# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6795 | 0 | 1.0000 | Interplay of xenobiotic-degrading and antibiotic-resistant microorganisms among the microbiome found in the air, handrail, and floor of the subway station. Investigating the quality of the subway environment, especially regarding antibiotic resistance genes (ARGs) and xenobiotics, conveys ecological and health impacts. In this study, compositions and relations of microorganisms harboring ARGs and xenobiotic degradation and metabolism genes (XDGs) in the Sukhumvit subway station (MRT-SKV) in Bangkok was assessed by analyzing the taxonomic and genetic diversity of the microbiome in the air and on the surfaces of floor and handrail. The major bacteria in the MRT-SKV (including Moraxella, which was abundant in the bioaerosol and handrail samples, and Staphylococcus, which was abundant in the bioaerosol samples) were found to contain both ARGs and XDGs. The co-abundance correlation network revealed notable relationships among bacteria harboring antibiotic resistance genes (ARGs) and xenobiotic degradation genes (XDGs). Significant associations were observed between ARGs linked to glycopeptide and fluoroquinolone resistance and genes associated with benzoate, styrene, and atrazine degradation pathways, as well as between ARGs related to cephamycin, cephalosporin, and MLS resistance and XDGs associated with the cytochrome P450-dependent drug metabolism pathway. These correlations suggested that selective pressure exerted by certain xenobiotics and antibiotics can simultaneously affect both ARGs and XDGs in the environment and should favor correlations and co-survival among ARG- and XDG-containing bacteria in the environments. The correlations may occur via shared mechanisms of resistance to both xenobiotics and antibiotics. Finally, different correlation pairs were seen in different niches (air, handrail, floor) of the subway environment or different geolocations. Thus, the relationship between ARG and XDG pairs most likely depends on the unique characteristics of the niches and on the prominent types of xenobiotics and antibiotics in the subway environment. The results indicated that interactions and connections between microbial communities can impact how they function. These microorganisms can have profound effects on accumulation of xenobiotics and ARGs in the MRT-SKV. | 2024 | 38246293 |
| 7373 | 1 | 0.9992 | Distributional Pattern of Bacteria, Protists, and Diatoms in Ocean according to Water Depth in the Northern South China Sea. Ocean microbiomes provide insightful details about the condition of water and the global impact of marine ecosystems. A fine-scale analysis of ocean microbes may shed light on the dynamics and function of the ocean microbiome community. In this study, we evaluated the changes in the community and function of marine bacteria, protists, and diatoms corresponding to different ocean depths using next-generation sequencing methods. We found that diatoms displayed a potential water-depth pattern in species richness (alpha diversity) and community composition (beta diversity). However, for bacteria and protists, there was no significant relationship between water depth and species richness. This may be related to the biological characteristics of diatoms. The photosynthesis of diatoms and their distribution may be associated with the fluctuating light regime in the underwater climate. Moreover, salinity displayed negative effects on the abundance of some diatom and bacterial groups, which indicates that salinity may be one of the factors restricting ocean microorganism diversity. In addition, compared to the global ocean microbiome composition, function, and antibiotic resistance genes, a water depth pattern due to the fine-scale region was not observed in this study. IMPORTANCE Fine-scale analysis of ocean microbes provides insights into the dynamics and functions of the ocean microbiome community. Here, using amplicon and metagenome sequencing methods, we found that diatoms in the northern South China Sea displayed a potential water-depth pattern in species richness and community composition, which may be related to their biological characteristics. The potential effects of the differences in geographic sites mainly occurred in the diatom and bacterial communities. Moreover, given the correlation between the environmental factors and relative abundance of antibiotic resistance genes (ARGs), the study of ocean ARG distribution patterns should integrate the potential effects of environmental factors. | 2022 | 36222702 |
