# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6869 | 0 | 1.0000 | Contaminant-degrading bacteria are super carriers of antibiotic resistance genes in municipal landfills: A metagenomics-based study. Municipal landfills are hotspot sources of antimicrobial resistance (AMR) and are also important habitats of contaminant-degrading bacteria. However, high diversity of antibiotic resistance genes (ARGs) in landfills hinders assessing AMR risks in the affected environment. More concerned, whether there is co-selection or enrichment of antibiotic-resistant bacteria and contaminant-degrading bacteria in these extremely polluted environments is far less understood. Here, we collected metagenomic datasets of 32 raw leachate and 45 solid waste samples in 22 municipal landfills of China. The antibiotic resistome, antibiotic-resistant bacteria and contaminant-degrading bacteria were explored, and were then compared with other environmental types. Results showed that the antibiotic resistome in landfills contained 1,403 ARG subtypes, with the total abundance over the levels in natural environments and reaching the levels in human feces and sewage. Therein, 49 subtypes were listed as top priority ARGs for future surveillance based on the criteria of enrichment in landfills, mobilizable and present in pathogens. By comparing to those in less contaminated river environments, we elucidated an enrichment of antibiotic-resistant bacteria with contaminant-degrading potentials in landfills. Bacteria in Pseudomonadaceae, Moraxellaceae, Xanthomonadaceae and Enterobacteriaceae deserved the most concerns since 72.2 % of ARG hosts were classified to them. Klebsiella pneumoniae, Acinetobacter nosocomialis and Escherichia coli were abundant multidrug-resistant pathogenic species in raw leachate (∼10.2 % of total microbiomes), but they rarely carried contaminant-degradation genes. Notably, several bacterial genera belonging to Pseudomonadaceae had the most antibiotic-resistant, pathogenic, and contaminant-degrading potentials than other bacteria. Overall, the findings highlight environmental selection for contaminant-degrading antibiotic-resistant pathogens, and provide significant insights into AMR risks in municipal landfills. | 2025 | 39729867 |
| 3176 | 1 | 0.9999 | Comprehensive profiling and risk assessment of antibiotic resistance genes in a drinking water watershed by integrated analysis of air-water-soil. The prevalence of antibiotic resistance genes (ARGs) in diverse habitats threatens public health. Watersheds represent critical freshwater ecosystems that interact with both the soil and atmosphere. However, a holistic understanding of ARGs distribution across these environmental media is currently inadequate. We profiled ARGs and bacterial communities in air-water-soil in the same watershed area during four seasons using high-throughput qPCR and 16S rRNA gene sequencing. Our findings demonstrated that aminoglycoside resistance genes (58.5%) were dominant in water, and multidrug resistance genes (55.2% and 54.2%) were dominant in soil and air. Five ARGs and nineteen bacterial genera were consistently detected in all samples, were named as shared genes or bacteria. Co-occurrence Network analysis revealed the co-occurrence module of resistance genes, mobile genetic elements (MGEs), and potential bacterial hosts, indicating that shared genes and bacteria may persist and co-spread across different environmental media. The risk assessment framework, based on ARGs' abundance, detection rate, and mobility, identified 33 high-risk ARGs. This is essential to evaluate the health risks of ARGs and to develop strategies to limit the threat of antibiotic resistance. Our study offers new insights into the risks associated with ARGs in the environment and suggests that ARGs may depend on specific bacterial cohabitants that co-exist with MGEs to facilitate their spread across environmental interfaces. | 2023 | 37742410 |
