The impact of microplastics on antibiotic resistance genes, metal resistance genes, and bacterial community in aquaculture environment. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
681601.0000The impact of microplastics on antibiotic resistance genes, metal resistance genes, and bacterial community in aquaculture environment. Microplastics are emerging contaminants. However, their effects on antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and the structure and abundance of bacterial communities, particularly pathogens, in aquaculture environments remains poorly understood. Therefore, this study investigated the effect of microplastics of different sizes on the abundance and distribution of ARGs, MRGs, and bacterial communities in aquaculture environments. The results revealed that, compared with pond water, large microplastics harbored significantly higher ARG abundances, particularly for multidrug-resistant genes; notably, level-I- and -II-risk ARGs were more prevalent on microplastics, highlighting the potential for horizontal gene transfer. Microplastics also exhibited a propensity to aggregate pathogenic bacteria such as Brucella and Pseudomonas, which could pose direct risks to aquatic product safety and public health. Network and differential network analyses revealed significant correlations between bacterial genera and ARG/MRG abundance, particularly on microplastics. Therefore, our findings suggest that microplastics act as vectors for the spread of ARGs, MRGs, and pathogens in aquaculture, potentially leading to the formation of complexes of these materials that threaten ecosystem health and human well-being. This study provides critical insights into the need for targeted management strategies to mitigate microplastic pollution in aquaculture settings.202539987738
681410.9999Watershed urbanization enhances the enrichment of pathogenic bacteria and antibiotic resistance genes on microplastics in the water environment. Microplastics (MPs) serve as vectors for microorganisms and antibiotic resistance genes (ARGs) and contribute to the spread of pathogenic bacteria and ARGs across various environments. Patterns of microbial communities and ARGs in the biofilm on the surface of MPs, also termed as plastisphere, have become an issue of global concern. Although antibiotic resistome in the plastisphere has been detected, how watershed urbanization affects patterns of potential pathogens and ARGs in the microplastic biofilms is still unclear. Here, we compared the bacterial communities, the interaction between bacterial taxa, pathogenic bacteria, and ARGs between the plastisphere and their surrounding water, and revealed the extensive influence of urbanization on them. Our results showed that bacterial communities and interactions in the plastisphere differed from those in their surrounding water. Microplastics selectively enriched Bacteroidetes from water. In non-urbanized area, the abundance of Oxyphotobacteria was significantly (p < 0.05) higher in plastisphere than that in water, while α-Proteobacteria was significantly (p < 0.05) higher in plastisphere than those in water of urbanized area. Pathogenic bacteria, ARGs, and mobile genetic elements (MGEs) were significantly (p < 0.05) higher in the urbanized area than those in non-urbanized area. MPs selectively enriched ARG-carrying potential pathogens, i.e., Klebsiella pneumoniae and Enterobacter cloacae, and exhibited a distinct effect on the relative abundance of ARG and pathogens in water with different urbanization levels. We further found ARGs were significantly correlated to MGEs and pathogenic bacteria. These results suggested that MPs would promote the dissemination of ARGs among microbes including pathogenic bacteria, and urbanization would affect the impact of MPs on microbes, pathogens, and ARGs in water. A high level of urbanization could enhance the enrichment of pathogens and ARGs by MPs in aquatic systems and increase microbial risk in aquatic environments. Our findings highlighted the necessity of controlling the spread of ARGs among pathogens and the usage of plastic products in ecosystems of urban areas.202236108884
681520.9999Bacterial community succession and the enrichment of antibiotic resistance genes on microplastics in an oyster farm. Microplastics can be colonized by microorganisms and form plastisphere. However, knowledge of bacterial community succession and the enrichment of antibiotic resistance genes (ARGs) and pathogens on microplastics in aquaculture environments is limited. Here, we conducted a 30-day continuous exposure experiment at an oyster farm. Results showed that the alpha-diversity of communities on most microplastics continuously increased and was higher than in planktonic communities after 14 days. Microplastics could selectively enrich certain bacteria from water which can live a sessile lifestyle and promote colonization by other bacteria. The composition and function of plastisphere communities were distinct from those in the surrounding water and influenced by polymer type and exposure time. Microplastics can enrich ARGs (sul1, qnrS and bla(TEM)) and harbor potential pathogens (e.g., Pseudomonas aeruginosa). Therefore, microplastic pollution may pose a critical threat to aquaculture ecosystems and human health. Our study provides further insight into the ecological risks of microplastics.202337611336