| 6827 | 2 | 0.9992 | Metagenomic profiles of planktonic bacteria and resistome along a salinity gradient in the Pearl River Estuary, South China. Estuarine ecosystems undergo pronounced and intricate changes due to the mixing of freshwater and saltwater. Additionally, urbanization and population growth in estuarine regions result in shifts in the planktonic bacterial community and the accumulation of antibiotic resistance genes (ARGs). The dynamic changes in bacterial communities, environmental factors, and carriage of ARGs from freshwater to seawater, as well as the complex interrelationships among these factors, have yet to be fully elucidated. Here, we conducted a comprehensive study based on metagenomic sequencing and full-length 16S rRNA sequencing, covering the entire Pearl River Estuary (PRE) in Guangdong, China. The abundance and distribution of the bacterial community, ARGs, mobile genetic elements (MGEs), and bacterial virulence factors (VFs) were analyzed on a site-by-site basis through sampling along the salinity gradient in PRE, from upstream to downstream. The structure of the planktonic bacterial community undergoes continuous changes in response to variations in estuarine salinity, with the phyla Proteobacteria and Cyanobacteria being dominant bacterial throughout the entire region. The diversity and abundance of ARGs and MGEs gradually decreased with the direction of water flow. A large number of ARGs were carried by potentially pathogenic bacteria, especially in Alpha-proteobacteria and Beta-proteobacteria. Multi-drug resistance genes have the highest abundance and subtypes in PRE. In addition, ARGs are more linked to some MGEs than to specific bacterial taxa and disseminate mainly by HGT and not by vertical transfer in the bacterial communities. Various environmental factors, such as salinity and nutrient concentrations, have a significantly impact on the community structure and distribution of bacteria. In conclusion, our results represent a valuable resource for further investigating the intricate interplay between environmental factors and anthropogenic disturbances on bacterial community dynamics. Moreover, they contribute to a better understanding of the relative impact of these factors on the dissemination of ARGs. | 2023 | 37211102 |
| 6885 | 3 | 0.9992 | Abundant bacteria shaped by deterministic processes have a high abundance of potential antibiotic resistance genes in a plateau river sediment. Recent research on abundant and rare bacteria has expanded our understanding of bacterial community assembly. However, the relationships of abundant and rare bacteria with antibiotic resistance genes (ARGs) remain largely unclear. Here, we investigated the biogeographical patterns and assembly processes of the abundant and rare bacteria from river sediment at high altitudes (Lhasa River, China) and their potential association with the ARGs. The results showed that the abundant bacteria were dominated by Proteobacteria (55.4%) and Cyanobacteria (13.9%), while the Proteobacteria (33.6%) and Bacteroidetes (18.8%) were the main components of rare bacteria. Rare bacteria with a large taxonomic pool can provide function insurance in bacterial communities. Spatial distribution of persistent abundant and rare bacteria also exhibited striking differences. Strong selection of environmental heterogeneity may lead to deterministic processes, which were the main assembly processes of abundant bacteria. In contrast, the assembly processes of rare bacteria affected by latitude were dominated by stochastic processes. Abundant bacteria had the highest abundance of metabolic pathways of potential drug resistance in all predicted functional genes and a high abundance of potential ARGs. There was a strong potential connection between these ARGs and mobile genetic elements, which could increase the ecological risk of abundant taxa and human disease. These results provide insights into sedimental bacterial communities and ARGs in river ecosystems. | 2022 | 36406442 |
