# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 686 | 0 | 1.0000 | SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. One of the strongest and most noticeable responses of Bacillus subtilis cells to a range of stress and starvation stimuli is the dramatic induction of about 150 SigB-dependent general stress genes. The activity of SigB itself is tightly regulated by a complex signal transduction cascade with at least three main signaling pathways that respond to environmental stress, energy depletion, or low temperature. The SigB-dependent response is conserved in related gram-positive bacteria but is missing in strictly anaerobic or in some facultatively anaerobic gram-positive bacteria. It covers functions from nonspecific and multiple stress resistance to the control of virulence in pathogenic bacteria. A comprehensive understanding of this crucial stress response is essential not only for bacterial physiology but also for applied microbiology, including pathogenicity and pathogen control. | 2007 | 18035607 |
| 8309 | 1 | 0.9998 | The expression of virulence genes increases membrane permeability and sensitivity to envelope stress in Salmonella Typhimurium. Virulence gene expression can represent a substantial fitness cost to pathogenic bacteria. In the model entero-pathogen Salmonella Typhimurium (S.Tm), such cost favors emergence of attenuated variants during infections that harbor mutations in transcriptional activators of virulence genes (e.g., hilD and hilC). Therefore, understanding the cost of virulence and how it relates to virulence regulation could allow the identification and modulation of ecological factors to drive the evolution of S.Tm toward attenuation. In this study, investigations of membrane status and stress resistance demonstrate that the wild-type (WT) expression level of virulence factors embedded in the envelope increases membrane permeability and sensitizes S.Tm to membrane stress. This is independent from a previously described growth defect associated with virulence gene expression in S.Tm. Pretreating the bacteria with sublethal stress inhibited virulence expression and increased stress resistance. This trade-off between virulence and stress resistance could explain the repression of virulence expression in response to harsh environments in S.Tm. Moreover, we show that virulence-associated stress sensitivity is a burden during infection in mice, contributing to the inherent instability of S.Tm virulence. As most bacterial pathogens critically rely on deploying virulence factors in their membrane, our findings could have a broad impact toward the development of antivirulence strategies. | 2022 | 35389980 |
| 8323 | 2 | 0.9998 | The impact of environmental stress on Listeria monocytogenes virulence. Listeria monocytogenes, a significant food-borne pathogen, must defy a variety of conditions encountered in the food environment and during the infection process. In reaction to adverse conditions, the bacteria significantly change their metabolism, inducing a stress response which is mediated by a range of alternative sigma factors. The extent of the response to stress was shown to vary in the L. monocytogenes population. According to recent evidence a major L. monocytogenes alternative sigma factor, designated sigma B (sigma B), regulates some virulence genes in response to stress, which supports an older hypothesis that stress-resistant strains should be more pathogenic. The induction of sigma B-dependent genes may also be important from the point of view of food hygiene. It seems that stress response activation can paradoxically enhance resistance to agents used in food preservation. Therefore, monitoring the expression of sigma B-dependent genes can serve as a useful marker to assess the innate resistance of L. monocytogenes strains. This knowledge will allow the design of new methods with sequential preservation steps that could inactivate the bacteria without inducing their stress response. | 2009 | 20169937 |
| 685 | 3 | 0.9998 | Implication of a Key Region of Six Bacillus cereus Genes Involved in Siroheme Synthesis, Nitrite Reductase Production and Iron Cluster Repair in the Bacterial Response to Nitric Oxide Stress. Bacterial response to nitric oxide (NO) is of major importance for bacterial survival. NO stress is a main actor of the eukaryotic immune response and several pathogenic bacteria have developed means for detoxification and repair of the damages caused by NO. However, bacterial mechanisms of NO resistance by Gram-positive bacteria are poorly described. In the opportunistic foodborne pathogen Bacillus cereus, genome sequence analyses did not identify homologs to known NO reductases and transcriptional regulators, such as NsrR, which orchestrate the response to NO of other pathogenic or non-pathogenic bacteria. Using a transcriptomic approach, we investigated the adaptation of B. cereus to NO stress. A cluster of 6 genes was identified to be strongly up-regulated in the early phase of the response. This cluster contains an iron-sulfur cluster repair enzyme, a nitrite reductase and three enzymes involved in siroheme biosynthesis. The expression pattern and close genetic localization suggest a functional link between these genes, which may play a pivotal role in the resistance of B. cereus to NO stress during infection. | 2021 | 34064887 |