643230.9999Antibiotic resistance genes in the coastal atmosphere under varied weather conditions: Distribution, influencing factors, and transmission mechanisms. Antibiotic resistance genes (ARGs) have escalated to levels of concern worldwide as emerging environmental pollutants. Increasing evidence suggests that non-antibiotic antimicrobial substances expedite the spread of ARGs. However, the drivers and mechanisms involved in the generation and spread of ARGs in the atmosphere remain inadequately elucidated. Co-occurrence networks, mantel test analysis, and partial least squares path modeling were used to analyze the symbiotic relationships of ARGs with meteorological conditions, atmospheric pollutants, water-soluble inorganic ions, bacteria, mobile genetic elements (MGEs), antibacterial biocide and metal resistance genes, and to identify the direct drivers of ARGs. The types and abundance of ARGs exhibited different seasonal distribution. Specifically, the types exhibited a strong alignment with the diversity of air masses terrestrial sources, while the abundance displayed a significant positive correlation with both biocide resistance genes (BRGs) and metal resistance genes (MRGs). The contribution of bacterial communities and MGEs to the generation and spread of ARGs was constrained by the low levels of antibiotics in the atmosphere and the existence of "viral intermediates". Conversely, antibacterial biocides and metals influenced mutation rates, cellular SOS responses, and oxidative stress of bacteria, consequently facilitating the generation and spread of ARGs. Moreover, the co-selection among their derivatives, resistance genes, ensured a stable presence of ARGs. The research highlighted the significant impact of residual antimicrobial substances on both the generation and spread of ARGs. Elucidating the sources of aerosols and the co-selection mechanism linking with ARGs, BRGs, and MRGs were crucial for preserving the stability of ARGs in the atmosphere.202539824332
681840.9999Atmospheric antibiotic resistome driven by air pollutants. The atmosphere is an important reservoir and habitat for antibiotic resistance genes (ARGs) and is a main pathway to cause potential health risks through inhalation and ingestion. However, the distribution characteristics of ARGs in the atmosphere and whether they were driven by atmospheric pollutants remain unclear. We annotated 392 public air metagenomic data worldwide and identified 1863 ARGs, mainly conferring to tetracycline, MLS, and multidrug resistance. We quantified these ARG's risk to human health and identified their principal pathogenic hosts, Burkholderia and Staphylococcus. Additionally, we found that bacteria in particulate contaminated air carry more ARGs than in chemically polluted air. This study revealed the influence of typical pollutants in the global atmosphere on the dissemination and risk of ARGs, providing a theoretical basis for the prevention and mitigation of the global risks associated with ARGs.202337543315
743050.9999Sources of Antibiotic Resistant Bacteria (ARB) and Antibiotic Resistance Genes (ARGs) in the Soil: A Review of the Spreading Mechanism and Human Health Risks. Soil is an essential part of our ecosystem and plays a crucial role as a nutrient source, provides habitat for plants and other organisms. Overuse of antibiotics has accelerated the development and dissemination of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). ARB and ARGs are recognized as emerging environmental contaminants causing soil pollution and serious risks to public health. ARB and ARGs are discharged into soils through several pathways. Application of manure in agriculture is one of the primary sources of ARB and ARGs dissemination in the soil. Different sources of contamination by ARB and ARGs were reviewed and analyzed as well as dissemination mechanisms in the soil. The effects of ARB and ARGs on soil bacterial community were evaluated. Furthermore, the impact of different sources of manure on soil microbial diversity as well as the effect of antibiotics on the development of ARB and ARGs in soils was analyzed. Human health risk assessments associated with the spreading of ARB and ARGs in soils were investigated. Finally, recommendations and mitigation strategies were proposed.202133948742
