River Ganges water as reservoir of microbes with antibiotic and metal ion resistance genes: High throughput metagenomic approach. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
687401.0000River Ganges water as reservoir of microbes with antibiotic and metal ion resistance genes: High throughput metagenomic approach. The large scale usage of antibiotics and trace elements leads to their progressive release in the environment, and ultimately the spread of antibiotic resistance genes (ARGs) and metal ion resistance genes (MRGs) in bacteria. A high-throughput metagenomic sequencing of the microbial community in water and sediments in the river Ganges harboring resistance genes was performed. The results revealed that the river harbors a broad spectrum of resistance genes with high abundance in sediments. The highly dominant ARGs type was beta-lactam, multidrug/efflux and elfamycin. The ARGs such as (tuf, parY, ileS, mfd) were highly abundant in water and sediments. The MRGs subtype acn was the most abundant metal resistance gene in water and sediments. Majority of ARGs types showed significant (p ≤ 0.05) positive correlation with the MRGs types in the river environment suggesting their distribution and transfer to be possibly linked. Taxonomic classification revealed that Proteobacteria and Actinobacteria were the two most abundant phyla in water and sediments. Arcobacter, Terrimicrobium, Acidibacter and Pseudomonas were the most abundant genera. This study suggests that antibiotics and metals are the driving force for the emergence of resistance genes, and their subsequent propagation and accumulation in the environmental bacteria. The present metagenomic investigation highlights significance of such study, and attracts attention for the mitigation of pollutants associated with the propagation of ARGs and MRGs in the river environment.201930579213
686410.9999Metagenomics analysis revealing the occurrence of antibiotic resistome in salt lakes. Although antimicrobial resistance genes (ARGs) in dozens of environments have been well documented, the distribution of ARGs in salt lake ecosystems has been less intensively investigated. In this study, the broad-spectrum ARG profiles, microbial community composition and the comprehensive associations between microbiome and antimicrobial resistome in four salt lakes were investigated using a metagenomic approach. A total of 175 ARG subtypes affiliated with 19 ARG types were detected, and ARGs conferring resistance to multidrug, bacitracin, and macrolide-lincosamide-streptogramin (MLS) accounted for 71.2% of the total ARG abundance. However, the abundance of ARGs significantly decreased with the increasing salinity in the lakes. Both ARG profiles and microbial community structure presented remarkable discrepancies in different lakes, as well as in different sample types. Microbes such as genera Azoarcus, Aeromonas, Pseudomonas, and Kocuria, significantly co-occurred with multiple ARGs, indicating that these bacteria are potential ARG hosts in salt lake ecosystems. Collectively, this work provides new insights into the occurrence and distribution of ARGs in salt lake ecosystems.202134380279
317420.9998Spatio-temporal variation of the microbiome and resistome repertoire along an anthropogenically dynamic segment of the Ganges River, India. Aquatic ecosystems are regarded as a hub of antibiotic and metal resistance genes. River Ganges is a unique riverine system in India with socio-cultural and economic significance. However, it remains underexplored for its microbiome and associated resistomes along its anthropogenically impacted course. The present study utilized a nanopore sequencing approach to depict the microbial community structure in the sediments of the river Ganges harboring antibiotic and metal resistance genes (A/MRGs) in lower stretches known for anthropogenic impact. Comprehensive microbiome analyses revealed resistance genes against 23 different types of metals and 28 classes of antibiotics. The most dominant ARG category was multidrug resistance, while the most prevalent MRGs conferred resistance against copper and zinc. Seasonal differences dismally affected the microbiota of the Ganges. However, resistance genes for fosmidomycin and tetracycline varied with season ANOVA, p < 0.05. Interestingly, 333 and 334 ARG subtypes were observed at all the locations in pre-monsoon and post-monsoon, respectively. The taxa associated with the dominant ARGs and MRGs were Pseudomonas and Burkholderia, which are important nosocomial pathogens. A substantial phage diversity for pathogenic and putrefying bacteria at all locations attracts attention for its use to tackle the dissemination of antibiotic and metal-resistant bacteria. This study suggests the accumulation of antibiotics and metals as the driving force for the emergence of resistance genes and the affiliated bacteria trafficking them. The present metagenomic assessment highlights the need for comprehensive, long-term biological and physicochemical monitoring and mitigation strategies toward the contaminants associated with ARGs and MRGs in this nationally important river.202336773904
