Study on antibiotics, antibiotic resistance genes, bacterial community characteristics and their correlation in the landfill leachates. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
684301.0000Study on antibiotics, antibiotic resistance genes, bacterial community characteristics and their correlation in the landfill leachates. AIM: This study aimed to investigate the contamination levels of antibiotics and antibiotic resistance genes (ARGs) in the landfill leachates and their correlations with the bacteria. METHODS AND RESULTS: Using HPLC-MS, quantitative PCR and high-throughput sequencing, we measured the pollution levels of 14 antibiotics and 10 ARGs in the leachates of the landfill in Taiyuan, China, and analysed changes in the bacterial community and the correlations of bacteria with antibiotics and ARGs. The main results showed high levels of antibiotics (like enrofloxacin, pefloxacin and oxytetracycline) and ARGs (like sulfonamides, tetracycline, macrolides, quinolones and β-lactam-resistance genes) in the landfill leachates, along with higher diversity and richness of the bacteria. Some types of antibiotics had positive correlations with their corresponding ARGs. The dominant bacteria in the landfill leachates were Pseudomonas, Defluviitoga and Sulfurimonas, which correlated with the antibiotics and ARGs and might have potential effects on degrading them. CONCLUSIONS: Antibiotics and ARG pollution existed in the landfill leachates, while bacteria were closely associated with them. SIGNIFICANCE AND IMPACT OF THE STUDY: It will provide helpful information for the potential application of the bacteria in antibiotics and ARGs pollution control and landfill leachate management.202234297455
684710.9999Nutrients, heavy metals and microbial communities co-driven distribution of antibiotic resistance genes in adjacent environment of mariculture. With the rapid development of aquaculture, the large amounts of pollutants were discharged into the aquatic environment, where the detected antibiotic resistance genes (ARGs) have drawn increasing attention due to their potential threats to ecological environment and human health. Thus, the impact of mariculture on ARGs was assessed and the underlying mechanism of their propagation was explained. Sediments from eight sampling sites were collected along a mariculture drainage ditch, and the sediment in Yellow River Delta National Park was used as a non-mariculture control. Microbial ARGs qPCR array and illumina sequencing of 16S rRNA gene were applied to examine the changing patterns of ARGs and bacterial communities. Results showed that 18 ARGs (3 fluoroquinolone, 1 aminoglycoside, 3 macrolide-lincosamide-streptogramin B, 2 tetracycline, and 9 beta-lactam resistance genes) were influenced by mariculture, and ARGs abundance and diversity were significantly increased in mariculture sediments (p < 0.05). A remarkable shift in bacterial community structure and composition was also observed. The abundance of most of ARGs were significantly decreased in the estuary samples, implying that seawater had a significant dilution effect on the ARGs emission from the mariculture sites. Partial redundancy analysis showed that nutrients, heavy metals, and bacteria communities might directly and indirectly contribute to ARGs propagation, suggesting that the profile and dissemination of ARGs were driven by the combined effects of multiple factors in mariculture-impacted sites.201727814984
684620.9999Antibiotic resistance genes in an urban river as impacted by bacterial community and physicochemical parameters. Antibiotic resistance genes (ARGs) in urban rivers are a serious public health concern in regions with poorly planned, rapid development. To gain insights into the predominant factors affecting the fate of ARGs in a highly polluted urban river in eastern China, a total of 285 ARGs, microbial communities, and 20 physicochemical parameters were analyzed for 17 sites. A total of 258 unique ARGs were detected using high-throughput qPCR, and the absolute abundance of total ARGs was positively correlated with total organic carbon and total dissolved nitrogen concentrations (P < 0.01). ARG abundance and diversity were greatly altered by microbial community structure. Variation partitioning analysis showed that the combined effects of multiple factors contributed to the profile and dissemination of ARGs, and variation of microbial communities was the major factor affecting the distribution of ARGs. The disparate distribution of some bacteria, including Bacteroides from mammalian gastrointestinal flora, Burkholderia from zoonotic infectious diseases, and Zoogloea from wastewater treatment, indicates that the urban river was strongly influenced by point-source pollution. Results imply that microbial community shifts caused by changes in water quality may lead to the spread of ARGs, and point-source pollution in urban rivers requires greater attention to control the transfer of ARGs between environmental bacteria and pathogens.201728864929
