Antibiotic selection pressures significantly increased the abundance and proportions of ARGs mediated by plasmids (57.9%), which were more prevalent than those encoded in chromosomes (19.2%). The results indicated that plasmids and chromosomes had a tendency to carry different types of ARGs. Moreover, higher co-occurrence frequency of ARGs and MGEs revealed that antibiotics enhanced the mobility potential of ARGs mediated by both plasmids and integrative and conjugative elements. Among the 689 metagenome-assembled genomes (MAGs) with high estimated quality, 119 MAGs assigning to nine bacterial phyla were identified as the ARG hosts and 33 MAGs exhibited possible multi-resistance to antibiotics. Some ARG types tended to be carried by certain bacteria (e.g. bacitracin resistance genes carried by the family Burkholderiaceae) and thus showed a pronounced host-specific pattern. This study enhances the understanding of the mobility and hosts of ARGs and provides important insights into the risk assessment and management of antibiotic resistance.202032871290
689950.9998Cyanobacteria mediate the dissemination of bacterial antibiotic resistance through conjugal transfer. Cyanobacterial blooms are expanding world-wide in freshwater and marine environments, and can cause serious ecological and environmental issues, which also contribute to the spread of antibiotic resistance genes (ARGs). However, the mechanistic understanding of cyanobacteria-mediated resistance dynamics is not fully elucidated yet. We selected Microcystis aeruginosa as a model cyanobacteria to illustrate how cyanobacteria mediate the evolution and transfer processes of bacterial antibiotic resistance. The results show that the presence of cyanobacteria significantly decreased the abundance of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) by 3%-99% and 2%-18%, respectively. In addition, it clearly altered bacterial community structure, with the dominant genera evolving from Acinetobacter (27%) and Enterobacter (42%) to Porphyrobacter (59%). The abundance of ARGs positively correlated with Proteobacteria and Firmicutes, rather than Cyanobacteria, and Bacteroidetes. In the presence of cyanobacteria, the transfer events of bacterial resistance genes via conjugation were found to decrease by 10%-89% (p < 0.05). Surprisingly, we found an extradentary high transfer frequency (about 0.1) for the ARGs via plasmid conjugation from the bacteria into M. aeruginosa population. It confirmed the role of cyanobacterial population as the competent hosts to facilitate ARGs spreading. Our findings provide valuable information on the risk evaluation of ARGs caused by cyanobacterial blooms in aquatic environments, key for the protection and assessment of aquatic environmental quality.202439047887
695160.9998The vertical migration of antibiotic-resistant genes and pathogens in soil and vegetables after the application of different fertilizers. The prevalence of bacterial resistance caused by the application of animal manure has become an important environmental issue. Herein, the vertical migration of antibiotic resistance genes (ARGs) and pathogens in soil and vegetables after the application of different fertilizers was explored. The results showed that the application of composted manure considerably enhanced the abundance of most ARGs and pathogens, especially in surface soil and pakchoi roots. Moreover, the soil ARGs increased partially from log 1.93 to log 4.65 after the application of composted manure, and six pathogens were simultaneously detected. It was observed that the increase in soil depth decreased most ARGs and pathogens by log 1.04-2.24 and 53.98 %~85.54 %, respectively. This indicated that ARGs and pathogens still existed in the deep soil (80-100 cm). Moreover, total organic carbon had a significant influence on the pathogen distribution, whereas bacterial communities primarily drove the vertical migration of ARGs rather than environmental factors. Although most of the ARG-host associations observed in the surface soil were disappeared in deep soil as revealed by network analysis, some co-occurrence pattern still occurred in deep soil, suggesting that some ARGs might be carried to deep soil by their host bacteria. These results were novel in describing the vertical migration of ARGs in the environment after the application of different fertilizers, providing ideas for curbing their migration to crops.202234400159