686530.9998A metagenomic analysis framework for characterization of antibiotic resistomes in river environment: Application to an urban river in Beijing. River is considered generally as a natural reservoir of antibiotic resistance genes (ARGs) in environments. For the prevention and control of ARG risks, it is critical to comprehensively characterize the antibiotic resistomes and their associations in riverine systems. In this study, we proposed a metagenomic framework for identifying antibiotic resistomes in river sediments from multiple categories, including ARG potential, ARG hosts, pathogenicity potential, co-selection potential and gene transfer potential, and applied it to understand the presence, hosts, and co-occurrence of ARGs in the sediments of an urban river in Beijing. Results showed that a total of 203 ARG subtypes belonging to 21 ARG types were detected in the river sediments with an abundance range of 107.7-1004.1×/Gb, dominated by multidrug, macrolide-lincosamide-streptogramin, bacitracin, quinolone and sulfonamide resistance genes. Host-tracking analysis identified Dechloromonas, Pseudoxanthomonas, Arenimonas, Lysobacter and Pseudomonas as the major hosts of ARGs. A number of ARG-carrying contigs (ACCs) were annotated as fragments of pathogenic bacteria and carried multiple multidrug-ARGs. In addition, various biocide/metal resistance genes (B/MRGs) and mobile genetic elements (MGEs), including prophages, plasmids, integrons and transposons, were detected in the river sediments. More importantly, the co-occurrence analysis via ACCs showed a strong association of ARGs with B/MRGs and MGEs, indicating high potential of co-selection and active horizontal transmission for ARGs in the river environment, likely driven by the frequent impact of anthropogenic activities in that area.201930453138
734240.9998Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment plant. The increased antibiotic resistance among microorganisms has resulted into growing interest for investigating the wastewater treatment plants (WWTPs) as they are reported to be the major source in the dissemination of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in the environment. In this study, we investigated the prevalence and persistence of ARGs and HMRGs as well as bacterial diversity and mobile genetic elements (MGEs) in influent and effluent at the WWTP in Gwangju, South Korea, using high-throughput sequencing based metagenomic approach. A good number of broad-spectrum of resistance genes (both ARG and HMRG) were prevalent and likely persistent, although large portion of them were successfully removed at the wastewater treatment process. The relative abundance of ARGs and MGEs was higher in effluent as compared to that of influent. Our results suggest that the resistance genes with high abundance and bacteria harbouring ARGs and MGEs are likely to persist more through the treatment process. On analyzing the microbial community, the phylum Proteobacteria, especially potentially pathogenic species belonging to the genus Acinetobacter, dominated in WWTP. Overall, our study demonstrates that many ARGs and HMRGs may persist the treatment processes in WWTPs and their association to MGEs may contribute to the dissemination of resistance genes among microorganisms in the environment.201829858829
684450.9998Antibiotic resistance genes correlate with metal resistances and accumulate in the deep water layers of the Black Sea. Seas and oceans are a global reservoir of antibiotic resistance genes (ARGs). Only a few studies investigated the dynamics of ARGs along the water column of the Black Sea, a unique environment, with a peculiar geology, biology and history of anthropogenic pollution. In this study, we analyzed metagenomic data from two sampling campaigns (2013 and 2019) collected across three different sites in the Western Black Sea at depths ranging from 5 to 2000 m. The data were processed to annotate ARGs, metal resistance genes (MRGs) and integron integrase genes. The ARG abundance was significantly higher in the deep water layers and depth was the main driver of beta-diversity both for ARGs and MRGs. Moreover, ARG and MRG abundances strongly correlated (r = 0.95). The integron integrase gene abundances and composition were not influenced by the water depth and did not correlate with ARGs. The analysis of the obtained MAGs showed that some of them harbored intI gene together with several ARGs and MRGs, suggesting the presence of multidrug resistant bacteria and that MRGs and integrons could be involved in the selection of ARGs. These results demonstrate that the Black Sea is not only an important reservoir of ARGs, but also that they accumulate in the deep water layers where co-selection with MRGs could be assumed as a relevant mechanism of their persistence.202236030962