687030.9999Antibiotic resistome in landfill leachate and impact on groundwater. Landfill leachate is a hotspot in antibiotic resistance development. However, little is known about antibiotic resistome and host pathogens in leachate and their effects on surrounding groundwater. Here, metagenomic sequencing was used to explore profiles, host bacteria, environmental risks and influencing factors of antibiotic resistome in raw and treated leachate and surrounding groundwater of three landfills. Results showed detection of a total of 324 antibiotic resistance genes (ARGs). The ARGs conferring resistance to multidrug (8.8 %-25.7 %), aminoglycoside (13.1 %-39.2 %), sulfonamide (10.0 %-20.9 %), tetracycline (5.7 %-34.4 %) and macrolide-lincosamide-streptogramin (MLS, 5.3 %-29.5 %) were dominant in raw leachate, while multidrug resistance genes were the major ARGs in treated leachate (64.1 %-83.0 %) and groundwater (28.7 %-76.6 %). Source tracking analysis suggests non-negligible influence of leachate on the ARGs in groundwater. The pathogens including Acinetobacter pittii, Pseudomonas stutzeri and P. alcaligenes were the major ARG-carrying hosts. Variance partitioning analysis indicates that the microbial community, abiotic variables and their interaction contributed most to the antibiotic resistance development. Our results shed light on the dissemination and driving mechanisms of ARGs from leachate to the groundwater, indicating that a comprehensive risk assessment and efficient treatment approaches are needed to deal with ARGs in landfill leachate and nearby groundwater. ENVIRONMENTAL IMPLICATIONS: Antibiotic resistance genes are found abundant in the landfill sites, and these genes could be disseminated into groundwater via leaching of wastewater and infiltration of leachate. This results in deterioration of groundwater quality and human health risks posed by these ARGs and related pathogens. Thus measures should be taken to minimize potential negative impacts of landfills on the surrounding environment.202438547976
685340.9999Occurrence and distribution of antibiotics and antibiotic resistance genes in the guts of shrimp from different coastal areas of China. With the continuous increase in shrimp (Litopenaeus vannamei) aquaculture production, the widespread use of antibiotics as a means of preventing and treating diseases has adversely affected the environment, animal health and symbiotic microorganisms in gut environments. At the same time, antibiotic resistance genes (ARGs) are widespread in aquaculture and pose a great threat to aquatic organisms and humans. Therefore, in the present study, the occurrence and distribution of 17 antibiotics, ARGs and mobile genetic elements (MGEs) were detected in the guts of shrimp collected from 12 coastal regions of China. The results showed that sulfadiazine, ciprofloxacin and norfloxacin were detectable in the guts of L. vannamei at all sampling sites. Sul1, sul2, floR and intI-1 were also detected in the guts of L. vannamei at all sampling sites. The total relative abundances of ARGs and MGEs were significantly positively correlated according to Pearson correlation analysis. Sulfonamide resistance genes (sul1 and sul2) were significantly positively correlated with intI-1. These results indicated that MGEs could increase the risk of horizontal gene transfer of ARGs in a gut environment. MGEs are the most important factors promoting the spread of ARGs. Correlation analysis showed that sulfadiazine was significantly positively correlated with sul1 and sul2 and that fluoroquinolone antibiotics were significantly positively correlated with floR, indicating that antibiotics could induce the production of ARGs. Network analysis indicated that Iamia and Alkaliphilus species may harbor the most antibiotic resistance genes, and these bacteria were closely related to the proliferation and spread of ARGs in a gut environment. Antibiotic use and the spread of ARGs in mariculture systems may have negative effects on shrimp and human health. The use of antibiotics should be strictly regulated to control contaminants in mariculture systems, including pathogens and ARGs, thereby reducing potential risks to human health.202234990667