| 6870 | 2 | 0.9999 | Antibiotic resistome in landfill leachate and impact on groundwater. Landfill leachate is a hotspot in antibiotic resistance development. However, little is known about antibiotic resistome and host pathogens in leachate and their effects on surrounding groundwater. Here, metagenomic sequencing was used to explore profiles, host bacteria, environmental risks and influencing factors of antibiotic resistome in raw and treated leachate and surrounding groundwater of three landfills. Results showed detection of a total of 324 antibiotic resistance genes (ARGs). The ARGs conferring resistance to multidrug (8.8 %-25.7 %), aminoglycoside (13.1 %-39.2 %), sulfonamide (10.0 %-20.9 %), tetracycline (5.7 %-34.4 %) and macrolide-lincosamide-streptogramin (MLS, 5.3 %-29.5 %) were dominant in raw leachate, while multidrug resistance genes were the major ARGs in treated leachate (64.1 %-83.0 %) and groundwater (28.7 %-76.6 %). Source tracking analysis suggests non-negligible influence of leachate on the ARGs in groundwater. The pathogens including Acinetobacter pittii, Pseudomonas stutzeri and P. alcaligenes were the major ARG-carrying hosts. Variance partitioning analysis indicates that the microbial community, abiotic variables and their interaction contributed most to the antibiotic resistance development. Our results shed light on the dissemination and driving mechanisms of ARGs from leachate to the groundwater, indicating that a comprehensive risk assessment and efficient treatment approaches are needed to deal with ARGs in landfill leachate and nearby groundwater. ENVIRONMENTAL IMPLICATIONS: Antibiotic resistance genes are found abundant in the landfill sites, and these genes could be disseminated into groundwater via leaching of wastewater and infiltration of leachate. This results in deterioration of groundwater quality and human health risks posed by these ARGs and related pathogens. Thus measures should be taken to minimize potential negative impacts of landfills on the surrounding environment. | 2024 | 38547976 |
| 3177 | 3 | 0.9999 | Metagenomic investigation of antibiotic resistance genes and resistant bacteria contamination in pharmaceutical plant sites in China. Pharmaceutical plant sites play a significant role in the dissemination of antibiotic resistance genes (ARGs) into the environment. It is imperative to comprehensively monitor of ARGs across various environmental media at these sites. This study focused on three pharmaceutical plants, two located in North China and one in South China. Through metagenomic approaches, we examined the composition, mobility potential, and bacterial hosts of ARGs in diverse media such as process water, groundwater, topsoil, soil cores, and pharmaceutical fermentation residues across diverse environmental matrices, including topsoil, soil cores, process water, groundwater, and pharmaceutical fermentation residues. We identified a wide array of ARGs, comprising 21 types and 740 subtypes, with process water exhibiting the highest abundance and diversity. Treatment processes varied in their efficacy in eliminating ARGs, and the clinically relevant ARGs should also be considered when evaluating wastewater treatment plant efficiency. Geographical distinctions in groundwater ARG distribution between northern and southern regions were observed. Soil samples from the three sites showed minimal impact from pharmaceutical activity, with vancomycin-resistance genes being the most prevalent. High levels of ARGs in pharmaceutical fermentation residues underscore the necessity for improved waste management practices. Metagenomic assembly revealed that plasmid-mediated ARGs were more abundant than chromosome-mediated ARGs. Metagenome-assembled genomes (MAGs) analysis identified 166 MAGs, with 62 harboring multiple ARGs. Certain bacteria tended to carry specific types of ARGs, revealing distinct host-resistance associations. This study enhances our understanding of ARG dissemination across different environmental media within pharmaceutical plants and underscores the importance of implementing strict regulations for effluent and residue discharge to control ARG spread. | 2024 | 38960118 |
| 6868 | 4 | 0.9999 | Rare resistome rather than core resistome exhibited higher diversity and risk along the Yangtze River. As important freshwater ecosystems, the occurrence and distribution of antibiotic resistance genes (ARGs) in rivers are relevant to public health. However, studies investigating ARGs of different environmental media in river ecosystems are limited. In this study, we analyzed the ARGs of microbes in free-living setting, particle-associated setting, sediment and bank soil of the Yangtze River using metagenomics. Twenty-six ARGs were found in all samples regardless of media (core resistome) with a diversity of 8.6 %-34.7 %, accounting for 22.7 %-89.2 % of the relative abundance of the overall ARGs. The core resistome of the Yangtze River was dominated by multidrug resistance genes consisting mainly of efflux pumps and bacitracin resistance genes. The rare resistome was dominated by multidrug, sulfonamide, and aminoglycoside resistance genes. The core resistome was more prevalent in chromosomes, implying that these