| 8310 | 4 | 0.9998 | Dynamic heterogeneity in an E. coli stress response regulon mediates gene activation and antimicrobial peptide tolerance. The bacterial stress response is an intricately regulated system that plays a critical role in cellular resistance to drug treatment. The complexity of this response is further complicated by cell-to-cell heterogeneity in the expression of bacterial stress response genes. These genes are often organized into networks comprising one or more transcriptional regulators that control expression of a suite of downstream genes. While the expression heterogeneity of many of these upstream regulators has been characterized, the way in which this variability affects the larger downstream stress response remains hard to predict, prompting two key questions. First, how does heterogeneity and expression noise in stress response regulators propagate to the diverse downstream genes in their regulons. Second, when expression levels vary, how do multiple downstream genes act together to protect cells from stress. To address these questions, we focus on the transcription factor PhoP, a critical virulence regulator which coordinates pathogenicity in several gram-negative species. We use optogenetic stimulation to precisely control PhoP expression levels and examine how variations in PhoP affect the downstream activation of genes in the PhoP regulon. We find that these downstream genes exhibit differences both in mean expression level and sensitivity to increasing levels of PhoP. These response functions can also vary between individual cells, increasing heterogeneity in the population. We tie these variations to cell survival when bacteria are exposed to a clinically-relevant antimicrobial peptide, showing that high expression of the PhoP-regulon gene pmrD provides a protective effect against Polymyxin B. Overall, we demonstrate that even subtle heterogeneity in expression of a stress response regulator can have clear consequences for enabling bacteria to survive stress. | 2024 | 39677761 |
| 293 | 5 | 0.9998 | Gene regulation by tetracyclines. Constraints of resistance regulation in bacteria shape TetR for application in eukaryotes. The Tet repressor protein (TetR) regulates transcription of a family of tetracycline (tc) resistance determinants in Gram-negative bacteria. The resistance protein TetA, a membrane-spanning H+-[tc.M]+ antiporter, must be sensitively regulated because its expression is harmful in the absence of tc, yet it has to be expressed before the drugs' concentration reaches cytoplasmic levels inhibitory for protein synthesis. Consequently, TetR shows highly specific tetO binding to reduce basal expression and high affinity to tc to ensure sensitive induction. Tc can cross biological membranes by diffusion enabling this inducer to penetrate the majority of cells. These regulatory and pharmacological properties are the basis for application of TetR to selectively control the expression of single genes in lower and higher eukaryotes. TetR can be used for that purpose in some organisms without further modifications. In mammals and in a large variety of other organisms, however, eukaryotic transcriptional activator or repressor domains are fused to TetR to turn it into an efficient regulator. Mechanistic understanding and the ability to engineer and screen for mutants with specific properties allow tailoring of the DNA recognition specificity, the response to inducer tc and the dimerization specificity of TetR-based eukaryotic regulators. This review provides an overview of the TetR properties as they evolved in bacteria, the functional modifications necessary to transform it into a convenient, specific and efficient regulator for use in eukaryotes and how the interplay between structure--function studies in bacteria and specific requirements of particular applications in eukaryotes have made it a versatile and highly adaptable regulatory system. | 2003 | 12869186 |
