Distinct profile of bacterial community and antibiotic resistance genes on microplastics in Ganjiang River at the watershed level. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
687101.0000Distinct profile of bacterial community and antibiotic resistance genes on microplastics in Ganjiang River at the watershed level. Microplastics are of great public concern due to their wide distribution and the potential risk to humans and animals. In this study, the microplastic pollution associated with bacterial communities, human pathogenic bacteria, and antibiotic resistance genes (ARGs) were investigated compared to water, sediment, and natural wood particles. Microplastics were widely distributed in surface water of the Ganjiang River at a watershed level with an average value of 407 particles m(-3). The fragment was the main microplastic shape found in the basin. Microplastics had significantly higher observed species and Chao1 index of bacterial communities than those in water, but comparable to wood particles. However, there was no difference in the microplastics pollution and alpha diversity indices of bacterial between different reaches along the Ganjiang River. Flavobacterium, Rhodoferax, Pseudomonas, and Janthinobacterium on the microplastics were all found to be enriched compared with water and sediment. Principal component analysis of the composition and function profile of bacterial communities showed that microplastics provide a new microbial niche in the Ganjiang River, which was distinct from water, sediment, and natural wood. Pseudomonas genus dominated the composition of human pathogenic bacteria on the microplastics, which was significantly different from water and sediment. No difference was observed in the relative abundance of total ARGs among the four media. However, microplastic and wood particles showed similar composition patterns of ARGs compared with water and sediment.202134048747
684610.9998Antibiotic resistance genes in an urban river as impacted by bacterial community and physicochemical parameters. Antibiotic resistance genes (ARGs) in urban rivers are a serious public health concern in regions with poorly planned, rapid development. To gain insights into the predominant factors affecting the fate of ARGs in a highly polluted urban river in eastern China, a total of 285 ARGs, microbial communities, and 20 physicochemical parameters were analyzed for 17 sites. A total of 258 unique ARGs were detected using high-throughput qPCR, and the absolute abundance of total ARGs was positively correlated with total organic carbon and total dissolved nitrogen concentrations (P < 0.01). ARG abundance and diversity were greatly altered by microbial community structure. Variation partitioning analysis showed that the combined effects of multiple factors contributed to the profile and dissemination of ARGs, and variation of microbial communities was the major factor affecting the distribution of ARGs. The disparate distribution of some bacteria, including Bacteroides from mammalian gastrointestinal flora, Burkholderia from zoonotic infectious diseases, and Zoogloea from wastewater treatment, indicates that the urban river was strongly influenced by point-source pollution. Results imply that microbial community shifts caused by changes in water quality may lead to the spread of ARGs, and point-source pollution in urban rivers requires greater attention to control the transfer of ARGs between environmental bacteria and pathogens.201728864929
681020.9998Heavy metals and microbiome are negligible drivers than mobile genetic elements in determining particle-attached and free-living resistomes in the Yellow River. Suspended particles in water can shelter both microorganisms and contaminants. However, the emerging pollutants antibiotic resistance genes (ARGs) in free-living (FL) or particle-attached (PA) bacteria in aquatic environments are less explored. In this study, we compared the free-living and particle-attached ARGs during four seasons in the Yellow River using high-throughput quantitative PCR techniques and 16S rRNA gene sequencing. Our results demonstrated that both the free-living water and particles were dominated by tetracycline and beta-lactamase resistance genes. The PA-ARGs had a higher absolute abundance than FL-ARGs in the Yellow River, regardless of the season. Both PA-ARGs and FL-ARGs had the highest absolute abundance and diversity during winter. Mobile genetic elements (MGEs) were the dominant driver for both size-fractionated ARGs. However, the microbiome had less influence on PA-ARG profiles than the FL-ARG profiles, while the effects of the heavy metals on ARGs were negligible. The community assembly of both FL-ARG and PA-ARG can be explained by neutral processes. Several opportunistic pathogens (e.g., Escherichia coli) associated with human health exhibited a higher relative abundance in the particles than during a free-living lifestyle. Parts of these pathogens were potential ARG hosts. As such, it is important to monitor the ARGs and opportunistic pathogens from size-fractionated bacteria and develop targeted strategies to manage ARG dissemination and opportunistic pathogens to ensure public health.202234736202