686760.9998Comparative analysis of characteristics of antibiotic resistomes between Arctic soils and representative contaminated samples using metagenomic approaches. Antibiotic resistance is one of the most concerned global health issues. However, comprehensive profiles of antibiotic resistance genes (ARGs) in various environmental settings are still needed to address modern antibiotic resistome. Here, Arctic soils and representative contaminated samples from ARG pollution sources were analyzed using metagenomic approaches. The diversity and abundance of ARGs in Arctic soils were significantly lower than those in contaminated samples (p < 0.01). ARG profiles in Arctic soils were featured with the dominance of vanF, ceoB, and bacA related to multidrug and bacitracin, whereas those from ARG pollution sources were characterized by prevalent resistance to anthropogenic antibiotics such as sulfonamides, tetracyclines, and beta-lactams. Mobile genetic elements (MGEs) were found in all samples, and their abundance and relatedness to ARGs were both lower in Arctic soils than in polluted samples. Significant relationships between bacterial communities and ARGs were observed (p < 0.01). Cultural bacteria in Arctic soils had clinically-concerned resistance to erythromycin, vancomycin, ampicillin, etc., but ARGs relevant to those antibiotics were undetectable in their genomes. Our results suggested that Arctic environment could be an important reservoir of novel ARGs, and antibiotic stresses could cause ARG pollution via horizontal gene transfer and enrichment of resistant bacteria.202438452676
701670.9998Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. The intensive use of antibiotics results in their continuous release into the environment and the subsequent widespread occurrence of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). This study used Illumina high-throughput sequencing to investigate the broad-spectrum profiles of both ARGs and MGEs in activated sludge and anaerobically digested sludge from a full-scale wastewater treatment plant. A pipeline for identifying antibiotic resistance determinants was developed that consisted of four categories: gene transfer potential, ARG potential, ARGs pathway and ARGs phylogenetic origin. The metagenomic analysis showed that the activated sludge and the digested sludge exhibited different microbial communities and changes in the types and occurrence of ARGs and MGEs. In total, 42 ARGs subtypes were identified in the activated sludge, while 51 ARG subtypes were detected in the digested sludge. Additionally, MGEs including plasmids, transposons, integrons (intI1) and insertion sequences (e.g. ISSsp4, ISMsa21 and ISMba16) were abundant in the two sludge samples. The co-occurrence pattern between ARGs and microbial taxa revealed by network analysis indicated that some environmental bacteria (e.g. Clostridium and Nitrosomonas) might be potential hosts of multiple ARGs. The findings increase our understanding of WWTPs as hotspots of ARGs and MGEs, and contribute towards preventing their release into the downstream environment.201728689130
688180.9998Spatiotemporal profiles and underlying mechanisms of the antibiotic resistome in two water-diversion lakes. Human-induced interventions have altered the local characteristics of the lake ecosystems through changes in hydraulic exchange, which in turn impacts the ecological processes of antibiotic resistance genes (ARGs) in the lakes. However, the current understanding of the spatiotemporal patterns and driving factors of ARGs in water-diversion lakes is still seriously insufficient. In the present study, we investigated antibiotic resistome in the main regulation and storage hubs, namely Nansi Lake and Dongping Lake, of the eastern part of the South-to-North Water Diversion project in Shandong Province (China) using a metagenomic-based approach. A total of 653 ARG subtypes belonging to 25 ARG types were detected with a total abundance of 0.125-0.390 copies/cell, with the dominance of bacitracin, multidrug, and macrolide-lincosamide streptogramin resistance genes. The ARG compositions were sensitive to seasonal variation and also interfered by artificial regulation structures along the way. Human pathogenic bacteria such as Acinetobacter calcoaceticus, Acinetobacter lwoffii, Klebsiella pneumoniae, along with the multidrug resistance genes they carried, were the focus of risk control in the two studied lakes, especially in summer. Plasmids were the key mobile genetic elements (MGEs) driving the horizontal gene transfer of ARGs, especially multidrug and sulfonamide resistance genes. The null model revealed that stochastic process was the main driver of ecological drift for ARGs in the lakes. The partial least squares structural equation model further determined that seasonal changes of pH and temperature drove a shift in the bacterial community, which in turn shaped the profile of ARGs by altering the composition of MGEs, antibacterial biocide- and metal-resistance genes (BMGs), and virulence factor genes (VFGs). Our results highlighted the importance of seasonal factors in determining the water transfer period. These findings can aid in a deeper understanding of the spatiotemporal variations of ARGs in lakes and their driving factors, offering a scientific basis for antibiotic resistance management.202439322056