681360.9999Spread performance and underlying mechanisms of pathogenic bacteria and antibiotic resistance genes adhered on microplastics in the sediments of different urban water bodies. Urban water bodies often pose frequent human activities, the pollution of microplastics (MPs) in these sediments, and pathogenic bacteria and antibiotic resistance genes (ARGs) enriched on the MPs may have risk to human health. However, there is little known about these issues. In this paper, three typical urban water bodies (the urban park lake, the urban inland river, and the urban-rural lake) were selected to identify the characteristics of MPs. Furthermore, the enrichment and driving mechanisms of pathogenic bacteria and ARGs on MPs in sediments were studied. These three water bodies were polluted with MPs, dominated by polyethylene (PE)-MPs and polystyrene (PS)-MPs. Gammaproteobacteria, Pseudomonadota, etc. as the main types of pathogenic bacteria, with Pseudomonas aeruginosa and Acinetobacter baumannii as significantly enriched in the urban inland rivers. The predominant ARGs were bacitracin- (bacA) and sulfonamide- (sul1) resistant ARGs. Transposase was the main genetic elements that drove the transfer of ARGs and the main resistance mechanism of ARGs was antibiotic efflux. The enrichment behavior of pathogenic bacteria and ARGs on MPs was also driven by the types of MPs, especially PS-MPs. The pathogenic bacteria at urban inland rivers had more types of ARGs, transfer elements and resistance mechanisms, thus the risk of pathogenic bacteria resistance needed specific concern. The results of our study were of great significance to gain insights into the pathogenic resistance risks and ecological risks of pathogenic bacteria and ARGs in sediments of urban water bodies.202540609890
682170.9999Mangrove plastisphere as a hotspot for high-risk antibiotic resistance genes and pathogens. Microplastics (MPs) are critical vectors for the dissemination of antibiotic resistance genes (ARGs); however, the prevalence and ecological risks of high-risk ARGs in mangrove ecosystems-globally vital yet understudied coastal habitats-remain poorly understood. To address this gap, this study investigated polyethylene, polystyrene, and polyvinyl chloride incubated in mangrove sediments for one month, focusing on high-risk ARGs, virulence gene (VGs), and pathogenic antibiotic-resistant bacteria within the mangrove plastisphere. High-throughput PCR and metagenomic analyses revealed that high-risk ARGs, VGs, and mobile genetic elements (MGEs) were significantly enriched on MPs compared to surrounding sediments. Pathogenic bacteria and MGEs were also more abundant in the plastisphere, highlighting its role as a hotspot for ARG dispersal. Metagenome-assembled genome analysis identified Pseudomonas and Bacillus as key hosts for ARGs, MGEs, and VGs, particularly multidrug resistance genes, integrase genes, and adherence factors. Notably, polystyrene harbored the highest abundance of pathogenic bacteria carrying ARGs, MGEs, and VGs, and mangrove root exudates were found to amplify horizontal gene transfer on MPs, uncovering a previously overlooked mechanism driving antibiotic resistance in coastal ecosystems. These findings not only elucidate how MPs accelerate the spread of ARGs, but also underscore the urgent need for targeted mitigation strategies to address the adverse impacts microplastic pollution on human, animal, and environmental health.202540043931
698080.9999Effects of agricultural inputs on soil virome-associated antibiotic resistance and virulence: A focus on manure, microplastic and pesticide. Soil viruses are increasingly recognized as crucial mediators of horizontal gene transfer, yet their role in disseminating antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) under agricultural disturbances remains poorly understood. Here, we characterized the viromes and associated ARGs and VFGs in agricultural soils treated with low- and high-dose manures, microplastics, and pesticides. Using metagenomic sequencing coupled with advanced viral identification tools, we found that manure fertilization markedly altered viral community composition and increased viral diversity. Manure also enhanced the abundance of ARGs and VFGs in viromes by 2.0-9.8-fold and 2.0-8.1-fold, respectively, while microplastics and pesticides had limited impacts. Additionally, gene pathways related to human diseases and environmental adaptation were enriched in soil viromes treated with manures and high-dose pesticides. Virus-host prediction revealed that Actinomycetia dominated bacterial hosts of both ARG- and VFG-carrying viruses, with some VFG-carrying viruses linked to potential human pathogens, e.g., Escherichia albertii and Klebsiella pneumoniae. Co-occurrence network analysis indicated that these disturbances strengthened connections between bacteria, viruses, and ARGs (or VFGs). Our study provides a comprehensive profile of viromes and associated risks in agricultural soil under three disturbances, highlighting the role of viruses in spread of antibiotic resistance and pathogenic risks in agricultural soil.202540752173