741350.9999Fecal antibiotic resistance genes were transferred through the distribution of soil-lettuce-snail food chain. Massive antibiotic resistance genes (ARG) were detected in the soil modified by manure, which may affect human life safety through the food chain. However, the transmission of ARGs through the soil-plant-animal food chain is still unclear. Therefore, this study used high-throughput quantitative PCR technology to explore the effects of pig manure application on ARGs and bacterial communities in soil, lettuce phyllosphere, and snail excrement. The results showed that a total of 384 ARGs and 48 MEGs were detected in all samples after 75 days of incubation. The diversity of ARGs and MGEs in soil components increased significantly by 87.04% and 40% with the addition of pig manure. The absolute abundance of ARGs in the phyllosphere of lettuce was significantly higher than that of the control group, with a growth rate of 212.5%. Six common ARGs were detected between the three components of the fertilization group, indicating that there was internal transmission of fecal ARGs between the trophic levels of the food chain. Firmicutes and Proteobacteria were identified as the dominant host bacteria in the food chain system, which were more likely to be used as carriers of ARGs to promote the spread of resistance in the food chain. The results were used to assess the potential ecological risks of livestock and poultry manure. It provides theoretical basis and scientific support for the formulation of ARG prevention and control policies.202337434056
685560.9998Occurrence and distribution of antibiotic resistance genes in various rural environmental media. Antibiotic resistance genes (ARGs) in rural environments have been poorly characterized in the literature. In this study, the diversity, abundance, and distribution of ARGs in surface waters, soils, and sediments of a typical hilly rural area in the Upper Yangtze River watershed were investigated using the high-throughput quantitative polymerase chain reaction, and their relationships with chemical properties of the samples were analyzed. No significant differences in the diversity and abundance of ARGs were observed among the three medium types while the ARG distribution pattern in the sediments was obviously different from that of the surface waters. According to the co-occurrence pattern of ARGs subtypes obtained by network analysis, blaOXA10-02, blaPSE, lnuB-02, and qacEΔ1-01 can be used to estimate the relative abundance of total ARGs for the study area. It appeared that the prevalence of ARGs in the sediments was promoted by the horizontal gene transfer (HGT) and vertical gene transfer together, while their spread in the surface waters and soils were facilitated by the supply of biogenic elements and HGT, respectively. Mobile genetic elements (MGEs) were abundant and detected in all samples, and their abundance was significantly and positively correlated with that of ARGs, implying that the potential horizontal transfer of ARGs to other bacteria and pathogens in rural environments should not be overlooked.202032436087
321470.9998Characteristics of the antibiotic resistance genes in the soil of medical waste disposal sites. The inappropriate disposal of medical waste allows bacteria to acquire antibiotic resistance, which results in a threat to public health. Antibiotic resistance gene (ARG) profiles were determined for 45 different soil samples containing medical waste and 15 nearby soil samples as controls. Besides physical and chemical analyses (i.e., dry matter content, pH value, and metal content), the genomes of microorganisms from the soil samples were extracted for high-throughput sequencing. ARG abundances of these samples were obtained by searching the metagenomic sequences against the antibiotic resistance gene database and the copies of ARGs per copy of the 16S rRNA gene at different levels were assessed. The results showed medical waste accumulation significantly enriched the contents of Cu, Cr, Pb, and As in the tested soil samples. Compared to the controls, the samples collected from areas containing medical waste were significantly enriched (p < 0.05, t-test) with ARGs annotated as sulfonamide and multidrug resistance genes, and in particular, the subtypes sul1 and sul2 (sulfonamide resistance genes), and multidrug_transporter (multidrug resistance gene). Moreover, the ARGs of the samples from the polluted areas were more diverse than those of the control samples (p < 0.05, t-test). The comparatively higher abundance and diversity of ARGs in contaminated soil pose a potential risk to human health.202032402966