688390.9998Metagenomic insights into the profile of antibiotic resistomes in sediments of aquaculture wastewater treatment system. To meet the rapidly growing global demand for aquaculture products, large amounts of antibiotics were used in aquaculture, which might accelerate the evolution of antibiotic-resistant bacteria (ARB) and the propagation of antibiotic genes (ARGs). In our research, we revealed the ARGs profiles, their co-occurrence with mobile genetic elements (MGEs), and potential hosts in sediments of a crab pond wastewater purification system based on metagenomic analysis. The residual antibiotic seems to increase the propagation of ARGs in the crab pond, but there was no clear relationship between a given antibiotic type and the corresponding resistance genes. The effect of aquaculture on sediment was not as profound as that of other anthropogentic activities, but increased the relative abundance of sulfonamide resistance gene. A higher abundance of MGEs, especially plasmid, increased the potential ARGs dissemination risk in crab and purification ponds. Multidrug and sulfonamide resistance genes had greater potential to transfer because they were more frequently carried by MGEs. The horizontal gene transfer was likely to occur among a variety of microorganisms, and various ARGs hosts including Pseudomonas, Acinetobacter, Escherichia, and Klebsiella were identified. Bacterial community influenced the composition of ARG hosts, and Proteobacteria was the predominant hosts. Overall, our study provides novel insights into the environmental risk of ARGs in sediments of aquaculture wastewater treatment system.202234963542
6868100.9998Rare resistome rather than core resistome exhibited higher diversity and risk along the Yangtze River. As important freshwater ecosystems, the occurrence and distribution of antibiotic resistance genes (ARGs) in rivers are relevant to public health. However, studies investigating ARGs of different environmental media in river ecosystems are limited. In this study, we analyzed the ARGs of microbes in free-living setting, particle-associated setting, sediment and bank soil of the Yangtze River using metagenomics. Twenty-six ARGs were found in all samples regardless of media (core resistome) with a diversity of 8.6 %-34.7 %, accounting for 22.7 %-89.2 % of the relative abundance of the overall ARGs. The core resistome of the Yangtze River was dominated by multidrug resistance genes consisting mainly of efflux pumps and bacitracin resistance genes. The rare resistome was dominated by multidrug, sulfonamide, and aminoglycoside resistance genes. The core resistome was more prevalent in chromosomes, implying that these ARGs with low diversity and high relative abundance may be intrinsic to microbes in the Yangtze River. The rare resistome was more prevalent in plasmids, suggesting these ARGs with high diversity and low relative abundance were acquired under environmental stresses and had transfer potential. Additionally, we found that core and rare resistome were mainly carried by specific bacteria. Noteworthily, twenty-two ARGs of high clinical concern were identified in rare resistome, especially aac(6')-I, sul1, and tetM, which were plasmid-borne and hosted by clinically relevant pathogens. Both core and rare resistome hosts showed the highest niche breadths in particle-associated setting compared to other media, and particle-associated setting could provide more stable and ideal conditions for resistome hosts to survive. This study elucidated the genetic locations of ARGs and the community assembly mechanisms of ARG hosts in freshwater environments.202438039820
6895110.9998Effects of heavy metals pollution on the co-selection of metal and antibiotic resistance in urban rivers in UK and India. Heavy metal pollution and the potential for co-selection of resistance to antibiotics in the environment is growing concern. However, clear associations between heavy metals and antibiotic resistance in river systems have not been developed. Here we investigated relationships between total and bioavailable heavy metals concentrations; metal resistance gene (MRG) and antibiotic resistance gene (ARG) abundances; mobile genetic elements; and the composition of local bacterial communities in low and high metal polluted rivers in UK and India. The results indicated that MRGs conferring resistance to cobalt (Co) and nickel (Ni) (rcnA), and Co, zinc (Zn), and cadmium (Cd) (czcA), and ARGs conferring resistance to carbapenem and erythromycin were the dominating resistant genes across the samples. The relative MRGs, ARGs, and integrons abundances tended to increase at high metal polluted