| 698 | 6 | 0.9998 | Genome-wide transcriptional changes induced by phagocytosis or growth on bacteria in Dictyostelium. BACKGROUND: Phagocytosis plays a major role in the defense of higher organisms against microbial infection and provides also the basis for antigen processing in the immune response. Cells of the model organism Dictyostelium are professional phagocytes that exploit phagocytosis of bacteria as the preferred way to ingest food, besides killing pathogens. We have investigated Dictyostelium differential gene expression during phagocytosis of non-pathogenic bacteria, using DNA microarrays, in order to identify molecular functions and novel genes involved in phagocytosis. RESULTS: The gene expression profiles of cells incubated for a brief time with bacteria were compared with cells either incubated in axenic medium or growing on bacteria. Transcriptional changes during exponential growth in axenic medium or on bacteria were also compared. We recognized 443 and 59 genes that are differentially regulated by phagocytosis or by the different growth conditions (growth on bacteria vs. axenic medium), respectively, and 102 genes regulated by both processes. Roughly one third of the genes are up-regulated compared to macropinocytosis and axenic growth. Functional annotation of differentially regulated genes with different tools revealed that phagocytosis induces profound changes in carbohydrate, amino acid and lipid metabolism, and in cytoskeletal components. Genes regulating translation and mitochondrial biogenesis are mostly up-regulated. Genes involved in sterol biosynthesis are selectively up-regulated, suggesting a shift in membrane lipid composition linked to phagocytosis. Very few changes were detected in genes required for vesicle fission/fusion, indicating that the intracellular traffic machinery is mostly in common between phagocytosis and macropinocytosis. A few putative receptors, including GPCR family 3 proteins, scaffolding and adhesion proteins, components of signal transduction and transcription factors have been identified, which could be part of a signalling complex regulating phagocytosis and adaptational downstream responses. CONCLUSION: The results highlight differences between phagocytosis and macropinocytosis, and provide the basis for targeted functional analysis of new candidate genes and for comparison studies with transcriptomes during infection with pathogenic bacteria. | 2008 | 18559084 |
| 694 | 7 | 0.9998 | The role of sigmaB in the stress response of Gram-positive bacteria -- targets for food preservation and safety. The alternative sigma factor sigmaB modulates the stress response of several Gram-positive bacteria, including Bacillus subtilis and the food-borne human pathogens Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus. In all these bacteria, sigmaB is responsible for the transcription of genes that can confer stress resistance to the vegetative cell. Recent findings indicate that sigmaB also plays an important role in antibiotic resistance, pathogenesis and cellular differentiation processes such as biofilm formation and sporulation. Although there are important differences in the regulation of sigmaB and in the set of genes regulated by sigmaB in B. subtilis, B. cereus, L. monocytogenes and S. aureus, there are also some conserved themes. A mechanistic understanding of the sigmaB activation processes and assessment of its regulon could provide tools for pathogen control and inactivation both in the food industry and clinical settings. | 2005 | 15831390 |
| 8317 | 8 | 0.9998 | The Quorum Sensing Auto-Inducer 2 (AI-2) Stimulates Nitrogen Fixation and Favors Ethanol Production over Biomass Accumulation in Zymomonas mobilis. Autoinducer 2 (or AI-2) is one of the molecules used by bacteria to trigger the Quorum Sensing (QS) response, which activates expression of genes involved in a series of alternative mechanisms, when cells reach high population densities (including bioluminescence, motility, biofilm formation, stress resistance, and production of public goods, or pathogenicity factors, among others). Contrary to most autoinducers, AI-2 can induce QS responses in both Gram-negative and Gram-positive bacteria, and has been suggested to constitute a trans-specific system of bacterial communication, capable of affecting even bacteria that cannot produce this autoinducer. In this work, we demonstrate that the ethanologenic Gram-negative bacterium Zymomonas mobilis (a non-AI-2 producer) responds to exogenous AI-2 by modulating expression of genes involved in mechanisms typically associated with QS in other bacteria, such as motility, DNA repair, and nitrogen fixation. Interestingly, the metabolism of AI-2-induced Z. mobilis cells seems to favor ethanol production over biomass accumulation, probably as an adaptation to the high-energy demand of N(2) fixation. This opens the possibility of employing AI-2 during the industrial production of second-generation ethanol, as a way to boost N(2) fixation by these bacteria, which could reduce costs associated with the use of nitrogen-based fertilizers, without compromising ethanol production in industrial plants. | 2021 | 34073173 |