ARGs with low diversity and high relative abundance may be intrinsic to microbes in the Yangtze River. The rare resistome was more prevalent in plasmids, suggesting these ARGs with high diversity and low relative abundance were acquired under environmental stresses and had transfer potential. Additionally, we found that core and rare resistome were mainly carried by specific bacteria. Noteworthily, twenty-two ARGs of high clinical concern were identified in rare resistome, especially aac(6')-I, sul1, and tetM, which were plasmid-borne and hosted by clinically relevant pathogens. Both core and rare resistome hosts showed the highest niche breadths in particle-associated setting compared to other media, and particle-associated setting could provide more stable and ideal conditions for resistome hosts to survive. This study elucidated the genetic locations of ARGs and the community assembly mechanisms of ARG hosts in freshwater environments. | 2024 | 38039820 |
| 6867 | 5 | 0.9999 | Comparative analysis of characteristics of antibiotic resistomes between Arctic soils and representative contaminated samples using metagenomic approaches. Antibiotic resistance is one of the most concerned global health issues. However, comprehensive profiles of antibiotic resistance genes (ARGs) in various environmental settings are still needed to address modern antibiotic resistome. Here, Arctic soils and representative contaminated samples from ARG pollution sources were analyzed using metagenomic approaches. The diversity and abundance of ARGs in Arctic soils were significantly lower than those in contaminated samples (p < 0.01). ARG profiles in Arctic soils were featured with the dominance of vanF, ceoB, and bacA related to multidrug and bacitracin, whereas those from ARG pollution sources were characterized by prevalent resistance to anthropogenic antibiotics such as sulfonamides, tetracyclines, and beta-lactams. Mobile genetic elements (MGEs) were found in all samples, and their abundance and relatedness to ARGs were both lower in Arctic soils than in polluted samples. Significant relationships between bacterial communities and ARGs were observed (p < 0.01). Cultural bacteria in Arctic soils had clinically-concerned resistance to erythromycin, vancomycin, ampicillin, etc., but ARGs relevant to those antibiotics were undetectable in their genomes. Our results suggested that Arctic environment could be an important reservoir of novel ARGs, and antibiotic stresses could cause ARG pollution via horizontal gene transfer and enrichment of resistant bacteria. | 2024 | 38452676 |
| 7330 | 6 | 0.9999 | Deterministic assembly process dominates bacterial antibiotic resistome in wastewater effluents receiving river. Antibiotic resistance has become a concerning global health challenge, such as the dissemination of bacteria and genes between humans and the environments. Wastewater treatment plants (WWTPs) effluents, as significant reservoirs for antimicrobial resistant bacteria and antibiotic resistance genes (ARGs), pose critical risks to public health. However, whether wastewater effluent prominently contributes to the abundance of ARGs and their community assembly processes in receiving river has yet been unclear. Here we investigated the effects of the effluent discharge on the ARGs and their associate microbial community in the receiving river (Qinhuai River, Nanjing) of upstream and 2000 m downstream of one WWTPs discharge point. Results revealed that the total antibiotic concentrations of all sediment samples ranged from 37.86 to 76.11 µg/kg dw, while antibiotic concentrations and ARG abundances in the river near the wastewater discharge site were significantly higher than that of the downstream receiving river. The metagenomic assembly obtained 245 ARGs associated with 19 antibiotic types in the receiving river. Network analyses confirmed that Proteobacteria, Firmicutes, Acidobacteria, and Bacteroides were the key phylum and positively correlated with the antibiotic resistome. Additionally, the bacterial pathogens of the receiving river were identified as the most frequent strains of clinically relevant antibacterial resistance, such as Streptococcus pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Using null modeling analysis to determine the quantification of ecological processes, the results showed that heterogeneous environmental selection (81.81%) was a dominate role of the ecological mechanisms determining the ARG community reconstruction in the receiving river. Our results may contribute to control the environmental dissemination of antimicrobial resistance risks in aquatic environments. | 2022 | 35864403 |