682090.9999Microcosm experiments deciphered resistome coalescence, risks and source-sink relationship of antibiotic resistance in the soil irrigated with reclaimed water. Reclaimed water is widely used in agriculture irrigation to alleviate water scarcity, whereas the dissemination of antibiotic resistance genes (ARGs) in the soil it introduces has attracted widespread attention. Currently, few studies have systematically elucidated the coalescence of the resistome originating from reclaimed water with the soil's native community. Also, the effects and mechanisms of irrigation on the dissemination of ARGs in soils have yet to be demonstrated. To address this gap, microcosm experiments have been conducted in this study to decipher the resistome coalescence, risks and source-sink relationship of ARGs in soils irrigated with reclaimed water. The results show 237 ARGs, 55 mobile genetic elements (MGEs) and 28 virulence factors were identified in the irrigated soils. Irrigation increased the abundance and diversity of ARGs in the soil by introducing antibiotic-resistant bacteria, altering the microbial community and facilitating horizontal transfer of ARGs via MGEs, and ultimately exacerbated resistome risks in the environment. Relatively, a larger volume of irrigation water led to a more complex propagation network of the resistome. Source apportionment analysis suggested reclaimed water contributed less than 15 % of ARGs in the irrigated soils, whereas its contribution proportion increased with a larger volume of irrigation water.202539874760
6809100.9999High-throughput profiling of antibiotic resistance gene dynamic in a drinking water river-reservoir system. The rapid construction of reservoir in river basin generates a river-reservoir system containing an environmental gradient from river system to reservoir system in modern aquatic environment worldwide. Profiles of antibiotic resistance genes (ARGs) in river-reservoir system is essential to better understand their dynamic mechanisms in aquatic eco-environment. In this study, we investigated the diversity, abundance, distribution of ARGs and mobile genetic elements (MGEs) in a representative river-reservoir system using high-throughput quantitative PCR, as well as ranked the factors (e.g. antibiotics, bacterial biomass, bacteria communities, and MGEs) influencing the patterns of ARGs based on structural equation models (SEMs). Seasonal variations in absolute abundance of ARGs and MGEs exhibited similar trends with local rainfall, suggesting that seasonal runoff induced by the rainfall potentially promote the absolute abundance of ARGs and MGEs. In contrast, environmental gradient played more important roles in the detected number, relative abundance, distribution pattern of ARGs and MGEs in the river-reservoir system. Moreover, environmental gradient also made the co-occurrence patterns associated with ARGs subtypes, MGEs and bacteria genera in river system different from those in reservoir system. The SEMs revealed that MGEs contributed the most to shape the ARG profiles. Overall, our findings provide novel insights into the mechanisms of environmental gradient on ARGs dynamics in river-reservoir system, probably via influencing the MGEs, antibiotics, pathogenic bacteria community and nonpathogenic bacteria community.201930447523
6986110.9999Variations in antibiotic resistomes associated with archaeal, bacterial, and viral communities affected by integrated rice-fish farming in the paddy field ecosystem. Antibiotic resistance genes (ARGs) serving as a newly recognized pollutant that poses potential risks to global human health, which in the paddy soil can be potentially altered by different agricultural production patterns. To elucidate the impacts and mechanisms of the widely used and sustainable agricultural production pattern, namely integrated rice-fish farming, on the antibiotic resistomes, we applied metagenomic sequencing to assess ARGs, mobile genetic elements (MGEs), bacteria, archaea, and viruses in paddy soil. There were 20 types and 359 subtypes of ARGs identified in paddy soil. The integrated rice-fish farming reduced the ARG and MGE diversities and the abundances of dominant ARGs and MGEs. Significantly decreased ARGs were mainly antibiotic deactivation and regulator types and primarily ranked level IV based on their potential threat to human health. The integrated rice-fish farming decreased the alpha diversities and altered microbial community compositions. MGEs, bacteria, archaea, and virus exhibited significant correlations with ARGs, while integrated rice-fish farming effectively changed their interrelationships. Viruses, bacteria, and MGEs played crucial roles in affecting the ARGs by the integrated rice-fish farming. The most crucial pathway by which integrated rice-fish farming affected ARGs was through the modulation of viral communities, thereby directly or indirectly influencing ARG abundance. Our research contributed to the control and restoration of ARGs pollution from a new perspective and providing theoretical support for the development of clean and sustainable agricultural production.202438518910