681430.9998Watershed urbanization enhances the enrichment of pathogenic bacteria and antibiotic resistance genes on microplastics in the water environment. Microplastics (MPs) serve as vectors for microorganisms and antibiotic resistance genes (ARGs) and contribute to the spread of pathogenic bacteria and ARGs across various environments. Patterns of microbial communities and ARGs in the biofilm on the surface of MPs, also termed as plastisphere, have become an issue of global concern. Although antibiotic resistome in the plastisphere has been detected, how watershed urbanization affects patterns of potential pathogens and ARGs in the microplastic biofilms is still unclear. Here, we compared the bacterial communities, the interaction between bacterial taxa, pathogenic bacteria, and ARGs between the plastisphere and their surrounding water, and revealed the extensive influence of urbanization on them. Our results showed that bacterial communities and interactions in the plastisphere differed from those in their surrounding water. Microplastics selectively enriched Bacteroidetes from water. In non-urbanized area, the abundance of Oxyphotobacteria was significantly (p < 0.05) higher in plastisphere than that in water, while α-Proteobacteria was significantly (p < 0.05) higher in plastisphere than those in water of urbanized area. Pathogenic bacteria, ARGs, and mobile genetic elements (MGEs) were significantly (p < 0.05) higher in the urbanized area than those in non-urbanized area. MPs selectively enriched ARG-carrying potential pathogens, i.e., Klebsiella pneumoniae and Enterobacter cloacae, and exhibited a distinct effect on the relative abundance of ARG and pathogens in water with different urbanization levels. We further found ARGs were significantly correlated to MGEs and pathogenic bacteria. These results suggested that MPs would promote the dissemination of ARGs among microbes including pathogenic bacteria, and urbanization would affect the impact of MPs on microbes, pathogens, and ARGs in water. A high level of urbanization could enhance the enrichment of pathogens and ARGs by MPs in aquatic systems and increase microbial risk in aquatic environments. Our findings highlighted the necessity of controlling the spread of ARGs among pathogens and the usage of plastic products in ecosystems of urban areas.202236108884
704740.9998Characteristics of airborne bacterial communities and antibiotic resistance genes under different air quality levels. Pathogenic bacteria and antibiotic resistance genes (ARGs) in bioaerosols are major threats to human health. In this study, the microbial community structure and ARG distribution characteristics of airborne bacteria in total suspended particulates (TSP) and PM(2.5) were investigated under different air quality levels in Xinxiang, Central China. The results revealed that with the deterioration of air quality, the concentrations of airborne bacteria in both TSP and PM(2.5) decreased; however, the relative amounts of pathogenic bacteria increased. The predominant genera in pathogenic bacteria of Bacillus, Sphingomonas, Corynebacterium, Rhodococcus, and Staphylococcus were identified in both TSP and PM(2.5). Although the airborne bacteria concentrations and absolute abundances of ARGs in TSP were higher than those in PM(2.5) under identical air quality conditions, the bacterial community structure and relative amounts of pathogenic bacteria were similar. In addition, the relationship between environmental factors of ions, metal elements, and meteorological parameters and the community structures of airborne bacteria and pathogenic bacteria were also analyzed. The effects of soluble ions and metal elements on several dominant genera of total bacteria and pathogenic bacteria differed, probably due to the strong tolerance of pathogenic bacteria to harsh atmospheric environments Different subtypes of ARGs showed various distribution characteristics with variations in air quality. The deterioration of air quality can inhibit the dissemination of ARGs, as the minimum values of all ARGs and class 1 integrase intI1 were observed under Severely Polluted conditions. This study provides a comprehensive understanding of the effect of air pollution levels on the airborne bacteria community composition and ARG distribution.202235180669