| 6852 | 7 | 0.9999 | Distribution and co-occurrence patterns of antibiotic resistance genes in black soils in Northeast China. Black soils (Mollisols) are among the most important soil resources for crop production and food security. In China, they are mainly distributed in the northeastern region. To investigate soil antibiotic resistance distribution patterns and monitor soil quality, we randomly chose nine corn fields in Northeast China and analyzed the antibiotic resistance gene (ARG) distribution and co-occurrence patterns on the basis of high-throughput approaches and network analyses. High genetic diversity (136 unique genes) and low ARG abundances (10(-5)-10(-2) copies/16S rRNA gene copy) were detected, with relatively few interactions among ARGs. Type I integron genes were prevalent in the soil and were positively correlated with ARGs, which may increase the risk of ARG transmission. Most ARGs were strongly associated with microorganisms. Moreover, several ARGs were significantly correlated with antibiotics, nutrients, and metal elements. The generation and dissemination of ARGs, which were most likely mediated by mobile genetic elements (MGEs) and bacteria, were affected by environmental conditions. These results provide insights into the widespread co-occurrence patterns in soil resistomes. | 2022 | 35809539 |
| 6850 | 8 | 0.9999 | Fate of high-risk antibiotic resistance genes in large-scale aquaculture sediments: Geographical differentiation and corresponding drivers. Antibiotic resistance genes (ARGs), emerging environmental contaminants, have become challenges of public health security. However, the distribution and drivers of ARGs, especially high-risk ARGs, in large-scale aquaculture sediments remain unknown. Here, we collected sediment samples from 40 crayfish ponds in seven main crayfish culture provinces in China and then investigated the distribution and risk of ARGs based on high-throughput sequencing and quantitative PCR techniques. Our results suggested that aquaculture sediment was potential reservoir of ARGs and the abundance of aadA-02 was the highest. High-risk ARG (floR) was also prevalent in the sediment and was the most abundant in Jiangsu Province, where opportunistic pathogens were also enriched. The abundance of floR was positively correlated with different environmental factors, such as total phosphorus in water and total carbon in sediment. In addition, Mycobacterium sp., opportunistic pathogenic bacteria, might be potential host for floR. Furthermore, the potential propagation pathway of ARGs was from sediment to crayfish gut, and Bacteroidetes and Proteobacteria might be the main bacterial groups responsible for the proliferation of ARGs. Generally, our results illustrate that pond sediment may be an ARG reservoir of aquatic animals. Meanwhile, our study helps develop valuable strategies for accessing risks and managing ARGs. | 2023 | 37714353 |
| 7293 | 9 | 0.9999 | Prevalence and transmission of antibiotic resistance and microbiota between humans and water environments. The transmission routes for antibiotic resistance genes (ARGs) and microbiota between humans and water environments is poorly characterized. Here, we used high-throughput qPCR analyses and 16S rRNA gene sequencing to examine the occurrence and abundance of antibiotic resistance genes and microbiota in both healthy humans and associated water environments from a Chinese village. Humans carried the most diverse assemblage of ARGs, with 234 different ARGs being detected. The total abundance of ARGs in feces, on skin, and in the effluent from domestic sewage treatment systems were approximately 23, 2, and 7 times higher than their abundance in river samples. In total, 53 ARGs and 28 bacteria genera that were present in human feces could also be found in the influent and effluent of rural sewage treatment systems, and also downstream of the effluent release point. We identified the bacterial taxa that showed a significant association with ARGs (P < 0.01, r > 0.8) by network analysis, supporting the idea that these bacteria could carry some ARGs and transfer between humans and the environment. Analysis of ARGs and microbiota in humans and in water environments helps to define the transmission routes and dynamics of antibiotic resistance within these environments. This study highlights human contribution to the load of ARGs into the environment and suggests means to prevent such dissemination. | 2018 | 30420129 |