| 8299 | 9 | 0.9998 | Regulatory cross-talk supports resistance to Zn intoxication in Streptococcus. Metals such as copper (Cu) and zinc (Zn) are important trace elements that can affect bacterial cell physiology but can also intoxicate bacteria at high concentrations. Discrete genetic systems for management of Cu and Zn efflux have been described in several bacterial pathogens, including streptococci. However, insight into molecular cross-talk between systems for Cu and Zn management in bacteria that drive metal detoxification, is limited. Here, we describe a biologically consequential cross-system effect of metal management in group B Streptococcus (GBS) governed by the Cu-responsive copY regulator in response to Zn. RNAseq analysis of wild-type (WT) and copY-deficient GBS subjected to metal stress revealed unique transcriptional links between the systems for Cu and Zn detoxification. We show that the Cu-sensing role of CopY extends beyond Cu and enables CopY to regulate Cu and Zn stress responses that effect changes in gene function for central cellular processes, including riboflavin synthesis. CopY also supported GBS intracellular survival in human macrophages and virulence during disseminated infection in mice. In addition, we show a novel role for CovR in modulating GBS resistance to Zn intoxication. Identification of the Zn resistome of GBS using TraDIS revealed a suite of genes essential for GBS growth in metal stress. Several of the genes identified are novel to systems that support bacterial survival in metal stress and represent a diverse set of mechanisms that underpin microbial metal homeostasis during cell stress. Overall, this study reveals a new and important mechanism of cross-system complexity driven by CopY in bacteria to regulate cellular management of metal stress and survival. | 2022 | 35862444 |
| 8324 | 10 | 0.9998 | Bile Sensing: The Activation of Vibrio parahaemolyticus Virulence. Bacteria must develop resistance to various inhospitable conditions in order to survive in the human gastrointestinal tract. Bile, which is secreted by the liver, and plays an important role in food digestion also has antimicrobial properties and is able to disrupt cellular homeostasis. Paradoxically, although bile is one of the guts defenses, many studies have reported that bacteria such as Vibrio parahaemolyticus can sense bile and use its presence as an environmental cue to upregulate virulence genes during infection. This article aims to discuss how bile is detected by V. parahaemolyticus and its role in regulating type III secretion system 2 leading to human infection. This bile-bacteria interaction pathway gives us a clearer understanding of the biochemical and structural analysis of the bacterial receptors involved in mediating a response to bile salts which appear to be a significant environmental cue during initiation of an infection. | 2017 | 28484445 |
| 8314 | 11 | 0.9997 | Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts. Bile salts and bacteria have intricate relationships. The composition of the intestinal pool of bile salts is shaped by bacterial metabolism. In turn, bile salts play a role in intestinal homeostasis by controlling the size and the composition of the intestinal microbiota. As a consequence, alteration of the microbiome-bile salt homeostasis can play a role in hepatic and gastrointestinal pathological conditions. Intestinal bacteria use bile salts as environmental signals and in certain cases as nutrients and electron acceptors. However, bile salts are antibacterial compounds that disrupt bacterial membranes, denature proteins, chelate iron and calcium, cause oxidative damage to DNA, and control the expression of eukaryotic genes involved in host defense and immunity. Bacterial species adapted to the mammalian gut are able to endure the antibacterial activities of bile salts by multiple physiological adjustments that include remodeling of the cell envelope and activation of efflux systems and stress responses. Resistance to bile salts permits that certain bile-resistant pathogens can colonize the hepatobiliary tract, and an outstanding example is the chronic infection of the gall bladder by Salmonella enterica. A better understanding of the interactions between bacteria and bile salts may inspire novel therapeutic strategies for gastrointestinal and hepatobiliary diseases that involve microbiome alteration, as well as novel schemes against bacterial infections. | 2017 | 29043249 |