688970.9998Hot spots of resistance: Transit centers as breeding grounds for airborne ARG-carrying bacteriophages. The presence of pathogenic bacteria and antibiotic resistance genes (ARGs) in urban air poses a significant threat to public health. While prevailing research predominantly focuses on the airborne transmission of ARGs by bacteria, the potential influence of other vectors, such as bacteriophages, is often overlooked. This study aims to investigate the characteristics of phages and ARGs in aerosols originating from hospitals, public transit centers, wastewater treatment plants, and landfill sites. The average abundance of ARGs carried by phages in the public transit centers was 8.81 ppm, which was 2 to 3 times higher than that at the other three sites. Additionally, the abundance of ARGs across different risk levels at this site was also significantly higher than at the other three sites. The assembled phage communities bearing ARGs in public transit centers are chiefly governed by homogeneous selection processes, likely influenced by human movement. Furthermore, observations at public transit sites revealed that the average abundance ratio of virulent phages to their hosts was 1.01, and the correlation coefficient between their auxiliary metabolic genes and hosts' metabolic genes was 0.59, which were 20 times and 3 times higher, respectively, than those of temperate phages. This suggests that virulent phages may enhance their survival by altering host metabolism, thereby aiding the dispersion of ARGs and bacterial resistance. These revelations furnish fresh insights into phage-mediated ARG transmission, offering scientific substantiation for strategies aimed at preventing and controlling resistance within aerosols.202439418908
702980.9998Filamentous bacteria-induced sludge bulking can alter antibiotic resistance gene profiles and increase potential risks in wastewater treatment systems. Sludge bulking caused by filamentous bacteria is a prevalent issue in wastewater treatment systems. While previous studies have primarily concentrated on controlling sludge bulking, the biological risks associated with it have been overlooked. This study demonstrates that excessive growth of filamentous bacteria during sludge bulking can significantly increase the abundance of antibiotic resistance genes (ARGs) in activated sludge. Through metagenomic analysis, we identified specific ARGs carried by filamentous bacteria, such as Sphaerotilus and Thiothrix, which are responsible for bulking. Additionally, by examining over 1,000 filamentous bacterial genomes, we discovered a diverse array of ARGs across different filamentous bacteria derived from wastewater treatment systems. Our findings indicate that 74.84% of the filamentous bacteria harbor at least one ARG, with the occurrence frequency of ARGs in these bacteria being approximately 1.5 times higher than that in the overall bacterial population in activated sludge. Furthermore, genomic and metagenomic analyses have shown that the ARGs in filamentous bacteria are closely linked to mobile genetic elements and are frequently found in potentially pathogenic bacteria, highlighting potential risks posed by these filamentous bacteria. These insights enhance our understanding of ARGs in activated sludge and underscore the importance of risk management in wastewater treatment systems.202439094405
703890.9998Interactions between fungi and bacteria hosts carrying MGEs is dominant for ARGs fate during manure mesophilic composting. The mycelial networks of fungi promote the interaction between the originally isolated bacteria, thereby potentially enhancing the exchange of nutrients and the horizontal transfer of genetic materials. However, the driving effect of fungi on antibiotic resistance genes (ARGs) during mesophilic facultative composting is still unclear. This study aims to elucidate the changes in ARGs and underlying mechanisms during the mesophilic composting of manure. Results indicated that reduction rates of ARGs in sheep and pig manure over a 90-day composting period were 34.68% and 60.10%, respectively. The sul1, sul2 and tetX were identified as recalcitrant ARGs in both composting treatments, with the additional unique recalcitrant gene addA observed in sheep manure. Fungal communities appeared to have a more significant influence on the cooperation between bacteria and fungi. Massive fungi interacted intensively with bacterial hosts carrying both ARGs and mobile genetic elements (MGEs). In sheep and pig manure, there were 53 and 38 potential bacterial hosts (genus level) carrying both ARGs and MGEs, associated close interactions with fungi. Structural equation modeling revealed that compost properties influence ARGs by affecting the abundance of core fungi and the hosts carrying MGEs, and that core fungi could also impact ARGs by influencing the bacterial hosts carrying MGEs. Core fungi have the potential to facilitate the horizontal transfer of ARGs by enhancing bacterial network interactions.202539764902