environments, suggesting high metals concentrations have a strong potential to promote metal and antibiotic resistance by horizontal gene transmission and affecting bacterial communities, leading to the development of multi-metal and multi-antibiotic resistance. Network analysis demonstrated the positive and significant relationships between MRGs and ARGs as well as the potential for integrons playing a role in the co-transmission of MRGs and ARGs (r > 0.80, p < 0.05). Additionally, the major host bacteria of various MRGs and ARGs that could be accountable for greater MRGs and ARGs levels at high metal polluted environments were also identified by network analysis. Spearman's rank-order correlations and RDA analysis further confirm relationships between total and bioavailable heavy metals concentrations and the relative MRG, ARG, and integron abundances, as well as the composition of related bacterial communities (r > 0.80 (or < -0.80), p < 0.05). These findings are critical for assessing the possible human health concerns associated with metal-driven antibiotic resistance and highlight the need of considering metal pollution for developing appropriate measures to control ARG transmission.202235491000
6885120.9998Abundant bacteria shaped by deterministic processes have a high abundance of potential antibiotic resistance genes in a plateau river sediment. Recent research on abundant and rare bacteria has expanded our understanding of bacterial community assembly. However, the relationships of abundant and rare bacteria with antibiotic resistance genes (ARGs) remain largely unclear. Here, we investigated the biogeographical patterns and assembly processes of the abundant and rare bacteria from river sediment at high altitudes (Lhasa River, China) and their potential association with the ARGs. The results showed that the abundant bacteria were dominated by Proteobacteria (55.4%) and Cyanobacteria (13.9%), while the Proteobacteria (33.6%) and Bacteroidetes (18.8%) were the main components of rare bacteria. Rare bacteria with a large taxonomic pool can provide function insurance in bacterial communities. Spatial distribution of persistent abundant and rare bacteria also exhibited striking differences. Strong selection of environmental heterogeneity may lead to deterministic processes, which were the main assembly processes of abundant bacteria. In contrast, the assembly processes of rare bacteria affected by latitude were dominated by stochastic processes. Abundant bacteria had the highest abundance of metabolic pathways of potential drug resistance in all predicted functional genes and a high abundance of potential ARGs. There was a strong potential connection between these ARGs and mobile genetic elements, which could increase the ecological risk of abundant taxa and human disease. These results provide insights into sedimental bacterial communities and ARGs in river ecosystems.202236406442
3176130.9998Comprehensive profiling and risk assessment of antibiotic resistance genes in a drinking water watershed by integrated analysis of air-water-soil. The prevalence of antibiotic resistance genes (ARGs) in diverse habitats threatens public health. Watersheds represent critical freshwater ecosystems that interact with both the soil and atmosphere. However, a holistic understanding of ARGs distribution across these environmental media is currently inadequate. We profiled ARGs and bacterial communities in air-water-soil in the same watershed area during four seasons using high-throughput qPCR and 16S rRNA gene sequencing. Our findings demonstrated that aminoglycoside resistance genes (58.5%) were dominant in water, and multidrug resistance genes (55.2% and 54.2%) were dominant in soil and air. Five ARGs and nineteen bacterial genera were consistently detected in all samples, were named as shared genes or bacteria. Co-occurrence Network analysis revealed the co-occurrence module of resistance genes, mobile genetic elements (MGEs), and potential bacterial hosts, indicating that shared genes and bacteria may persist and co-spread across different environmental media. The risk assessment framework, based on ARGs' abundance, detection rate, and mobility, identified 33 high-risk ARGs. This is essential to evaluate the health risks of ARGs and to develop strategies to limit the threat of antibiotic resistance. Our study offers new insights into the risks associated with ARGs in the environment and suggests that ARGs may depend on specific bacterial cohabitants that co-exist with MGEs to facilitate their spread across environmental interfaces.202337742410