| 7292 | 10 | 0.9999 | Class 1 integron and related antimicrobial resistance gene dynamics along a complex freshwater system affected by different anthropogenic pressures. The risk for human health posed by polluted aquatic environments, and especially those carrying antibiotic resistance genes (ARGs) of clinical interest, is still debated. This is because of our limited knowledge of the dynamics of antimicrobial resistance in the environment, the selection mechanisms underlying the spread of ARGs, and the ecological factors potentially favoring their return to humans. The Class 1 integron is one of the most effective platforms for the dissemination of ARGs. In this study we investigated a freshwater system consisting of a lake-river-lake continuum, determining the abundance of class 1 integrons and their associated ARGs by a modulated metagenomic approach. Bacterial abundance and community composition were used to identify the potential carriers of class 1 integrons and their associated ARGs over a period of six months. Class 1 integrons and their ARG cargoes were significantly more abundant in riverine sampling sites receiving treated wastewater. Further, class 1 integrons carried ARGs ranked at the highest risk for human health (e.g., catB genes), in particular, genes encoding resistance to aminoglycosides. Genera of potential pathogens, such as Pseudomonas and Escherichia-Shigella, were correlated with class 1 integrons. The lake-river-lake system demonstrated a clear relationship between the integrase gene of class 1 integrons (intI1) and anthropogenic impact, but also a strong environmental filtering that favored the elimination of intI1 once the human derived stressors were reduced. Overall, the results of this study underline the role class 1 integrons as proxy of anthropogenic pollution and suggest this genetic platform as an important driver of aminoglycoside resistance genes, including high risk ARGs, of potential concern for human health. | 2023 | 36351483 |
| 3197 | 11 | 0.9999 | Antibiotic resistance and pathogen spreading in a wastewater treatment plant designed for wastewater reuse. Climate change significantly contributes to water scarcity in various regions worldwide. While wastewater reuse is a crucial strategy for mitigating water scarcity, it also carries potential risks for human health due to the presence of pathogenic and antibiotic resistant bacteria (ARB). Antibiotic resistance represents a Public Health concern and, according to the global action plan on antimicrobial resistance, wastewater role in selecting and spreading ARB must be monitored. Our aim was to assess the occurrence of ARB, antibiotic resistance genes (ARGs), and potential pathogenic bacteria throughout a wastewater treatment plant (WWTP) designed for water reuse. Furthermore, we aimed to evaluate potential association between ARB and ARGs with antibiotics and heavy metals. The results obtained revealed the presence of ARB, ARGs and pathogenic bacteria at every stage of the WWTP. Notably, the most prevalent ARB and ARG were sulfamethoxazole-resistant bacteria (up to 7.20 log CFU mL(-1)) and sulII gene (up to 5.91 log gene copies mL(-1)), respectively. The dominant pathogenic bacteria included Arcobacter, Flavobacterium and Aeromonas. Although the abundance of these elements significantly decreased during treatment (influent vs. effluent, p < 0.05), they were still present in the effluent designated for reuse. Additionally, significant correlations were observed between heavy metal concentrations (copper, nickel and selenium) and antibiotic resistance elements (ampicillin-resistant bacteria, tetracycline-resistant bacteria, ARB total abundance and sulII) (p < 0.05). These results underscore the importance of monitoring the role of WWTP in spreading antibiotic resistance, in line with the One Health approach. Additionally, our findings suggest the need of interventions to reduce human health risks associated with the reuse of wastewater for agricultural purposes. | 2024 | 39357555 |