7027120.9999Sludge water: a potential pathway for the spread of antibiotic resistance and pathogenic bacteria from hospitals to the environment. Hospitals play an important role in the spread of antibiotic resistance genes (ARGs) and antimicrobial resistance (AMR). The ARGs present in hospital wastewater tend to accumulate in activated sludge, with different ARGs exhibiting varying migration rates. As a result, sludge water produced during the activated sludge treatment process may be a significant source of ARGs entering the environment. Despite this, research into the behavior of ARGs during sludge concentration and dewatering remains limited. This study hypothesizes that ARGs might exhibit new behaviors in sludge water during sludge concentration. Using metagenomic analysis, we explored the distribution and migration risks of ARGs and human pathogenic bacteria (HPB) in sludge water, comparing them with those in hospital wastewater. The findings reveal a strong correlation between ARGs in sludge water and hospital wastewater, with subtypes such as arlR, efpA, and tetR showing higher abundance in sludge water. Although the horizontal gene transfer potential of ARGs is greater in hospital wastewater than in sludge water, the resistance mechanisms and migration pathways are similar even when their HPB host associations differ. ARGs in both environments are primarily transmitted through coexisting mobile genetic elements (MGEs). This suggests that sludge water serves as a critical route for the release of hospital-derived ARGs into the environment, posing potential threats to public health and ecological safety.202540012781
6434130.9999Unraveling the role of microplastics in antibiotic resistance: Insights from long-read metagenomics on ARG mobility and host dynamics. As two emerging pollutants, microplastics (MPs) potentially serve as vectors for antibiotic resistance genes (ARGs) in aquatic environments, but the mechanisms driving ARG enrichment remain unclear. This study used long-read metagenomics to investigate ARG mobility and hosts dynamics within the biofilms of MPs and rocks in different water environments. We identified distinct enrichment patterns for microbial communities and ARGs, highlighting the significant role of horizontal gene transfer in ARG enrichment. Specifically, plasmid-encoded ARGs varied significantly among MP biofilms, rock biofilms, and water samples, while chromosome-encoded ARGs remained consistent across these environments, emphasizing the impact of plasmids on ARG enrichment. Despite this, 55.1 % of ARGs were on chromosomes, indicating that host organisms also play a crucial role. The related mechanisms driving ARG enrichment included enhanced cell adhesion, increased transmembrane transporter activity, and responses to environmental stressors, which led to an increased presence of plasmid-encoded ARGs on MP biofilms, facilitating more frequent horizontal gene transfer. Additionally, the diversity of hosts on MPs was notably lower compared to the water column, with specific bacteria, including Herbaspirillu, Limnohabitans, Polaromonas, Variovorax, Rubrivivax, and Thauera significantly driving ARG enrichment. This study highlights key mechanisms and bacterial taxa involved in ARG dynamics on MPs.202540056523
7506140.9999Risk assessment and dissemination mechanism of antibiotic resistance genes in compost. In recent years, the excessive of antibiotics in livestock and poultry husbandry, stemming from extensive industry experience, has resulted in the accumulation of residual antibiotics and antibiotic resistance genes (ARGs) in livestock manure. Composting, as a crucial approach for the utilization of manure resources, has the potential to reduce the levels of antibiotics and ARGs in manure, although complete elimination is challenging. Previous studies have primarily focused on the diversity and abundance of ARGs in compost or have solely examined the correlation between ARGs and their carriers, potentially leading to a misjudgment of the actual risk associated with ARGs in compost. To address this gap, this study investigated the transfer potential of ARGs in compost and their co-occurrence with opportunistic pathogenic bacteria by extensively analyzing metagenomic sequencing data of compost worldwide. The results demonstrated that the potential risk of ARGs in compost was significantly lower than in manure, suggesting that composting effectively reduces the risk of ARGs. Further analysis showed that the microbes shifted their life history strategy in manure and compost due to antibiotic pressure and formed metabolic interactions dominated by antibiotic-resistant microbes, increasing ARG dissemination frequency. Therefore, husbandry practice without antibiotic addition was recommended to control ARG evolution, dissemination, and abatement both at the source and throughout processing.202337562342