6886140.9998Bacterial community and antibiotic resistance genes assembly processes were shaped by different mechanisms in the deep-sea basins of the Western Pacific Ocean. As the intrinsic property of microorganisms, antibiotic resistance genes (ARGs) are fundamentally coupled to microbially-linked biogeochemical processes within ecosystems. However, human activities often obscure the natural distribution of ARGs through deterministic selective pressures. The deep-sea basin of the western Pacific Ocean is one of the least disturbed areas globally by human activities, providing a natural laboratory to investigate the intrinsic mechanisms governing ARGs in natural environments. In this study, we analyzed bacterial community and ARG diversity in 15 surface sediment samples from three deep-sea basins in the western Pacific Ocean. The relative abundance of ARGs in the surface sediments ranged from 3.10 × 10(-3) to 5.37 × 10(-2) copies/16S rRNA copies, with multidrug and β-lactam resistance genes dominated in all samples (49.06%-100%). The bacteria were mainly dominated by the Proteobacteria. The principal coordinate analysis (PCoA) showed significant spatial heterogeneity of ARGs and bacteria among the three basins. Null model, neutral community models (NCM), and normalized stochasticity ratio (NST) indicated that bacterial community was dominated by stochastic assembly, driven by geographic barriers leading to independent evolution. Conversely, the NST revealed that the ARGs profile was mainly shaped by deterministic processes. Environmental factors are more crucial than geographical factors and bacterial community for ARG occurrence among the selected factors. Meanwhile, we found that the spread of ARGs was mainly through vertical gene transfer in the pre-antibiotic era. The disparity between the assembly processes of bacterial community and ARGs may be attributed to the fact that ARG hosts were not the dominant bacteria in the community. This study first reported the distribution and assembly processes of ARGs and bacterial community in surface sediments of the western Pacific.202439481517
6846150.9998Antibiotic resistance genes in an urban river as impacted by bacterial community and physicochemical parameters. Antibiotic resistance genes (ARGs) in urban rivers are a serious public health concern in regions with poorly planned, rapid development. To gain insights into the predominant factors affecting the fate of ARGs in a highly polluted urban river in eastern China, a total of 285 ARGs, microbial communities, and 20 physicochemical parameters were analyzed for 17 sites. A total of 258 unique ARGs were detected using high-throughput qPCR, and the absolute abundance of total ARGs was positively correlated with total organic carbon and total dissolved nitrogen concentrations (P < 0.01). ARG abundance and diversity were greatly altered by microbial community structure. Variation partitioning analysis showed that the combined effects of multiple factors contributed to the profile and dissemination of ARGs, and variation of microbial communities was the major factor affecting the distribution of ARGs. The disparate distribution of some bacteria, including Bacteroides from mammalian gastrointestinal flora, Burkholderia from zoonotic infectious diseases, and Zoogloea from wastewater treatment, indicates that the urban river was strongly influenced by point-source pollution. Results imply that microbial community shifts caused by changes in water quality may lead to the spread of ARGs, and point-source pollution in urban rivers requires greater attention to control the transfer of ARGs between environmental bacteria and pathogens.201728864929
6875160.9998Metagenomic analysis of antibiotic resistance genes in coastal industrial mariculture systems. The overuse of antibiotics has posed a propagation of antibiotic resistance genes (ARGs) in aquaculture systems. This study firstly explored the ARGs profiles of the typical mariculture farms including conventional and recirculating systems using metagenomics approach. Fifty ARGs subtypes belonging to 21 ARGs types were identified, showing the wide-spectrum profiles of ARGs in the coastal industrial mariculture systems. ARGs with multiple antibiotics resistance have emerged in the mariculure systems. The co-occurrence pattern between ARGs and microbial taxa showed that Proteobacteria and Bacteroidetes were potential dominant hosts of ARGs in the industrial mariculture systems. Typical nitrifying bacteria such as Nitrospinae in mariculture systems also carried with some resistance genes. Relative abundance of ARGs in fish ponds and wastewater treatment units was relatively high. The investigation showed that industrial mariculture systems were important ARGs reservoirs in coastal area, indicating the critical role of recirculating systems in the terms of ARGs pollution control.201829353751