| 6864 | 12 | 0.9999 | Metagenomics analysis revealing the occurrence of antibiotic resistome in salt lakes. Although antimicrobial resistance genes (ARGs) in dozens of environments have been well documented, the distribution of ARGs in salt lake ecosystems has been less intensively investigated. In this study, the broad-spectrum ARG profiles, microbial community composition and the comprehensive associations between microbiome and antimicrobial resistome in four salt lakes were investigated using a metagenomic approach. A total of 175 ARG subtypes affiliated with 19 ARG types were detected, and ARGs conferring resistance to multidrug, bacitracin, and macrolide-lincosamide-streptogramin (MLS) accounted for 71.2% of the total ARG abundance. However, the abundance of ARGs significantly decreased with the increasing salinity in the lakes. Both ARG profiles and microbial community structure presented remarkable discrepancies in different lakes, as well as in different sample types. Microbes such as genera Azoarcus, Aeromonas, Pseudomonas, and Kocuria, significantly co-occurred with multiple ARGs, indicating that these bacteria are potential ARG hosts in salt lake ecosystems. Collectively, this work provides new insights into the occurrence and distribution of ARGs in salt lake ecosystems. | 2021 | 34380279 |
| 3097 | 13 | 0.9999 | Investigation of the Prevalence of Antibiotic Resistance Genes According to the Wastewater Treatment Scale Using Metagenomic Analysis. Although extensive efforts have been made to investigate the dynamics of the occurrence and abundance of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs), understanding the acquisition of antibiotic resistance based on the WWTP scale and the potential effects on WWTPs is of relatively less interest. In this study, metagenomic analysis was carried out to investigate whether the WWTP scale could be affected by the prevalence and persistence of ARGs and mobile genetic elements (MGEs). As a result, 152 ARG subtypes were identified in small-scale WWTP samples, while 234 ARG subtypes were identified in large-scale WWTP samples. Among the detectable ARGs, multidrug, MLS (macrolide-lincosamide-streptogramin), sulfonamide, and tetracycline resistance genes had the highest abundance, and large and small WWTPs had similar composition characteristics of ARGs. In MGE analysis, plasmids and integrons were 1.5-2.0-fold more abundant in large-scale WWTPs than in small-scale WWTPs. The profile of bacteria at the phylum level showed that Proteobacteria and Actinobacteria were the most dominant bacteria, representing approximately 70% across large- and small-scale WWTPs. Overall, the results of this study elucidate the different abundances and dissemination of ARGs between large- and small-scale WWTPs, which facilitates the development of next-generation engineered wastewater treatment systems. | 2021 | 33671905 |
| 7333 | 14 | 0.9999 | Metagenomics unveils the role of hospitals and wastewater treatment plants on the environmental burden of antibiotic resistance genes and opportunistic pathogens. Antimicrobial resistance (AMR) is a global health challenge, with hospitals and wastewater treatment plants (WWTPs) serving as significant pathways for the dissemination of antibiotic resistance genes (ARGs). This study investigates the potential of wastewater-based epidemiology (WBE) as an early warning system for assessing the burden of AMR at the population level. In this comprehensive year-long study, effluent was collected weekly from three large hospitals, and treated and untreated wastewater were collected monthly from three associated community WWTPs. Metagenomic analysis revealed a significantly higher relative abundance and diversity of ARGs in hospital wastewater than in WWTPs. Notably, ARGs conferring resistance to clinically significant antibiotics such as β-lactams, aminoglycosides, sulfonamides, and tetracyclines were more prevalent in hospital effluents. Conversely, resistance genes associated with rifampicin and MLS (macrolides-lincosamide-streptogramin) were more commonly detected in the WWTPs, particularly in the treated effluent. Network analysis identified the potential bacterial hosts, which are the key carriers of these ARGs. The study further highlighted the variability in ARG removal efficiencies across the WWTPs, with none achieving complete elimination of ARGs or a significant reduction in bacterial diversity. Additionally, ARG profiles remained relatively consistent in hospital and community wastewater throughout the study, indicating a persistent release of a baseload of ARGs and pathogenic bacteria into surface waters, potentially polluting aquatic environments and entering the food chain. The study underscores the need for routine WBE surveillance, enhanced wastewater treatment strategies, and hospital-level source control measures to mitigate AMR dissemination into the environment. | 2025 | 39798461 |