699450.9998Seasonal variations in antibiotic resistance genes in estuarine sediments and the driving mechanisms. Estuary sediments are chemically contaminated by adjacent coastal industrial cities, but the impact of organic pollutants on antibiotic resistance genes (ARGs) in estuarine sediments is unknown. We comprehensively analyzed the complex interactions between chemical pollutants (heavy metals and organic pollutants), mobile genetic elements (MGEs), and ARGs in estuarine sediments during various seasons. The results indicate that under the effects of the chemically polluted river water, the number of different estuarine sediment ARGs increased by 76.9%-92.3% in summer and 5.9%-35.3% in winter, and the abundance of these ARGs increased by 29-5195 times in summer and 48-239 times in winter. The abundance of sediment ARGs in distinct estuaries showed different seasonal trends. Seasonal changes had a greater impact on the abundance of estuarine sediment ARGs than on their diversity. The diversity of estuarine sediment ARGs was positively correlated with the chemical pollution levels. Furthermore, chemical pollution was positively correlated with MGEs, and MGEs were correlated with ARG abundance. These results indicate that ARGs are enriched in bacteria via horizontal gene transfer triggered by chemical pollution, promoting multi-antibiotic resistance in estuarine sediment bacteria. These findings have implications for our understanding of the distribution and propagation of ARGs in chemically polluted estuarine sediments.202031520936
683860.9998Seasonal variation characteristics of inhalable bacteria in bioaerosols and antibiotic resistance genes in Harbin. Bioaerosols have received extensive attention due to their impact on climate, ecological environment, and human health. This study aimed to reveal the driving factors that structure bacterial community composition and the transmission route of antibiotic resistance genes (ARGs) in PM(2.5). The results showed that the bacterial concentration in spring (8.76 × 10(5) copies/m(3)) was significantly higher than that in summer (1.03 × 10(5) copies/m(3)) and winter (4.74 × 10(4) copies/m(3)). Low temperatures and air pollution in winter negatively affected bacterial concentrations. Keystone taxa were identified by network analysis. Although about 50 % of the keystone taxa had low relative abundances, the strong impact of complex interactions between keystone taxa and other taxa on bacterial community structure deserved attention. The bacterial community assembly was dominated by stochastic processes (79.3 %). Interactions between bacteria and environmental filtering together affected bacterial community composition. Vertical gene transfer played an important role in the transmission of airborne ARGs. Given the potential integration and expression of ARGs in recipients, the human exposure risk due to high concentrations of ARGs and mobile genetic elements cannot be ignored. This study highlights human exposure to inhalable bacterial pathogens and ARGs in urban areas.202336584645
680970.9998High-throughput profiling of antibiotic resistance gene dynamic in a drinking water river-reservoir system. The rapid construction of reservoir in river basin generates a river-reservoir system containing an environmental gradient from river system to reservoir system in modern aquatic environment worldwide. Profiles of antibiotic resistance genes (ARGs) in river-reservoir system is essential to better understand their dynamic mechanisms in aquatic eco-environment. In this study, we investigated the diversity, abundance, distribution of ARGs and mobile genetic elements (MGEs) in a representative river-reservoir system using high-throughput quantitative PCR, as well as ranked the factors (e.g. antibiotics, bacterial biomass, bacteria communities, and MGEs) influencing the patterns of ARGs based on structural equation models (SEMs). Seasonal variations in absolute abundance of ARGs and MGEs exhibited similar trends with local rainfall, suggesting that seasonal runoff induced by the rainfall potentially promote the absolute abundance of ARGs and MGEs. In contrast, environmental gradient played more important roles in the detected number, relative abundance, distribution pattern of ARGs and MGEs in the river-reservoir system. Moreover, environmental gradient also made the co-occurrence patterns associated with ARGs subtypes, MGEs and bacteria genera in river system different from those in reservoir system. The SEMs revealed that MGEs contributed the most to shape the ARG profiles. Overall, our findings provide novel insights into the mechanisms of environmental gradient on ARGs dynamics in river-reservoir system, probably via influencing the MGEs, antibiotics, pathogenic bacteria community and nonpathogenic bacteria community.201930447523