| 8340 | 12 | 0.9997 | Iron-Induced Respiration Promotes Antibiotic Resistance in Actinomycete Bacteria. The bacterial response to antibiotics eliciting resistance is one of the key challenges in global health. Despite many attempts to understand intrinsic antibiotic resistance, many of the underlying mechanisms still remain elusive. In this study, we found that iron supplementation promoted antibiotic resistance in Streptomyces coelicolor. Iron-promoted resistance occurred specifically against bactericidal antibiotics, irrespective of the primary target of antibiotics. Transcriptome profiling revealed that some genes in the central metabolism and respiration were upregulated under iron-replete conditions. Iron supported the growth of S. coelicolor even under anaerobic conditions. In the presence of potassium cyanide, which reduces aerobic respiration of cells, iron still promoted respiration and antibiotic resistance. This suggests the involvement of a KCN-insensitive type of respiration in the iron effect. This phenomenon was also observed in another actinobacterium, Mycobacterium smegmatis. Taken together, these findings provide insight into a bacterial resistance strategy that mitigates the activity of bactericidal antibiotics whose efficacy accompanies oxidative damage by switching the respiration mode. IMPORTANCE A widely investigated mode of antibiotic resistance occurs via mutations and/or by horizontal acquisition of resistance genes. In addition to this acquired resistance, most bacteria exhibit intrinsic resistance as an inducible and adaptive response to different classes of antibiotics. Increasing attention has been paid recently to intrinsic resistance mechanisms because this may provide novel therapeutic targets that help rejuvenate the efficacy of the current antibiotic regimen. In this study, we demonstrate that iron promotes the intrinsic resistance of aerobic actinomycetes Streptomyces coelicolor and Mycobacterium smegmatis against bactericidal antibiotics. A surprising role of iron to increase respiration, especially in a mode of using less oxygen, appears a fitting strategy to cope with bactericidal antibiotics known to kill bacteria through oxidative damage. This provides new insights into developing antimicrobial treatments based on the availability of iron and oxygen. | 2022 | 35357210 |
| 8311 | 13 | 0.9997 | Perturbation of Quorum Sensing after the Acquisition of Bacteriophage Resistance Could Contribute to Novel Traits in Vibrio alginolyticus. Bacteria employ a wide range of molecular mechanisms to confer resistance to bacteriophages, and these mechanisms are continuously being discovered and characterized. However, there are instances where certain bacterial species, despite lacking these known mechanisms, can still develop bacteriophage resistance through intricate metabolic adaptation strategies, potentially involving mutations in transcriptional regulators or phage receptors. Vibrio species have been particularly useful for studying the orchestrated metabolic responses of Gram-negative marine bacteria in various challenges. In a previous study, we demonstrated that Vibrio alginolyticus downregulates the expression of specific receptors and transporters in its membrane, which may enable the bacterium to evade infection by lytic bacteriophages. In our current study, our objective was to explore how the development of bacteriophage resistance in Vibrio species disrupts the quorum-sensing cascade, subsequently affecting bacterial physiology and metabolic capacity. Using a real-time quantitative PCR (rt-QPCR) platform, we examined the expression pattern of quorum-sensing genes, auto-inducer biosynthesis genes, and cell density regulatory proteins in phage-resistant strains. Our results revealed that bacteriophage-resistant bacteria downregulate the expression of quorum-sensing regulatory proteins, such as LuxM, LuxN, and LuxP. This downregulation attenuates the normal perception of quorum-sensing peptides and subsequently diminishes the expression of cell density regulatory proteins, including LuxU, aphA, and LuxR. These findings align with the diverse phenotypic traits observed in the phage-resistant strains, such as altered biofilm formation, reduced planktonic growth, and reduced virulence. Moreover, the transcriptional depletion of aphA, the master regulator associated with low cell density, was linked to the downregulation of genes related to virulence. This phenomenon appears to be phage-specific, suggesting a finely tuned metabolic adaptation driven by phage-host interaction. These findings contribute to our understanding of the role of Vibrio species in microbial marine ecology and highlight the complex interplay between phage resistance, quorum sensing, and bacterial physiology. | 2023 | 37764117 |