7586100.9998Integrated metagenomic and metatranscriptomic analyses of ultraviolet disinfection effects on antibiotic resistance genes and bacterial communities during wastewater treatment. Ultraviolet (UV) disinfection is now widely implemented in wastewater treatment plants (WWTPs) worldwide, but its effect on antibiotic resistome of the surviving bacteria remains unclear. In this study, we employed high-throughput sequencing-based metagenomic and metatranscriptomic approaches to comprehensively elucidate the effects of UV disinfection on the shifts of bacterial community and antibiotic resistance genes (ARGs) on both DNA and mRNA levels in one WWTP. Metagenomic analyses revealed an insignificant change in the bacterial community after UV disinfection, while metatranscriptomic analyses showed that UV disinfection significantly changed the abundance of 13.79% of phyla and 10.32% of genera. In total, 38 ARG-like open reading frames (ORFs) and 327 ARG-like transcripts were identified in the DNA and RNA samples, respectively. The relative abundances of the total ARGs, each ARG type, and each ARG subtype also varied after UV disinfection. Additionally, UV disinfection significantly reduced the expression of total ARGs from 49.40 transcripts per kilobase of exon model per million mapped reads (TPM) to 47.62 TPM, and significantly changed the expression of 10.75% of ARG subtypes in wastewater (p < 0.05). Notably, the significant increase in the expression and obvious increase in the relative abundance of macrolide-lincosamide-streptogramin B (MLSB) resistance genes revealed that UV disinfection increases the potential health risk of MLSB resistance genes in wastewater. Moreover, potential host analyses of ARGs revealed the different preferences of antibiotic resistant bacteria (ARB) to ARGs. This study may shed new light on the underlying mechanism of the UV disinfection effect on antibiotic resistance.202133278015
7030110.9998Metagenomic profiling of antibiotic resistance genes/bacteria removal in urban water: Algal-bacterial consortium treatment system. Antibiotic resistance genes (ARGs) have exhibited significant ecological concerns, especially in the urban water that are closely associated with human health. In this study, with presence of exogenous Chlorella vulgaris-Bacillus licheniformis consortium, most of the typical ARGs and MGEs were removed. Furthermore, the relative abundance of potential ARGs hosts has generally decreased by 1-4 orders of magnitude, revealing the role of algal-bacterial consortium in cutting the spread of ARGs in urban water. While some of ARGs such as macB increased, which may be due to the negative impact of algicidal bacteria and algal viruses in urban water on exogenous C. vulgaris and the suppression of exogenous B. licheniformis by indigenous microorganisms. A new algal-bacterial interaction might form between C. vulgaris and indigenous microorganisms. The interplay between C. vulgaris and bacteria has a significant impact on the fate of ARGs removal in urban water.202438801952
6891120.9998Feedstock-dependent antibiotic resistance gene patterns and expression profiles in industrial scale biogas plants revealed by meta-omics technology. This study investigated antimicrobial resistance in the anaerobic digesters of two industrial-scale biogas plants processing agricultural biomass and municipal wastewater sludge. A combination of deep sequencing and genome-centric workflow was implemented for metagenomic and metatranscriptomics data analysis to comprehensively examine potential antimicrobial resistance in microbial communities. Anaerobic microbes were found to harbour numerous antibiotic resistance genes (ARGs), with 58.85% of the metagenome-assembled genomes (MAGs) harbouring antibiotic resistance. A moderately positive correlation was observed between the abundance and expression of ARGs. ARGs were located primarily on bacterial chromosomes. A higher expression of resistance genes was observed on plasmids than on chromosomes. Risk index assessment suggests that most ARGs identified posed a significant risk to human health. However, potentially pathogenic bacteria showed lower ARG expression than non-pathogenic ones, indicating that anaerobic treatment is effective against pathogenic microbes. Resistomes at the gene category level were associated with various antibiotic resistance categories, including multidrug resistance, beta-lactams, glycopeptides, peptides, and macrolide-lincosamide-streptogramin (MLS). Differential expression analysis revealed specific genes associated with potential pathogenicity, emphasizing the importance of active gene expression in assessing the risks associated with ARGs.202539461216