715580.9998Profiles of antibiotic resistance genes in an inland salt-lake Ebinur Lake, Xinjiang, China: The relationship with antibiotics, environmental factors, and microbial communities. Lakes in arid northwestern China, as the main pollutant-holding water bodies in the typical ecologically fragile areas, are facing the unknown risk of exposure to antibiotics and antibiotic resistance genes (ARGs). In this study, five ARGs and one mobile genetic element (intI1) and their relation with antibiotics, microbial communities and water quality were investigated in Ebinur Lake Basin, a typical salt-lake of China. Quantitative PCR analysis indicated that ARGs decreasing order in both surface water and sediment was sul1 >sul2 >tetW>ermB>qnrS, which means sulfonamide resistance genes were the main pollution ARGs. Macrolide antibiotics were the predominant antibiotics in the surface water and sediment in winter, while sulfonamides and quinolones accounted for a high proportion in summer. There was a non-corresponding relationship between ARGs and antibiotics. Moreover, the relationship between ARGs and microbial communities were defined. Sulfonamide resistance genes were carried by a greater diversity of potential host bacteria (76 genera) than other ARGs (9 genera). And their positive correlation with intI1 (p < 0.05) which promotes their migration and provides possibility of their co-occurrence in bacterial populations (e.g., Nitrospira). Bacterial genera were the main driver of ARGs distribution pattern in highly saline lake sediment. Environmental factors like salinity, total nitrogen and organic matter could have a certain influence on the occurrence of ARGs by affecting microorganisms. The results systematically show the distribution and propagation characteristics of ARGs in typical inland salt-lakes in China, and preliminarily explored the relationship between ARGs and antibiotics, resistance genes and microorganisms in lakes in ecologically fragile areas.202134171688
684790.9998Nutrients, heavy metals and microbial communities co-driven distribution of antibiotic resistance genes in adjacent environment of mariculture. With the rapid development of aquaculture, the large amounts of pollutants were discharged into the aquatic environment, where the detected antibiotic resistance genes (ARGs) have drawn increasing attention due to their potential threats to ecological environment and human health. Thus, the impact of mariculture on ARGs was assessed and the underlying mechanism of their propagation was explained. Sediments from eight sampling sites were collected along a mariculture drainage ditch, and the sediment in Yellow River Delta National Park was used as a non-mariculture control. Microbial ARGs qPCR array and illumina sequencing of 16S rRNA gene were applied to examine the changing patterns of ARGs and bacterial communities. Results showed that 18 ARGs (3 fluoroquinolone, 1 aminoglycoside, 3 macrolide-lincosamide-streptogramin B, 2 tetracycline, and 9 beta-lactam resistance genes) were influenced by mariculture, and ARGs abundance and diversity were significantly increased in mariculture sediments (p < 0.05). A remarkable shift in bacterial community structure and composition was also observed. The abundance of most of ARGs were significantly decreased in the estuary samples, implying that seawater had a significant dilution effect on the ARGs emission from the mariculture sites. Partial redundancy analysis showed that nutrients, heavy metals, and bacteria communities might directly and indirectly contribute to ARGs propagation, suggesting that the profile and dissemination of ARGs were driven by the combined effects of multiple factors in mariculture-impacted sites.201727814984
6813100.9998Spread performance and underlying mechanisms of pathogenic bacteria and antibiotic resistance genes adhered on microplastics in the sediments of different urban water bodies. Urban water bodies often pose frequent human activities, the pollution of microplastics (MPs) in these sediments, and pathogenic bacteria and antibiotic resistance genes (ARGs) enriched on the MPs may have risk to human health. However, there is little known about these issues. In this paper, three typical urban water bodies (the urban park lake, the urban inland river, and the urban-rural lake) were selected to identify the characteristics of MPs. Furthermore, the enrichment and driving mechanisms of pathogenic bacteria and ARGs on MPs in sediments were studied. These three water bodies were polluted with MPs, dominated by polyethylene (PE)-MPs and polystyrene (PS)-MPs. Gammaproteobacteria, Pseudomonadota, etc. as the main types of pathogenic bacteria, with Pseudomonas aeruginosa and Acinetobacter baumannii as significantly enriched in the urban inland rivers. The predominant ARGs were bacitracin- (bacA) and sulfonamide- (sul1) resistant ARGs. Transposase was the main genetic elements that drove the transfer of ARGs and the main resistance mechanism of ARGs was antibiotic efflux. The enrichment behavior of pathogenic bacteria and ARGs on MPs was also driven by the types of MPs, especially PS-MPs. The pathogenic bacteria at urban inland rivers had more types of ARGs, transfer elements and resistance mechanisms, thus the risk of pathogenic bacteria resistance needed specific concern. The results of our study were of great significance to gain insights into the pathogenic resistance risks and ecological risks of pathogenic bacteria and ARGs in sediments of urban water bodies.202540609890