| 720 | 14 | 0.9997 | Escherichia Coli Increases its ATP Concentration in Weakly Acidic Environments Principally through the Glycolytic Pathway. Acid resistance is an intrinsic characteristic of intestinal bacteria in order to survive passage through the stomach. Adenosine triphosphate (ATP), the ubiquitous chemical used to power metabolic reactions, activate signaling cascades, and form precursors of nucleic acids, was also found to be associated with the survival of Escherichia coli (E. coli) in acidic environments. The metabolic pathway responsible for elevating the level of ATP inside these bacteria during acid adaptation has been unclear. E. coli uses several mechanisms of ATP production, including oxidative phosphorylation, glycolysis and the oxidation of organic compounds. To uncover which is primarily used during adaptation to acidic conditions, we broadly analyzed the levels of gene transcription of multiple E. coli metabolic pathway components. Our findings confirmed that the primary producers of ATP in E. coli undergoing mild acidic stress are the glycolytic enzymes Glk, PykF and Pgk, which are also essential for survival under markedly acidic conditions. By contrast, the transcription of genes related to oxidative phosphorylation was downregulated, despite it being the major producer of ATP in neutral pH environments. | 2020 | 32854287 |
| 682 | 15 | 0.9997 | Comparative transcriptome analysis of Brucella melitensis in an acidic environment: Identification of the two-component response regulator involved in the acid resistance and virulence of Brucella. Brucella melitensis, encounters a very stressful environment in phagosomes, especially low pH levels. So identifying the genes that contribute to the replication and survival within an acidic environment is critical in understanding the pathogenesis of the Brucella bacteria. In our research, comparative transcriptome with RNA-seq were used to analyze the changes of genes in normal-medium culture and in pH4.4-medium culture. The results reveal that 113 genes expressed with significant differences (|log2Ratio| ≥ 3); about 44% genes expressed as up-regulated. With GO term analysis, structural constituent of the ribosome, rRNA binding, structural molecule activity, and cation-transporting ATPase activity were significantly enriched (p-value ≤ 0.05). These genes distributed in 51 pathways, in which ribosome and photosynthesis pathways were significantly enriched. Six pathways (oxidative phosphorylation, iron-transporting, bacterial secretion system, transcriptional regulation, two-component system, and ABC transporters pathways) tightly related to the intracellular survival and virulence of Brucella were analyzed. A two-component response regulator gene in the transcriptional regulation pathway, identified through gene deletion and complementary technologies, played an important role in the resistance to the acid-resistance and virulence of Brucella. | 2016 | 26691825 |
| 721 | 16 | 0.9997 | Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Oxidative stress, through the production of reactive oxygen species, is a natural consequence of aerobic metabolism. Escherichia coli has several major regulators activated during oxidative stress, including OxyR, SoxRS, and RpoS. OxyR and SoxR undergo conformation changes when oxidized in the presence of hydrogen peroxide and superoxide radicals, respectively, and subsequently control the expression of cognate genes. In contrast, the RpoS regulon is induced by an increase in RpoS levels. Current knowledge regarding the activation and function of these regulators and their dependent genes in E. coli during oxidative stress forms the scope of this review. Despite the enormous genomic diversity of bacteria, oxidative stress response regulators in E. coli are functionally conserved in a wide range of bacterial groups, possibly reflecting positive selection of these regulators. SoxRS and RpoS homologs are present and respond to oxidative stress in Proteobacteria, and OxyR homologs are present and function in H(2)O(2) resistance in a range of bacteria, from gammaproteobacteria to Actinobacteria. Bacteria have developed complex, adapted gene regulatory responses to oxidative stress, perhaps due to the prevalence of reactive oxygen species produced endogenously through metabolism or due to the necessity of aerotolerance mechanisms in anaerobic bacteria exposed to oxygen. | 2012 | 22381957 |