| 6883 | 15 | 0.9999 | Metagenomic insights into the profile of antibiotic resistomes in sediments of aquaculture wastewater treatment system. To meet the rapidly growing global demand for aquaculture products, large amounts of antibiotics were used in aquaculture, which might accelerate the evolution of antibiotic-resistant bacteria (ARB) and the propagation of antibiotic genes (ARGs). In our research, we revealed the ARGs profiles, their co-occurrence with mobile genetic elements (MGEs), and potential hosts in sediments of a crab pond wastewater purification system based on metagenomic analysis. The residual antibiotic seems to increase the propagation of ARGs in the crab pond, but there was no clear relationship between a given antibiotic type and the corresponding resistance genes. The effect of aquaculture on sediment was not as profound as that of other anthropogentic activities, but increased the relative abundance of sulfonamide resistance gene. A higher abundance of MGEs, especially plasmid, increased the potential ARGs dissemination risk in crab and purification ponds. Multidrug and sulfonamide resistance genes had greater potential to transfer because they were more frequently carried by MGEs. The horizontal gene transfer was likely to occur among a variety of microorganisms, and various ARGs hosts including Pseudomonas, Acinetobacter, Escherichia, and Klebsiella were identified. Bacterial community influenced the composition of ARG hosts, and Proteobacteria was the predominant hosts. Overall, our study provides novel insights into the environmental risk of ARGs in sediments of aquaculture wastewater treatment system. | 2022 | 34963542 |
| 6877 | 16 | 0.9999 | Exploring urban coastal areas: Investigating the urban coastal areas as a reservoirs of antibiotic resistance Genes★. Antibiotic resistance genes (ARGs) have long served as adaptive defensive mechanisms among bacteria, enabling their survival and propagation in challenging environments. The consequences of inefficient wastewater treatment have culminated the emergence of untreatable and lethal extensively drug-resistant. To understand the relationship between wastewater effluent and marine ecosystems, we conducted a study to monitor the diversity and prevalence of common ARGs in Hong Kong's urban coastal areas at different seasons. Our findings revealed that sul 1 was the most abundant resistance gene, with an average relative abundance of 4.45 × 10(-2) per 16s rRNA gene copy. Moreover, temperature, dissolved oxygen, and salinity were key factors influencing seasonal variations in total ARGs abundance. The influence of environmental factors varied based on ARGs' association with Intl1, with Intl1-associated ARGs strongly correlating with temperature and dissolved oxygen. Notably, despite their abundance, sul1 and mphA exhibited similar correlations with both Intl1 and key environmental factors, suggesting these ARGs share a common dissemination mechanism. Moreover, the robust association between resistance genes and mobile genetic elements (MGE) could potentially act as a valuable indicator for assessing the efficacy of removing ARGs in wastewater treatment methods when operating under carefully optimized environmental parameters. | 2025 | 39642594 |
| 6846 | 17 | 0.9999 | Antibiotic resistance genes in an urban river as impacted by bacterial community and physicochemical parameters. Antibiotic resistance genes (ARGs) in urban rivers are a serious public health concern in regions with poorly planned, rapid development. To gain insights into the predominant factors affecting the fate of ARGs in a highly polluted urban river in eastern China, a total of 285 ARGs, microbial communities, and 20 physicochemical parameters were analyzed for 17 sites. A total of 258 unique ARGs were detected using high-throughput qPCR, and the absolute abundance of total ARGs was positively correlated with total organic carbon and total dissolved nitrogen concentrations (P < 0.01). ARG abundance and diversity were greatly altered by microbial community structure. Variation partitioning analysis showed that the combined effects of multiple factors contributed to the profile and dissemination of ARGs, and variation of microbial communities was the major factor affecting the distribution of ARGs. The disparate distribution of some bacteria, including Bacteroides from mammalian gastrointestinal flora, Burkholderia from zoonotic infectious diseases, and Zoogloea from wastewater treatment, indicates that the urban river was strongly influenced by point-source pollution. Results imply that microbial community shifts caused by changes in water quality may lead to the spread of ARGs, and point-source pollution in urban rivers requires greater attention to control the transfer of ARGs between environmental bacteria and pathogens. | 2017 | 28864929 |