7031130.9998Free-living lifestyle preferences drive the antibiotic resistance promotion during drinking water chlorination. The risk associated with antibiotic resistance genes (ARGs) in size-fractionated bacterial community during drinking water chlorination remains unclear, and is of paramount importance for risk mitigation through process selection and optimization. This study employed metagenomic approaches to reveal the alterations of ARGs, their potential functions and hosts within the free-living and particle-associated fractions. The total relative abundance of ARGs, mobile genetic elements (MGEs), and virulence factor genes (VFGs) significantly increased in the free-living fraction after chlorination. The contribution of the free-living fraction to the ARG relative abundance rose from 16.40 ± 1.31 % to 93.62 ± 0.47 % after chlorination. Multidrug resistance genes (e.g. mexF and mexW) were major contributors, and their co-occurrence with MGEs in the free-living fraction was enhanced after chlorination. Considering multiple perspectives, including presence, mobility, and pathogenicity, chlorination led to a significant risk of the antibiotic resistome in the free-living fraction. Moreover, potential functions of ARGs, such as cell wall/membrane/envelope biogenesis, defense mechanisms, and transcription in the free-living fraction, were intensified following chlorination. Potential pathogens, including Pseudomonas aeruginosa, Pseudomonas alcaligenes, and Acinetobacter junii, were identified as the predominant hosts of multidrug resistance genes, with their increased abundances primarily contributing to the rise of the corresponding ARGs. Overall, alterations of hosts as well as enhancing mobility and biological functions could collectively aid the proliferation and spread of ARGs in the free-living fraction after chlorination. This study provides novel insights into antibiotic resistance evolution in size-fractionated bacteria community and offers a management strategy for microbiological safety in drinking water.202438043346
6900140.9998Tracking the extracellular and intracellular antibiotic resistance genes across whole year in wastewater of intensive dairy farm. Monitoring the annual variation of antibiotic resistance genes (ARGs) in livestock wastewater is important for determining the high-risk period of transfer and spread of animal-derived antibiotic resistance into the environment. However, the knowledge regarding the variation patterns of ARGs, especially intracellular ARGs (iARGs) and extracellular ARGs (eARGs), over time in livestock wastewater is still unclear. Herein, we conducted a year-round study to trace the profiles of ARGs at a Chinese-intensive dairy farm, focusing on the shifts observed in different months. The results showed significant differences in the composition and variation between iARGs and eARGs. Tetracycline, sulfonamide, and macrolide resistance genes were the major types of iARGs, while cfr was the major type of eARG. The environmental adaptations of the host bacteria determine whether ARGs appear as intracellular or extracellular forms. The total abundance of ARGs was higher from April to September, which can be attributed to the favorable climatic conditions for bacterial colonization and increased antibiotic administration during this period. Integron was found to be highly correlated with most iARGs, potentially playing a role in the presence of these genes within cells and their similar transmission patterns in wastewater. The intracellular and extracellular bacterial communities were significantly different, primarily because of variations in bacterial adaptability to the high salt and anaerobic environment. The intracellular co-occurrence network indicated that some dominant genera in wastewater, such as Turicibacter, Clostridium IV, Cloacibacillus, Subdivision5_genera_incertae_sedis, Saccharibacteria_genera_incertae_sedis and Halomonas, were potential hosts for many ARGs. To the best of our knowledge, this study demonstrates, for the first time, the annual variation of ARGs at critical points in the reuse of dairy farm wastewater. It also offers valuable insights into the prevention and control of ARGs derived from animals.202438039853