| 8300 | 17 | 0.9997 | The Copper Resistome of Group B Streptococcus Reveals Insight into the Genetic Basis of Cellular Survival during Metal Ion Stress. In bacteria, copper (Cu) can support metabolic processes as an enzymatic cofactor but can also cause cell damage if present in excess, leading to intoxication. In group B Streptococcus (GBS), a system for control of Cu efflux based on the prototypical cop operon supports survival during Cu stress. In some other bacteria, genetic systems additional to the cop operon are engaged during Cu stress and also contribute to the management of cellular Cu homeostasis. Here, we examined genetic systems beyond the cop operon in GBS for regions that contribute to survival of GBS in Cu stress using a forward genetic screen and probe of the entire bacterial genome. A high-density mutant library, generated using pGh9-ISS1, was used to expose GBS to Cu stress and compare it to nonexposed controls en masse. Eight genes were identified as essential for GBS survival in Cu stress, whereas five genes constrained GBS growth in Cu stress. The genes encode varied factors including enzymes for metabolism, cell wall synthesis, transporters, and cell signaling factors. Targeted mutation of the genes validated their roles in GBS resistance to Cu stress. Excepting copA, the genes identified are new to the area of bacterial metal ion intoxication. We conclude that a discrete and limited suite of genes beyond the cop operon in GBS contributes to a repertoire of mechanisms used to survive Cu stress in vitro and achieve cellular homeostasis. IMPORTANCE Genetic systems for copper (Cu) homeostasis in bacteria, including streptococci, are vital to survive metal ion stress. Genetic systems that underpin survival of GBS during Cu stress, beyond the archetypal cop operon for Cu management, are undefined. We show that Streptococcus resists Cu intoxication by utilizing a discrete and limited suite of genes beyond the cop operon, including several genes that are new to the area of bacterial cell metal ion homeostasis. The Cu resistome of GBS defined here enhances our understanding of metal ion homeostasis in GBS. | 2022 | 35404113 |
| 8343 | 18 | 0.9997 | Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance. Bacteria can be adapted to adverse and detrimental conditions that induce general and specific responses to DNA damage as well as acid, heat, cold, starvation, oxidative, envelope, and osmotic stresses. The stress-triggered regulatory systems are involved in bacterial survival processes, such as adaptation, physiological changes, virulence potential, and antibiotic resistance. Antibiotic susceptibility to several antibiotics is reduced due to the activation of stress responses in cellular physiology by the stimulation of resistance mechanisms, the promotion of a resistant lifestyle (biofilm or persistence), and/or the induction of resistance mutations. Hence, the activation of bacterial stress responses poses a serious threat to the efficacy and clinical success of antibiotic therapy. Bacterial stress responses can be potential targets for therapeutic alternatives to antibiotics. An understanding of the regulation of stress response in association with antibiotic resistance provides useful information for the discovery of novel antimicrobial adjuvants and the development of effective therapeutic strategies to control antibiotic resistance in bacteria. Therefore, this review discusses bacterial stress responses linked to antibiotic resistance in Gram-negative bacteria and also provides information on novel therapies targeting bacterial stress responses that have been identified as potential candidates for the effective control of Gram-negative antibiotic-resistant bacteria. | 2022 | 35889104 |
| 702 | 19 | 0.9997 | Cutting edge: the toll pathway is required for resistance to gram-positive bacterial infections in Drosophila. In Drosophila, the response against various microorganisms involves different recognition and signaling pathways, as well as distinct antimicrobial effectors. On the one hand, the immune deficiency pathway regulates the expression of antimicrobial peptides that are active against Gram-negative bacteria. On the other hand, the Toll pathway is involved in the defense against filamentous fungi and controls the expression of antifungal peptide genes. The gene coding for the only known peptide with high activity against Gram-positive bacteria, Defensin, is regulated by both pathways. So far, survival experiments to Gram-positive bacteria have been performed with Micrococcus luteus and have failed to reveal the involvement of one or the other pathway in host defense against such infections. In this study, we report that the Toll pathway, but not that of immune deficiency, is required for resistance to other Gram-positive bacteria and that this response does not involve Defensin. | 2002 | 11823479 |