684980.9998Antibiotic resistance genes and their links with bacteria and environmental factors in three predominant freshwater aquaculture modes. Rapid development of aquaculture industry and increasing demand of various inputs (especially antibiotics), are suspected to promote the occurrence and spread of ARGs in aquaculture related environments. However, the occurrences of ARGs under different freshwater aquaculture practices are rarely known. Here, we investigated the seasonal profiles of the main ARGs, intI1 and bacteria in waters from three kinds of predominant freshwater aquaculture practices around the Honghu Lake (China), as well as their co-occurrences and interrelationships with antibiotics, heavy metals and general water quality. The results indicate that quinolone resistance genes (qnrB), tetracycline resistance genes (tetB and tetX) and sulfonamide resistance genes (sul1 and sul2) were the top five predominant ARGs with seasonal variations of abundance. Fish ponds were of the highest absolute abundances of tested ARGs than the other two modes. Crayfish ponds and their adjacent ditches shared similar ARGs profile. Different subtypes of ARGs belonging to the same class of resistance were varied in abundances. Some bacteria were predicted to carry different ARGs, which indicating multi-antibiotic resistances. Moreover, the combined environmental factors (antibiotics, heavy metals and water quality) partially shaped the profiles of ARGs and bacteria composition. Overall, this study provides new comprehensive understanding on the characterization of ARGs contamination in different freshwater aquaculture practices from the perspectives of environmental chemistry, microbiology and ecology. The results would benefit the optimization of aquaculture practices toward environmental integrity and sustainability.202236068758
715590.9998Profiles of antibiotic resistance genes in an inland salt-lake Ebinur Lake, Xinjiang, China: The relationship with antibiotics, environmental factors, and microbial communities. Lakes in arid northwestern China, as the main pollutant-holding water bodies in the typical ecologically fragile areas, are facing the unknown risk of exposure to antibiotics and antibiotic resistance genes (ARGs). In this study, five ARGs and one mobile genetic element (intI1) and their relation with antibiotics, microbial communities and water quality were investigated in Ebinur Lake Basin, a typical salt-lake of China. Quantitative PCR analysis indicated that ARGs decreasing order in both surface water and sediment was sul1 >sul2 >tetW>ermB>qnrS, which means sulfonamide resistance genes were the main pollution ARGs. Macrolide antibiotics were the predominant antibiotics in the surface water and sediment in winter, while sulfonamides and quinolones accounted for a high proportion in summer. There was a non-corresponding relationship between ARGs and antibiotics. Moreover, the relationship between ARGs and microbial communities were defined. Sulfonamide resistance genes were carried by a greater diversity of potential host bacteria (76 genera) than other ARGs (9 genera). And their positive correlation with intI1 (p < 0.05) which promotes their migration and provides possibility of their co-occurrence in bacterial populations (e.g., Nitrospira). Bacterial genera were the main driver of ARGs distribution pattern in highly saline lake sediment. Environmental factors like salinity, total nitrogen and organic matter could have a certain influence on the occurrence of ARGs by affecting microorganisms. The results systematically show the distribution and propagation characteristics of ARGs in typical inland salt-lakes in China, and preliminarily explored the relationship between ARGs and antibiotics, resistance genes and microorganisms in lakes in ecologically fragile areas.202134171688
6840100.9998High-throughput profiling and analysis of antibiotic resistance genes in East Tiaoxi River, China. The rapid human activities and urbanization exacerbate the human health risks induced by antibiotic resistance genes (ARGs). In this study, the profiling of ARGs was investigated using high-throughput qPCR from water samples of 13 catchment areas in East Tiaoxi River, China. High prevalence of ARGs indicated significant antibiotic resistance pollution in the research area (absolute abundance: 6.1 × 10(8)-2.1 × 10(10) copies/L; relative abundance: 0.033-0.158 copies/cell). Conventional water qualities (COD, TN, TP, NH(3)-N), bacterial communities and mobile gene elements (MGEs) were detected and analyzed as factors of ARGs shift. Nutrient and MGEs showed positive correlation with most ARGs (P < 0.05) and bacteria community was identified as the key contributing factor driving ARGs alteration. With the land-use study and field investigation, country area, especially arable, was expected as a high spot for ARGs shift and pathogen breeding. Comparing to environmental background, promotion of ARGs and marked shift of bacterial community were observed in country and urban city areas, indicating that human activities may lead to the spread of ARGs. Analysis of factors affecting ARGs in this study may shed new light on the mechanism of the maintenance and propagation of ARGs in urban rivers.201728715769