| 6972 | 4 | 0.9992 | The antibiotic resistome of free-living and particle-attached bacteria under a reservoir cyanobacterial bloom. In freshwater systems, both antibiotic resistance genes (ARGs) and cyanobacterial blooms attract global public health concern. Cyanobacterial blooms can greatly impact bacterial taxonomic communities, but very little is known about the influence of the blooms on antibiotic resistance functional community. In this study, the ARGs in both free-living (FL) and particle-attached (PA) bacteria under bloom and non-bloom conditions were simultaneously investigated in a subtropical reservoir using high-throughput approaches. In total, 145 ARGs and 9 mobile genetic elements (MGEs) were detected. The most diverse and dominant of which (68.93%) were multidrug resistance genes and efflux pump mechanism. The richness of ARGs in both FL and PA bacteria was significantly lower during the bloom period compared with non-bloom period. The abundance of ARGs in FL bacteria was significantly lower under bloom condition than in the non-bloom period, but the abundance of ARGs in PA bacteria stayed constant. More importantly, the resistant functional community in PA bacteria was more strongly influenced by the cyanobacterial bloom than in the FL bacteria, although >96% ARGs were shared in both FL and PA bacteria or both bloom and non-bloom periods. We also compared the community compositions between taxonomy and function, and found antibiotic resistant communities were highly variable and exhibited lower similarity between bloom and non-bloom periods than seen in the taxonomic composition, with an exception of FL bacteria. Altogether, cyanobacterial blooms appear to have stronger inhibitory effect on ARG abundance in FL bacteria, and stronger influence on antibiotic resistant community composition in PA bacteria. Our results further suggested that both neutral and selective processes interactively affected the ARG composition dynamics of the FL and PA bacteria. However, the antibiotic resistant community of FL bacteria exhibited a higher level of temporal stochasticity following the bloom event than PA bacteria. Therefore, we emphasized the bacterial lifestyles as an important mechanism, giving rise to different responses of antibiotic resistant community to the cyanobacterial bloom. | 2018 | 29734061 |
| 7010 | 5 | 0.9992 | Dynamics of metal(loid) resistance genes driven by succession of bacterial community during manure composting. Metal(loid) resistance genes (MRGs) play important roles in conferring resistance to metal(loid)s in bacterial communities. How MRGs respond to bacterial succession during manure composting remains largely unknown. Metagenomics was used in the present study to investigate the compositional changes of MRGs, their candidate hosts and association with integrons during thermophilic composting of chicken manures. MRGs conferring resistance to 20 metal(loid)s were detected, and their diversity and abundance (normalized to the abundance of 16S rRNA genes) were significantly reduced during composting. MRGs associated with integron were exclusively observed in proteobacterial species. Class 1 integron likely played an important role in maintaining mercury-resistance mer operon genes in composts. Escherichia coli harbored the most abundant MRGs in the original composting material, whereas species of Actinobacteria and Bacilli became more important in carrying MRGs during the late phases. There were significant linear relationships between the relative abundance of some specific bacterial species (E. coli, Actinobacteria species and Enterococcus faecium) and the abundance of MRGs they potentially harbored. The succession of these bacteria contributed to an overall linear regression between the relative abundance of all predicted candidate hosts and the abundance of total MRGs. Our results suggest that the succession of bacterial community was the main driver of MRG dynamics during thermophilic composting. | 2019 | 31563779 |
| 6970 | 6 | 0.9991 | Ecological mechanisms of sedimental microbial biodiversity shift and the role of antimicrobial resistance genes in modulating microbial turnover. The mechanisms of phylogenetic turnover of microbial communities to environmental perturbations in sediments remain unclear. In this study, the molecular mechanisms of phylogenetic turnover, and impact of antibiotics and antibiotic resistance genes (ARGs) on the modification of microbial assemblages were unravelled. We investigated 306 ARGs, 8 transposases, and 4 integron integrases, bacteria, and eukaryotic diversity through high-throughput quantitative PCR and illumina sequencing, 21 antibiotics and 3 tetracycline byproducts. The freshwater and estuary ecosystems were mainly dominated by genus Sulfurovum and colonised by closely related species compared with the estuary (closeness centrality = 0.42 vs. 0.46), which was dominated by genus Mycobacterium. Eighty-six percent of the ecological process in the bacterial community was driven by stochastic processes, while the rest was driven by deterministic