6811150.9999The formation of specific bacterial communities contributes to the enrichment of antibiotic resistance genes in the soil plastisphere. Soil serves as a major reservoir of both antibiotic resistance genes (ARGs) and microplastics. However, the characteristics of the antibiotic resistome in the soil plastisphere remain largely unknown. In this study, we used metagenomic approaches to reveal the changing patterns of ARGs and the bacterial community and their associations in response to three types of microplastics (light density polyethylene, LDPE; polypropylene, PP; polystyrene, PS) using particles 550 µm or 75 µm in diameter. The total ARG abundances significantly increased in the plastisphere and varied across plastic types. The LDPE plastisphere had the highest ARG total abundance and lowest Shannon diversity index, indicating that this plastic had the most severe negative impact on soil bacterial diversity. The PP plastisphere contained higher relative abundances of the pathogenic bacteria Acinetobacter johnsonii and Escherichia coli, demonstrating the higher pathogenic risk of the microbial communities enriched in the plastisphere. Specifically, multidrug resistance genes (ceoB and MuxB) co-existed with more than four microbial taxa, increasing the potential risk of ARG spread in pathogenic bacteria. These findings implied that the plastisphere acts as a hotspot for acquiring and spreading antibiotic resistance and may have long-term negative effects on the soil ecosystem and human health.202235739766
7505160.9998A Review on the Degradation of Antibiotic Resistance Genes During Composting of Livestock Manure. As emerging pollutants, antibiotic resistance genes (ARGs) have been recognized as originating from diverse sources. Among these, the use of livestock feed and veterinary drugs was identified as the primary source of ARGs in livestock manure. ARGs were found to be widely distributed in global environments, particularly in agriculture-related soils, water bodies, and the atmosphere, posing potential threats to ecological environments and human health. This paper reviewed the degradation mechanisms of ARGs during aerobic composting of livestock manure and the safety evaluation of compost products. Aerobic composting was demonstrated to be an effective method for degrading ARGs, primarily through mechanisms such as high-temperature elimination of ARG-carrying microorganisms, reduction in host bacterial abundance, and inhibition of horizontal gene transfer. Factors including the physicochemical properties of the composting substrate, the use of additives, and the presence of antibiotic and heavy metal residues were shown to influence the degradation efficiency of ARGs, with compost temperature being the core factor. The safety of organic fertilizers encompassed multiple aspects, including heavy metal content, seed germination index, and risk assessments based on ARG residues. The analysis indicated that deficiencies existed in areas such as the persistence of thermotolerant bacteria carrying ARGs, the dissemination of extracellular antibiotic resistance genes (eARGs), and virus-mediated gene transfer. Future research should focus on (1) the removal of thermotolerant bacteria harboring ARGs; (2) the decomposition of eARGs or the blocking of their transmission pathways; (3) the optimization of ultra-high temperature composting parameters; and (4) the analysis of interactions between viruses and resistant hosts. This study reviews the mechanisms, influencing factors, and safety assessment of aerobic composting for degrading ARGs in livestock manure. It not only deepens the understanding of this important environmental biotechnology process but also provides a crucial knowledge base and practical guidance for effectively controlling ARG pollution, ensuring agricultural environmental safety, and protecting public health. Additionally, it clearly outlines the key paths for future technological optimization, thus holding significant implications for the environment, agriculture, and public health.202540863943
6823170.9998Metagenomic assembly and binning analyses the prevalence and spread of antibiotic resistome in water and fish gut microbiomes along an environmental gradient. The pristine river and urban river show an environmental gradient caused by anthropogenic impacts such as wastewater treatment plants and domestic wastewater discharges. Here, metagenomic and binning analyses unveiled antibiotic resistance genes (ARGs) profiles, their co-occurrence with metal resistance genes (MRGs) and mobile genetic elements (MGEs), and their host bacteria in water and Hemiculter leucisculus samples of the river. Results showed that the decrease of ARG abundances from pristine to anthropogenic regions was attributed to the reduction of the relative abundance of multidrug resistance genes in water microbiomes along the environmental gradient. Whereas anthropogenic impact contributed to the enrichment of ARGs in fish gut microbiomes. From pristine to anthropogenic water samples, the dominant host bacteria shifted from Pseudomonas to Actinobacteria. Potential pathogens Vibrio parahaemolyticus, Enterobacter kobei, Aeromonas veronii and Microcystis aeruginosa_C with multiple ARGs were retrieved from fish gut microbes in lower reach of Ba River. The increasing trends in the proportion of the contigs carrying ARGs (ARCs) concomitant with plasmids along environmental gradient indicated