7328110.9998Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water. The presence of pathogenic bacteria and the dissemination of antibiotic resistance genes (ARGs) may pose big risks to the rivers that receive the effluent from municipal wastewater treatment plants (WWTPs). In this study, we investigated the changes of bacterial community and ARGs along treatment processes of one WWTP, and examined the effects of the effluent discharge on the bacterial community and ARGs in the receiving river. Pyrosequencing was applied to reveal bacterial community composition including potential bacterial pathogen, and Illumina high-throughput sequencing was used for profiling ARGs. The results showed that the WWTP had good removal efficiency on potential pathogenic bacteria (especially Arcobacter butzleri) and ARGs. Moreover, the bacterial communities of downstream and upstream of the river showed no significant difference. However, the increase in the abundance of potential pathogens and ARGs at effluent outfall was observed, indicating that WWTP effluent might contribute to the dissemination of potential pathogenic bacteria and ARGs in the receiving river.201627340885
7141120.9998The fate of antibiotic resistance genes and their association with bacterial and archaeal communities during advanced treatment of pig farm wastewater. Advanced wastewater treatment plants are widely used in most large-scale pig farms in southern China. However, the fate of antibiotic resistance genes (ARGs) and their association with bacterial and archaeal communities during advanced wastewater treatment remain unclear. In this study, the profiles of ARGs in typical advanced wastewater treatment plants were surveyed using metagenomic analysis. The results showed that 279- 326 different subtypes of ARGs were detected in raw wastewater, with a total abundance of 5.98 ± 0.48 copies per bacterial cell. During the advanced wastewater treatment, the abundance and number of ARGs were significantly reduced. Microbial communities (bacteria and archaea) contributed the most to the variation in ARG abundance and composition (PCA axis_1), accounting for 10.8 % and 15.7 %, respectively, followed by mobile genetic elements (MGEs) and physicochemical factors. Special attention should be given to potential pathogenic bacteria such as Escherichia, Streptococcus, Enterococcus and Staphylococcus and archaea such as Methanocorpusculum, Candidatus Methanoplasma and Candidatus Methanomethylophilus, which were important potential ARG hosts. Bacterial communities may indirectly affect ARG variation by affecting archaeal communities. These findings indicated that ARG levels in pig farm wastewater can be effectively reduced during advanced treatment and highlighted the important role played by archaea, which should not be ignored.202236041618
6886130.9998Bacterial community and antibiotic resistance genes assembly processes were shaped by different mechanisms in the deep-sea basins of the Western Pacific Ocean. As the intrinsic property of microorganisms, antibiotic resistance genes (ARGs) are fundamentally coupled to microbially-linked biogeochemical processes within ecosystems. However, human activities often obscure the natural distribution of ARGs through deterministic selective pressures. The deep-sea basin of the western Pacific Ocean is one of the least disturbed areas globally by human activities, providing a natural laboratory to investigate the intrinsic mechanisms governing ARGs in natural environments. In this study, we analyzed bacterial community and ARG diversity in 15 surface sediment samples from three deep-sea basins in the western Pacific Ocean. The relative abundance of ARGs in the surface sediments ranged from 3.10 × 10(-3) to 5.37 × 10(-2) copies/16S rRNA copies, with multidrug and β-lactam resistance genes dominated in all samples (49.06%-100%). The bacteria were mainly dominated by the Proteobacteria. The principal coordinate analysis (PCoA) showed significant spatial heterogeneity of ARGs and bacteria among the three basins. Null model, neutral community models (NCM), and normalized stochasticity ratio (NST) indicated that bacterial community was dominated by stochastic assembly, driven by geographic barriers leading to independent evolution. Conversely, the NST revealed that the ARGs profile was mainly shaped by deterministic processes. Environmental factors are more crucial than geographical factors and bacterial community for ARG occurrence among the selected factors. Meanwhile, we found that the spread of ARGs was mainly through vertical gene transfer in the pre-antibiotic era. The disparity between the assembly processes of bacterial community and ARGs may be attributed to the fact that ARG hosts were not the dominant bacteria in the community. This study first reported the distribution and assembly processes of ARGs and bacterial community in surface sediments of the western Pacific.202439481517