7202150.9998Cyanobacterial extracellular antibacterial substances could promote the spread of antibiotic resistance: impacts and reasons. Many studies have shown that antibiotic resistance genes (ARGs) can be facilitated by a variety of antibacterial substances. Cyanobacteria are photosynthetic bacteria that are widely distributed in the ocean. Some extracellular substances produced by marine cyanobacteria have been found to possess antibacterial activity. However, the impact of these extracellular substances on ARGs is unclear. Therefore, we established groups of seawater microcosms that contained different concentrations (1000, 100, 10, 1, 0.1, 0.01, and 0 μg mL(-1)) of cyanobacterial extracellular substances (CES), and tracked the changes of 17 types of ARGs, the integron gene (intI1), as well as the bacterial community at different time points. The results showed that CES could enrich most ARGs (15/17) in the initial stage, particularly at low concentrations (10 and 100 μg mL(-1)). The correlation analysis showed a positive correlation between several ARGs and intI1. It is suggested that the abundance of intI1 increased with CES may contribute to the changes of these ARGs, and co-resistance of CES may be the underlying reason for the similar variation pattern of some ARGs. Moreover, the results of qPCR and high-throughput sequencing of 16S rRNA showed that CES had an inhibitory impact on the growth of bacterial communities. High concentrations of CES were found to alter the structure of bacterial communities. Co-occurrence networks showed that bacteria elevated in the high concentration group of CES and might serve as the potential hosts for a variety of ARGs. In general, marine cyanobacteria could play an important role in the global dissemination of ARGs and antibiotic-resistant bacteria (ARBs).202337947439
6894160.9998Profiles of antibiotic- and heavy metal-related resistance genes in animal manure revealed using a metagenomic analysis. Farmed animals produce excrement containing excessive amounts of toxic heavy metals as a result of consuming compound feed as well as receiving medical treatments, and the presence of these heavy metals may aggravate the risk of spreading drug-resistance genes through co-selection during manure treatment and application processes. However, research on the association between heavy metals and antimicrobial resistance is still lacking. In this study, metagenomic sequencing was used to explore the effects of the co-selection of environmentally toxic heavy metals on the resistome in manure. A relevance network analysis showed that metal-resistance genes (MRGs), especially for copper (Cu) and zinc (Zn), were positively correlated with multiple types of antibiotic-resistance genes (ARGs) and formed a complex network. Most bacteria that co-occurred with both MRGs and ARGs simultaneously are members of Proteobacteria and accounted for 54.7% of the total microbial species in the relevance network. The remaining bacteria belonged to Firmicutes, Bacteroidetes and Actinobacteria. Among the four phyla, Cu- and Zn-resistance genes had more complex correlations with ARGs than other MRG types, reflecting the occurrence of ARG co-selection under the selective pressure of high Cu and Zn levels. In addition, approximately 64.8%, 59.1% and 68.4% of MRGs that correlated with the presence of plasmids, viruses and prophages, respectively, are Cu- or Zn-resistant, and they co-occurred with various ARGs, indicating that mobile genetic elements participate in mediating ARG co-selection in response to Cu and Zn pressure. The results indicated that the use of heavy-metal additives in feed induces the increases of drug resistance genes in manure through co-selection, aggravating the risk of antimicrobial resistance diffusion from animal farm to manure land applications.202235617901
6890170.9998The dynamic of the potential pathogenic bacteria, antibiotic-resistant bacteria, and antibiotic resistance genes in the water at different growth stages of grass carp pond. Pond aquaculture has become the most important and broadest breeding model in China, and an extremely important source of aquatic products, but the potential hazard factors of potential pathogenic bacteria (PPB), antibiotic resistance bacteria (ARB), and antibiotic resistance genes (ARGs) in aquaculture environment are largely invisible. In the present study, the bacterial communities in the larvae, juvenile, rearing, and harvesting culture stages of great grass carp (Ctenopharyngodon idellus) ponds were investigated and the structure of microbial flora analysis showed that the larvae culture stage has the highest abundance and the most dominant phyla were Proteobacteria (27.8%). A total of 123 significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations and the relative abundance of nine bacterial phenotypes implied that the larvae culture stage had the most abundance of pathogenic potential and mobile elements. The correlation analyses of environmental factors showed that temperature, stocking density, pH, and transparency showed the significant impacts on both the distribution of microbiome and the PPB. More importantly, a total of 40 ARB were identified, and 16 ARGs have the detection rates of 100%, which revealed that they are widely distributed and highly enriched in the aquaculture production. Notably, this is the first robust report to analyze and understand the PPB, ARB, and ARGs characteristics and dynamic changes in the pond aquaculture.202234817812
7532180.9998Underrated risk of antibiotic resistance genes dissemination mediated by bioaerosols released from anaerobic biological wastewater treatment system. Antibiotic resistance has been recognized as one of the most prevalent public health problems. The bioaerosol-mediated spread of antibiotic resistance genes (ARGs) is an important but underrated pathway. Therefore, this work investigated the comprehensive resistome and pathogen-induced risk in bioaerosols released from anaerobic ammonium oxidation (anammox) process under antibiotic stress. The results showed that the bioaerosol oxidation potential increased by 2.7 times after the addition of sulfamethoxazole (SMX) into the anammox system. Based on the metagenomic analyses, abundant ARGs were enriched in bioaerosols, especially novA, olec, msbA and patA. There were many antibiotic resistance contigs carrying at least two mobile genetic elements (MGEs) in bioaerosols. Compared to the control, SMX caused the significant increase in ARGs proportion in plasmids from 11.4 % to 19.4 %. Similarly, the abundance of the type IV secretion system protein encoding genes (mtrA and mtrB) increased by 30.2 % and 31.5 %, respectively, which was conducive to gene transfer between bacteria. In addition, SMX stress induced the reactive oxygen species (ROS) production and the upregulation of genes related to membrane protein and DNA replication, further facilitating ARGs transfer. The co-occurrence networks showed that Aquamicrobium and Microbacterium probably were the hosts of most ARGs. Notably, four abundant human pathogens were detected in bioaerosols from the anammox system, which raised concerns on the health risk of resistant bioaerosol diffusion. These findings reveal the potential of horizontal gene transfer through bioaerosols and provide a guidance for systematically assessing the risk of environmental antibiotic resistance and relevant pathogens.202540073489
7588190.9998Response of viable bacteria to antibiotics in aerobic granular sludge: Resistance mechanisms and behaviors, bacterial communities, and driving factors. The assessment of antimicrobial resistance (AMR) risk by DNA-based techniques mainly relies on total bacterial DNA. In this case, AMR risk recognition is restricted to the genotype level, lacking crucial phenotypic information, such as the distribution of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in dead and viable bacteria. This limitation hinders the recognition of AMR behavior. Herein, based on propidium monoazide (PMA) shielding method, this work firstly quantified the intracellular ARGs/MGEs in viable and dead bacteria, and the impact of viable bacteria composition on the formation of intracellular/extracellular polymeric substance-related /cell-free ARGs (i/e/cARGs) and MGEs (i/e/cMGEs) in aerobic granular sludge (AGS). The shielding efficiency of PMA against dead bacteria was optimized to be as high as 97.5% when the MLSS of AGS was 2.0 g/L. Under antibiotic stimulation, 29.0% ∼ 49.0% of iARGs/iMGEs were carried by viable bacteria, and the remaining proportion were carried by dead bacteria. 18 out of the top 20 dominant genera showed a change in abundance by more than 1% after PMA treatment. 29 viable hosts were identified to associate with 52 iARGs, of which 28 and 15 hosts were also linked to 40 eARGs and 26 cARGs. Also, partial least-squares path model and variance partitioning analysis disclosed that viable bacteria and i/e/cMGEs had a positive effect on i/e/cARGs, with both contributing as much as 64.5% to the total ARGs enrichment. These results better visualized the AMR risk carried by viable bacteria and the categories of viable hosts. This work provides a novel insight into analyzing the actual AMR risk and viable hosts, helping to the reduction and control of AMR in wastewater treatment plants.202337748345