6848110.9998Swine farming elevated the proliferation of Acinetobacter with the prevalence of antibiotic resistance genes in the groundwater. Swine farming generates a large amount of wastes containing various contaminants, resulting in environmental contamination and human health problems. Here we investigated the contamination profiles of antibiotics and antibiotic resistance genes (ARGs) as well as microbial community in groundwater of the two villages with or without swine farms, and then assessed the human exposure risks of antibiotics, ARGs and indicator bacteria through drinking groundwater. The results showed that swine farming could lead to enhanced concentration levels of various veterinary antibiotics and ARGs in the groundwater in comparison to the reference village without swine farming. The microbial diversity of groundwater was significantly decreased with predominance of conditional pathogens Acinetobacter (up to 90%) in some wells of the swine farming village. Meanwhile, the abundance of Acinetobacter was significantly correlated to bacterial abundance, ARGs and integrons. The local residents could ingest various antibiotic residues and ARGs as well as pathogens, with daily intake of Acinetobacter up to approximately 10 billion CFU/resident through drinking groundwater contaminated by swine farming. The findings from this study suggest potential health risks of changing gut microbial community and resistome by drinking contaminated groundwater.202031999967
7232120.9998Occurrence and prevalence of antibiotic resistance in landfill leachate. Antibiotic resistance (AR) is extensively present in various environments, posing emerging threat to public and environmental health. Landfill receives unused and unwanted antibiotics through household waste and AR within waste (e.g., activated sludge and illegal clinical waste) and is supposed to serve as an important AR reservoir. In this study, we used culture-dependent methods and quantitative molecular techniques to detect and quantify antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in 12 landfill leachate samples from six geographic different landfills, China. Five tested ARGs (tetO, tetW, bla(TEM), sulI, and sulII) and seven kinds of antibiotic-resistant heterotrophic ARB were extensively detected in all samples, demonstrating their occurrence in landfill. The detected high ratio (10(-2) to 10(-5)) of ARGs to 16S ribosomal RNA (rRNA) gene copies implied that ARGs are prevalent in landfill. Correlation analysis showed that ARGs (tetO, tetW, sulI, and sulII) significantly correlated to ambient bacterial 16S rRNA gene copies, suggesting that the abundance of bacteria in landfill leachate may play an important role in the horizontal spread of ARGs.201525903180
6854130.9998Characteristics and driving factors of antibiotic resistance genes in aquaculture products from freshwater ponds in China Yangtze River Delta. Antibiotic resistance genes (ARGs) are widespread in aquaculture and pose a huge threat to aquaculture organisms and human health. In this study, occurrences and relative abundances of ARGs were analysed in the guts of products cultured in freshwater ponds in the Yangtze River Delta region in China. A total of 29 ARGs were found in the gut samples, with detection frequencies ranging from 4.8% to 81%, and the relative abundances (ARGs/16S rRNA) ranging from 10(-7) to 1. In addition, the human dietary intake of ARGs via aquaculture products was assessed, where the daily intake of most ARGs via aquaculture products was higher than those via PM2.5 and drinking water, but lower than that via vegetables. The relative abundances of MGE (IS613, Tp614, tnpA and int1) were significantly correlated with those of multiple ARGs, indicating the horizontal gene transfer (HGT) of ARGs among gut microorganisms. Proteobacteria, Firmicutes and Actinobacteria were the dominated microbial communities found in the guts of aquaculture products. In addition, significant correlations were found between Cyanobacteria and int1, between Nitrospira and tetE, and between sul2 and aadA2, indicating potential same hosts of these genes. In addition, results from co-correlation indicated both HGT (dominated by MGEs) of ARGs and the enrichment of ARGs in bacteria. MGEs, mostly int1, were more effective than bacteria in increasing the ARG abundance. This study could provide a better understanding of the transmission of ARGs in the aquaculture environment and improve the quality of aquaculture products and the ecology.202436756971