6837140.9998Coexistence of antibiotic resistance genes, fecal bacteria, and potential pathogens in anthropogenically impacted water. Microbial indicators are often used to monitor microbial safety of aquatic environments. However, information regarding the correlation between microbial indicators and ecotoxicological factors such as potential pathogens and antibiotic resistance genes (ARGs) in anthropogenically impacted waters remains highly limited. Here, we investigated the bacterial community composition, potential pathogens, ARGs diversity, ARG hosts, and horizontal gene transfer (HGT) potential in urban river and wastewater samples from Chaohu Lake Basin using 16S rRNA and metagenomic sequencing. The composition of the microbial community and potential pathogens differed significantly in wastewater and river water samples, and the total relative abundance of fecal indicator bacteria was positively correlated with the total relative abundance of potential pathogens (p < 0.001 and Pearson's r = 0.758). Network analysis indicated that partial ARG subtypes such as dfrE, sul2, and PmrE were significantly correlated with indicator bacteria (p < 0.05 and Pearson's r > 0.6). Notably, Klebsiella was the indicator bacteria significantly correlated with 4 potential pathogens and 14 ARG subtypes. ARGs coexisting with mobile gene elements were mainly found in Thauera, Pseudomonas, Escherichia, and Acinetobacter. Next-generation sequencing (NGS) can be used to conduct preliminary surveys of environmental samples to access potential health risks, thereby facilitating water resources management.202235175529
6902150.9998Antibiotic resistance genes in surface water and groundwater from mining affected environments. Mining activities are known to generate a large amount of mine tailings and acid mine drainage which contain varieties of heavy metals. Heavy metals play an important role in co-selection for bacterial antibiotic resistance. However, the characteristics of antibiotic resistance genes (ARGs) in mining-affected water environments are still unclear. Here we investigated the pollution of metals, profiles of ARGs, mobile genetic elements (MGEs) and microbial community in mining-affected surface water and groundwater. The results showed that in the tested water samples, the concentrations of Zn and Mn were the highest, and Ni was the lowest. Higher abundances of ARGs with great proportion of sulfonamides, chloramphenicols and tetracyclines resistance genes were found in mining-affected water when compared with those without mining activities. Additionally, there were positive correlations between heavy metals (especially Ni, Zn and Mn) and these ARGs. Linear regression analysis suggested that MGEs were positively correlated with ARGs. In addition, total phosphorus was correlated with ARGs (p < 0.05). The microbial community was different between the mining-affected water and the reference (p < 0.05). Proteobacteria, Bacteroidetes and Actinobacteria were dominant phyla in the surface water and groundwater. Network analysis showed that many ARGs were significantly associated with these dominant bacteria, which suggested they might be potential hosts for these ARGs. These findings provide a clear evidence that the mining activities in the study area had a significant impact on surface water and groundwater to different degrees.202133571766
6864160.9998Metagenomics analysis revealing the occurrence of antibiotic resistome in salt lakes. Although antimicrobial resistance genes (ARGs) in dozens of environments have been well documented, the distribution of ARGs in salt lake ecosystems has been less intensively investigated. In this study, the broad-spectrum ARG profiles, microbial community composition and the comprehensive associations between microbiome and antimicrobial resistome in four salt lakes were investigated using a metagenomic approach. A total of 175 ARG subtypes affiliated with 19 ARG types were detected, and ARGs conferring resistance to multidrug, bacitracin, and macrolide-lincosamide-streptogramin (MLS) accounted for 71.2% of the total ARG abundance. However, the abundance of ARGs significantly decreased with the increasing salinity in the lakes. Both ARG profiles and microbial community structure presented remarkable discrepancies in different lakes, as well as in different sample types. Microbes such as genera Azoarcus, Aeromonas, Pseudomonas, and Kocuria, significantly co-occurred with multiple ARGs, indicating that these bacteria are potential ARG hosts in salt lake ecosystems. Collectively, this work provides new insights into the occurrence and distribution of ARGs in salt lake ecosystems.202134380279