that plasmids act as efficient mobility vehicles to enhance the spread of ARGs under anthropogenic pressures. Moreover, the higher co-occurrence of ARGs and MRGs on plasmids revealed that anthropogenic impacts accelerated the co-transfer potential of ARGs and MRGs and the enrichment of ARGs. Partial least squares path modeling revealed anthropogenic contamination could shape fish gut antibiotic resistome mainly via affecting ARG host bacteria in water microbiomes, following by ARGs co-occurrence with MGEs and MRGs in gut microbiomes. This study enhanced our understanding of the mechanism of the anthropogenic activities on the transmission of antibiotic resistome in river ecosystem and emphasized the risk of ARGs and pathogens transferring from an aquatic environment to fish guts.202235716556
6829180.9998Metagenomic insights into the characteristics and co-migration of antibiotic resistome and metal(loid) resistance genes in urban landfill soil and groundwater. The heavy metals and antibiotic resistance genes (ARGs) in landfills showed a significant correlation; however, the relationship between metal(loid) resistance genes (MRGs) and ARGs in contaminated environments, as well as whether they co-migrate with human pathogenic bacteria (HPB), remains unclear. This study is the first to report the characteristics and co-migration of ARGs and MRGs in the soil and groundwater of aged urban landfill sites. Our findings indicated that quinolone, efflux, and macrolide-lincosamide-streptogramin represented the most abundant ARGs identified. Notably, ARG abundance was higher in groundwater compared to soil, with subtype diversity reflecting a similar trend; however, microbial diversity in soil was greater. Metagenome-assembled genomes data indicated a higher risk of antibiotic-resistant HPB in groundwater. It is imperative to focus on HPB that co-carry ARGs and MRGs alongside mobile genetic elements (MGEs), such as Ralstonia pickettii and Pseudomonas stutzeri. Genes conferring resistance to copper and mercury, as well as MGEs such as qacEdelta and intI1, played a critical role in promoting horizontal gene transfer of antibiotic resistance. MRG may promote ARG migration by affecting the permeability of the cell membrane. Procrustes analysis revealed a strong similarity (87 %) between heavy metals and MRG structures. Variance partitioning analyses demonstrated that both heavy metals and biological factors jointly governed landfill ARGs (96.2 %), exerting a more substantial influence in groundwater than in soil. This study serves as a reference for managing landfill, while emphasizing the importance of addressing the co-migration of MRGs and ARGs in pathogens when controlling the spread of risks.202540614847
6812190.9998Exploring the dynamics of antibiotic resistome on plastic debris traveling from the river to the sea along a representative estuary based on field sequential transfer incubations. The environmental risks arising from ubiquitous microplastics or plastic debris (PD) acting as carriers of antibiotic resistance genes (ARGs) have attracted widespread attention. Enormous amounts of plastic waste are transported by rivers and traverse estuaries into the sea every year. However, changes in the antibiotic resistome within the plastisphere (the biofilms formed on PD) as PD travels through estuaries are largely unknown. In this study, we performed sequential migration incubations for PD along Haihe Estuary to simulate the natural process of PD floating from rivers to the ocean. Metagenomic sequencing and analysis techniques were used to track microbial communities and antibiotic resistome on migrating PD and in seawater representing the marine environment. The total relative gene copies of ARGs on traveling PD remained stable. As migration between greatly varied waters, additional ARG subtypes were recruited to the plastisphere. Above 80 % ARG subtypes identified in the plastisphere were persistent throughout the migration, and over 30 % of these persistent ARGs were undetected in seawater. The bacterial hosts composition of ARGs on PD progressively altered as transported downstream. Human pathogenic bacteria carrying ARGs (HPBs-ARG) exhibited decreasing trends in abundance and species number during transfer. Individual HPBs-ARG persisted on transferred PD and were absent in seawater samples, comprising Enterobacter cloacae, Klebsiella pneumoniae, Mycobacterium tuberculosis, and Vibrio parahaemolyticus. Based on all detected ARGs and HPBs-ARG, the Projection Pursuit model was applied to synthetically evaluate the potential risks of antibiotic resistance on migrating PD. Diminished risks on PD were observed upon the river-to-sea journey but consistently remained significantly higher than in seawater. The potential risks posed to marine environments by drifting PD as dispersal vectors for antibiotic resistance deserve greater attention. Our results provide initial insights into the dynamics or stability of antibiotic resistome on PD crossing distinct aquatic systems in field estuaries.202438447722