6850140.9998Fate of high-risk antibiotic resistance genes in large-scale aquaculture sediments: Geographical differentiation and corresponding drivers. Antibiotic resistance genes (ARGs), emerging environmental contaminants, have become challenges of public health security. However, the distribution and drivers of ARGs, especially high-risk ARGs, in large-scale aquaculture sediments remain unknown. Here, we collected sediment samples from 40 crayfish ponds in seven main crayfish culture provinces in China and then investigated the distribution and risk of ARGs based on high-throughput sequencing and quantitative PCR techniques. Our results suggested that aquaculture sediment was potential reservoir of ARGs and the abundance of aadA-02 was the highest. High-risk ARG (floR) was also prevalent in the sediment and was the most abundant in Jiangsu Province, where opportunistic pathogens were also enriched. The abundance of floR was positively correlated with different environmental factors, such as total phosphorus in water and total carbon in sediment. In addition, Mycobacterium sp., opportunistic pathogenic bacteria, might be potential host for floR. Furthermore, the potential propagation pathway of ARGs was from sediment to crayfish gut, and Bacteroidetes and Proteobacteria might be the main bacterial groups responsible for the proliferation of ARGs. Generally, our results illustrate that pond sediment may be an ARG reservoir of aquatic animals. Meanwhile, our study helps develop valuable strategies for accessing risks and managing ARGs.202337714353
3212150.9998Distribution and driving factors of antibiotic resistance genes in treated wastewater from different types of livestock farms. Treated wastewater from livestock farms is an important reservoir for antibiotic resistance genes (ARGs), and is a main source of ARGs in the environment. However, the distribution and driving factors of ARGs in treated wastewater from different types of livestock farms are rarely reported. In this study, treated wastewater from 69 large-scale livestock farms of different types, including broiler, layer, and pig farms, was collected, and 11 subtypes of ARGs, 2 mobile genetic elements (MGEs) and bacterial community structure were analyzed. The results revealed detection rates of NDM-1 and mcr-1 of 90 % and 43 %, respectively, and the detection rates of other ARGs were 100 %. The relative abundance of ARGs, such as tetA, tetX and strB, in broiler farms was significantly higher than that in layer farms, but the bacterial α diversity was significantly lower than that in other farm types. Furthermore, although the treatment process had a greater impact on the physicochemical properties of the treated wastewater than the livestock type, livestock type was the main factor affecting the bacterial community in the treated wastewater. The analysis of potential host bacteria of ARGs revealed significant differences in the host bacteria of ARGs in treated wastewater from different types of livestock farms. The host bacteria of ARGs in broiler farms mainly belonged to Actinobacteria, layer farms mainly belonged to Proteobacteria, and pig farms mainly belonged to Firmicutes. Additionally, redundancy analysis showed that the distribution of ARGs may have resulted from the combination of multiple driving factors in different types of livestock farms, among which tnpA and NH(4)(+)-N were the main influencing factors. This study revealed multiple driving factors for the distribution of typical ARGs in treated wastewater from different types of livestock farms, providing basic data for the prevention and control of ARG pollution in agricultural environments.202235934031
6845160.9998A Comparative Analysis of Aquatic and Polyethylene-Associated Antibiotic-Resistant Microbiota in the Mediterranean Sea. In this study, we evaluated the microbiome and the resistome profile of water and fragments of polyethylene (PE) waste collected at the same time from a stream and the seawater in a coastal area of Northwestern Sicily. Although a core microbiome was determined by sequencing of the V3-V4 region of the bacterial 16S rDNA gene, quantitative differences were found among the microbial communities on PE waste and the corresponding water samples. Our findings indicated that PE waste contains a more abundant and increased core microbiome diversity than the corresponding water samples. Moreover, PCR analysis of specific antibiotic resistance genes (ARGs) showed that PE waste harbors more ARGs than the water samples. Thus, PE waste could act as a carrier of antibiotic-resistant microbiota, representing an increased danger for the marine environment and living organisms, as well.202133800749