6995170.9998Insight into the spatiotemporal distribution of antibiotic resistance genes in estuarine sediments during long-term ecological restoration. In this study, we aimed to investigate the long-term spatiotemporal changes in hydrodynamics, antibiotics, nine typical subtypes of antibiotic resistance genes (ARGs), class 1 integron gene (intI1), and microbial communities in the sediments of a semi-enclosed estuary during ecological restoration with four treatment stages (influent (#1), effluent of the biological treatment area (#2), oxic area (#3), and plant treatment area (#4)). Ecological restoration of the estuary reduced common pollutants (nitrogen and phosphorus) in the water, whereas variations in ARGs showed noticeable seasonal and spatial features. The absolute abundance of ARGs at sampling site #2 considerably increased in autumn and winter, while it significantly increased at sampling site #3 in spring and summer. The strong intervention of biological treatment (from #1 to #2) and aerators (from #2 to #3) in the estuary substantially affected the distribution of ARGs and dominant antibiotic-resistant bacteria (ARB). The dominant ARB (Thiobacillus) in estuarine sediments may have low abundance but important dissemination roles. Meanwhile, redundancy and network analysis revealed that the microbial communities and intl1 were key factors related to ARG dissemination, which was affected by spatial and seasonal ecological restoration. A positive correlation between low flow velocity and certain ARGs (tetM, tetW, tetA, sul2, and ermC) was observed, implying that flow optimization should also be considered in future ecological restoration to remediate ARGs. Furthermore, the absolute abundance of ARGs can be utilized as an index to evaluate the removal capacity of ARGs by estuarine restoration.202336827800
6957180.9998Untreated swine wastes changed antibiotic resistance and microbial community in the soils and impacted abundances of antibiotic resistance genes in the vegetables. Animal waste fertilization is a traditional agricultural practice, which may have adverse effects to soil ecosystem. However, the side-effects of animal waste fertilization on vegetables are less studied. Here we selected a swine farming village for investigation with a nearby village without swine farming as comparison. In the swine farming village, the farmers use untreated swine manure and wastewater as fertilizers for vegetable cultivation. In the reference village, the farmers mainly use commercial organic fertilizers. The objective of this study is to assess the impacts of untreated swine waste fertilization on both soils and vegetables in terms of antibiotics, antibiotic resistance genes (ARGs) and bacterial microbial communities. The results indicate that untreated swine waste fertilization caused both antibiotic and ARG contaminations and changed the microbial community compositions in the soils. Varieties of tetracyclines and related resistance genes were detected especially in swine wastewater treated soils. The soil quality was impacted with the relations to bacterial abundances and microbial geochemical functions. Proteobacteria and Bacteroidetes were prevalent and positively correlated to ARGs in soils, indicating they were potential antibiotic resistant bacteria. Antibiotics and ARGs were detected in vegetables of both villages. The abundances of ARGs were relatively higher in some vegetable samples of the swine farming village than the reference village. In addition, intracellular parasites Rickettsiales with positive correlation to ARGs were prevalent in some vegetables of swine farming village, indicating potential health risks through eating contaminated vegetables. The results of this study suggest that untreated swine wastes may cause adverse effects to not only agricultural soils but also associated vegetables.202032615438
7026190.9998Organic fertilizer potentiates the transfer of typical antibiotic resistance gene among special bacterial species. The propagation of antibiotic resistance genes (ARGs) in environments has evoked many attentions, however, how to identify their host pathogenic bacteria in situ remains a great challenge. Here we explored the bacterial host distribution and dissemination of a typical ARG, sul1 gene, in agricultural soils through the simultaneous detection of sul1 and its host 16S rRNA gene by emulsion paired isolation and concatenation PCR (epicPCR). Compared to chemical fertilizer, organic fertilizer (chicken manure) led to a higher prevalence of sul1 gene in the soil, and dominant bacterial hosts of sul1 gene were classified into Proteobacteria and Bacteroidetes phyla. Additionally, significant higher diversity of antibiotic resistance bacteria (ARB), higher rate of horizontal gene transfer (HGT), higher rate of mobile genetic elements (MGE) and higher proportion of pathogens were all observed in the treatment of organic fertilizer. This study alerts potential health risks of manure applications in agricultural soils.202235483268