| 3175 | 18 | 0.9999 | A multi-pronged approach to assessing antimicrobial resistance risks in coastal waters and aquaculture systems. Antimicrobial resistance (AMR) is a global challenge that has impacted aquaculture and surrounding marine environments. In this study, a year-long monitoring program was implemented to evaluate AMR in two different aquaculture settings (i.e., open cage farming, recirculating aquaculture system (RAS)) and surrounding marine environment within a tropical coastal region. The objectives of this study are to (i) investigate the prevalence and co-occurrence of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), antibiotics (AB) and various associated chemical compounds at these study sites; (ii) explore the contributing factors to development and propagation of AMR in the coastal environment; and (iii) assess the AMR risks from different perspectives based on the three AMR determinants (i.e., ARB, ARGs and AB). Key findings revealed a distinct pattern of AMR across the different aquaculture settings, notably a higher prevalence of antibiotic-resistant Vibrio at RAS outfalls, suggesting a potential accumulation of microorganisms within the treatment system. Despite the relative uniform distribution of ARGs across marine sites, specific genes such as qepA, bla(CTX)(-)(M) and bacA, were found to be abundant in fish samples, especially from the RAS. Variations in chemical contaminant prevalence across sites highlighted possible anthropogenic impacts. Moreover, environmental and seasonal variations were found to significantly influence the distribution of ARGs and chemical compounds in the coastal waters. Hierarchical cluster analysis that was based on ARGs, chemical compounds and environmental data, categorized the sites into three distinct clusters which reflected strong association with location, seasonality and aquaculture activities. The observed weak correlations between ARGs and chemical compounds imply that low environmental concentrations may be insufficient for resistance selection. A comprehensive risk assessment using methodologies such as the multiple antibiotic resistance (MAR) index, comparative AMR risk index (CAMRI) and Risk quotient (RQ) underscored the complexity of AMR risks. This research significantly contributes to the understanding of AMR dynamics in natural aquatic systems and provides valuable insights for managing and mitigating AMR risks in coastal environments. | 2024 | 39241380 |
| 3215 | 19 | 0.9999 | Prevalence of antibiotic resistance genes its association with microbiota in raw milk of northwest Xinjiang. The issue of antibiotic resistance caused by antibiotic resistance genes (ARGs) has become a significant concern in environmental research in recent years, while raw milk is an important link in the food chain and has become one of the carriers and reservoirs of ARGs, which has not been taken seriously. This research employed high-throughput quantitative PCR and Illumina sequencing techniques targeting the 16S rRNA gene. These methods were used to examine the bacterial community composition and genes associated with antibiotic resistance in raw milk samples collected from the northwestern area of Xinjiang. An aggregate of 31 distinct resistance alleles were identified, with their abundance reaching as high as 3.70 × 10(5) copies per gram in the analyzed raw milk samples. Microorganisms harboring ARGs that confer resistance to beta-lactams, tetracyclines, aminoglycosides, and chloramphenicol derivatives were prevalent in raw milk. Procrustes analysis revealed a certain degree of correlation between the microbial community and the antibiotic resistance gene (ARG) profiles. Furthermore, network analysis demonstrated that Actinobacteria and Firmicutes were the predominant phyla exhibiting co-occurrence relationships with specific ARGs. Combining the findings from Variance Partitioning Analysis (VPA), the distribution of ARGs was mainly driven by three factors: the combined effect of physicochemical properties and mobile genetic elements (MGEs) (33.5%), the interplay between physicochemical parameters and microbial communities (31.8%), and the independent contribution of physicochemical factors (20.7%). The study demonstrates that the overall abundance of ARGs correlates with physicochemical parameters, bacterial community composition, and the presence of MGEs. Furthermore, understanding these associations facilitates the evaluation of antibiotic resistance risks, thereby contributing to enhanced farm management practices and the assurance of food safety. | 2025 | 40718809 |