6851170.9998Antibiotic resistance genes and bacterial community on the surfaces of five cultivars of fresh tomatoes. Antibiotic resistance genes and bacteria (ARGs and ARB) in vegetable or fruit pose risks to ecological environment health. However, the assessment of ARGs and ARB from one popular vegetable, fresh tomato, has not been carried out before. In this study, high-throughput quantitative PCR and 16S rRNA gene Illumina sequencing technology were used to explore the antibiotic resistance characteristics of bacteria on five common cultivars of fresh tomatoes from supermarket. A total of 191 ARGs and 10 mobile genetic elements (MGEs) were detected on the tomato surfaces. The distribution profile of ARGs and MGEs was different among samples, with the organic tomatoes showing more ARGs and MGEs number and relative abundance. Aminoglycoside resistance genes strA and strB, sulfonamide resistance gene sul1, and multidrug resistance gene qacΔ1-01 were the predominant ARGs. Dominant MGEs were transposase genes, which might promote horizontal gene transfer (HGT) of ARGs. Network analysis indicated that fifteen bacterial families might be the potential hosts of ARGs, and the detected MGEs might have positive correlation with ARGs. These results revealed the bacterial ARGs and MGEs from fresh tomato, which might help guide human to pay more attention to ecological environment impacts of ARGs and ARB on the surfaces of vegetable or fruit.202133184734
6903180.9998Heavy Metal Tolerance Genes Associated With Contaminated Sediments From an E-Waste Recycling River in Southern China. Heavy metal pollution that results from electronic waste (e-waste) recycling activities has severe ecological environmental toxicity impacts on recycling areas. The distribution of heavy metals and the impact on the bacteria in these areas have received much attention. However, the diversity and composition of the microbial communities and the characteristics of heavy metal resistance genes (HMRGs) in the river sediments after long-term e-waste contamination still remain unclear. In this study, eight river sediment samples along a river in a recycling area were studied for the heavy metal concentration and the microbial community composition. The microbial community consisted of 13 phyla including Firmicutes (ranging from 10.45 to 36.63%), Proteobacteria (11.76 to 32.59%), Actinobacteria (14.81 to 27.45%), and unclassified bacteria. The abundance of Firmicutes increased along with the level of contaminants, while Actinobacteria decreased. A canonical correspondence analysis (CCA) showed that the concentration of mercury was significantly correlated with the microbial community and species distribution, which agreed with an analysis of the potential ecological risk index. Moreover, manually curated HMRGs were established, and the HMRG analysis results according to Illumina high-throughput sequencing showed that the abundance of HMRGs was positively related to the level of contamination, demonstrating a variety of resistance mechanisms to adapt, accommodate, and live under heavy metal-contaminated conditions. These findings increase the understanding of the changes in microbial communities in e-waste recycling areas and extend our knowledge of the HMRGs involved in the recovery of the ecological environment.202134054770
6844190.9998Antibiotic resistance genes correlate with metal resistances and accumulate in the deep water layers of the Black Sea. Seas and oceans are a global reservoir of antibiotic resistance genes (ARGs). Only a few studies investigated the dynamics of ARGs along the water column of the Black Sea, a unique environment, with a peculiar geology, biology and history of anthropogenic pollution. In this study, we analyzed metagenomic data from two sampling campaigns (2013 and 2019) collected across three different sites in the Western Black Sea at depths ranging from 5 to 2000 m. The data were processed to annotate ARGs, metal resistance genes (MRGs) and integron integrase genes. The ARG abundance was significantly higher in the deep water layers and depth was the main driver of beta-diversity both for ARGs and MRGs. Moreover, ARG and MRG abundances strongly correlated (r = 0.95). The integron integrase gene abundances and composition were not influenced by the water depth and did not correlate with ARGs. The analysis of the obtained MAGs showed that some of them harbored intI gene together with several ARGs and MRGs, suggesting the presence of multidrug resistant bacteria and that MRGs and integrons could be involved in the selection of ARGs. These results demonstrate that the Black Sea is not only an important reservoir of ARGs, but also that they accumulate in the deep water layers where co-selection with MRGs could be assumed as a relevant mechanism of their persistence.202236030962