3177170.9998Metagenomic investigation of antibiotic resistance genes and resistant bacteria contamination in pharmaceutical plant sites in China. Pharmaceutical plant sites play a significant role in the dissemination of antibiotic resistance genes (ARGs) into the environment. It is imperative to comprehensively monitor of ARGs across various environmental media at these sites. This study focused on three pharmaceutical plants, two located in North China and one in South China. Through metagenomic approaches, we examined the composition, mobility potential, and bacterial hosts of ARGs in diverse media such as process water, groundwater, topsoil, soil cores, and pharmaceutical fermentation residues across diverse environmental matrices, including topsoil, soil cores, process water, groundwater, and pharmaceutical fermentation residues. We identified a wide array of ARGs, comprising 21 types and 740 subtypes, with process water exhibiting the highest abundance and diversity. Treatment processes varied in their efficacy in eliminating ARGs, and the clinically relevant ARGs should also be considered when evaluating wastewater treatment plant efficiency. Geographical distinctions in groundwater ARG distribution between northern and southern regions were observed. Soil samples from the three sites showed minimal impact from pharmaceutical activity, with vancomycin-resistance genes being the most prevalent. High levels of ARGs in pharmaceutical fermentation residues underscore the necessity for improved waste management practices. Metagenomic assembly revealed that plasmid-mediated ARGs were more abundant than chromosome-mediated ARGs. Metagenome-assembled genomes (MAGs) analysis identified 166 MAGs, with 62 harboring multiple ARGs. Certain bacteria tended to carry specific types of ARGs, revealing distinct host-resistance associations. This study enhances our understanding of ARG dissemination across different environmental media within pharmaceutical plants and underscores the importance of implementing strict regulations for effluent and residue discharge to control ARG spread.202438960118
6884180.9998The changes in antibiotic resistance genes during 86 years of the soil ripening process without anthropogenic activities. This study aimed to reveal the baseline of natural variations in antibiotic resistance genes (ARGs) in soil without anthropogenic activities over the decades. Nine soil samples with different time of soil formation were taken from the Yancheng Wetland National Nature Reserve, China. ARGs and mobile genetic elements (MGEs) were characterized using metagenomic analysis. A total of 196 and 192 subtypes of ARGs were detected in bulk soil and rhizosphere, respectively. The diversity and abundance of ARGs were stable during 69 years probably due to the alkaline pH soil environment but not due to antibiotics. Increases in ARGs after 86 years were probably attributed to more migrant birds inhabited compared with other sampling sites. Multidrug was the most abundant type, and largely shared by soil samples. It was further shown that soil samples could not be clearly distinguished, suggesting a slow process of succession of ARGs in the mudflat. The variation partitioning analysis revealed that the ARG profile was driven by the comprehensive effects exhibited by the bacterial community, MGEs, and environmental factors. Besides, pathogenic bacteria containing ARGs mediated by migrant birds in the area with 86 years of soil formation history nearing human settlements needed special attention. This study revealed the slow variations in ARGs in the soil ripening process without anthropogenic activities over decades, and it provided information for assessing the effect of human activities on the occurrence and dissemination of ARGs.202133228990
6847190.9998Nutrients, heavy metals and microbial communities co-driven distribution of antibiotic resistance genes in adjacent environment of mariculture. With the rapid development of aquaculture, the large amounts of pollutants were discharged into the aquatic environment, where the detected antibiotic resistance genes (ARGs) have drawn increasing attention due to their potential threats to ecological environment and human health. Thus, the impact of mariculture on ARGs was assessed and the underlying mechanism of their propagation was explained. Sediments from eight sampling sites were collected along a mariculture drainage ditch, and the sediment in Yellow River Delta National Park was used as a non-mariculture control. Microbial ARGs qPCR array and illumina sequencing of 16S rRNA gene were applied to examine the changing patterns of ARGs and bacterial communities. Results showed that 18 ARGs (3 fluoroquinolone, 1 aminoglycoside, 3 macrolide-lincosamide-streptogramin B, 2 tetracycline, and 9 beta-lactam resistance genes) were influenced by mariculture, and ARGs abundance and diversity were significantly increased in mariculture sediments (p < 0.05). A remarkable shift in bacterial community structure and composition was also observed. The abundance of most of ARGs were significantly decreased in the estuary samples, implying that seawater had a significant dilution effect on the ARGs emission from the mariculture sites. Partial redundancy analysis showed that nutrients, heavy metals, and bacteria communities might directly and indirectly contribute to ARGs propagation, suggesting that the profile and dissemination of ARGs were driven by the combined effects of multiple factors in mariculture-impacted sites.201727814984