processes. Environmental-related concentrations of antibiotics (0.15-32.53 ng/g) stimulated the proliferation of ARGs which potentially modulated the microbial community assembly. ARG acquisition significantly (P < 0.001) increased eukaryotic diversity through protection mechanisms. ARGs showed complex interrelationships with the microbial communities, and phylum arthropods and Nematea demonstrated the strongest ARG acquisition potential. This study provides key insights for environmental policymakers into understanding the ecological impact of antibiotics and the role of ARGs in modulating the phylogenetic turnover of microbial communities and trophic transfer mechanisms. | 2023 | 36419283 |
| 6872 | 7 | 0.9991 | Insight into co-hosts of nitrate reduction genes and antibiotic resistance genes in an urban river of the qinghai-tibet plateau. Microbial co-hosts of nitrate reduction genes (NRGs) and antibiotic resistance genes (ARGs) have been recently reported, but their ecology and biochemical role in urban waterways remain largely unknown. Here, we collected 29 surface water and 29 sediment samples in the Huangshui River on the Qinghai-Tibet Plateau during the wet and dry season, and 11 water samples from wastewater treatment plants and wetlands along the river. Using metagenomic sequencing, we retrieved 278 medium-to-high-quality metagenome-assembled genomes (MAGs) of NRG-ARG co-hosts, mainly belonging to the phyla Proteobacteria, Actinobacteriota, and Bacteroidota. Of microorganisms carrying ARGs, a high proportion (75.3%‒94.9%) also encoded NRGs, supporting nitrate reducing bacteria as dominant hosts of ARGs. Seasonal changes in antibiotic levels corresponded to significant variation in the relative abundance of NRG-ARG co-host in both water and sediments, resulting in a concomitant change in antibiotic resistance pathways. In contrast, the contribution of NRG-ARG co-hosts to nitrate reduction was stable between seasons. We identify specific antibiotics (e.g., sulphonamides) and microbial taxa (e.g., Acinetobacter and Hafnia) that may disproportionately impact these relationships to serve as a basis for laboratory investigations into bioremediation strategies. Our study suggests that highly abundant nitrate reducing microorganisms in contaminated environments may also directly impact human health as carriers of antibiotic resistance. | 2022 | 36215840 |
| 6975 | 8 | 0.9991 | The composition of antibiotic resistance genes is not affected by grazing but is determined by microorganisms in grassland soils. Grazing is expected to exert a substantial influence on antibiotic resistance genes (ARGs) in grassland ecosystems. However, the precise effects of grazing on the composition of ARGs in grassland soils remain unclear. This is especially the case for grassland soils subject to long-term grazing. Here, we investigated ARGs and bacterial community composition in soils subject to long-term historic grazing (13-39 years) and corresponding ungrazed samples. Using a combination of shotgun metagenomics, amplicon analyses and associated soil physicochemical data, we provide novel insights regarding the structure of ARGs in grassland soils. Interestingly, our analysis revealed that long-term historic grazing had no impacts on the composition of ARGs in grassland soils. An average of 378 ARGs, conferring resistance to 14 major categories of antibiotics (80%), were identified in both grazing and ungrazed sites. Actinobacteria, Proteobacteria and Acidobacteria were the most prevalent predicted hosts in these soils and were also shown to harbour genetic capacity for multiple-resistant ARGs. Our results suggested that positive effects of bacterial community composition on ARGs could potentially be controlled by affecting MGEs. Soil properties had direct effects on the composition of ARGs through affecting the frequency of horizontal gene transfer among bacteria. Twelve novel ARGs were found in S. grandis steppe grasslands, indicating that different vegetation types might induce shifts in soil ARGs. Collectively, these findings suggest that soil properties, plants and microorganisms play critical roles in shaping ARG patterns in grasslands. Together, these data establish a solid baseline for understanding environmental antibiotic resistance in grasslands. | 2021 | 33187698 |
| 6864 | 9 | 0.9991 | Metagenomics analysis revealing the occurrence of antibiotic resistome in salt lakes. Although antimicrobial resistance genes (ARGs) in dozens of environments have been well documented, the distribution of ARGs in salt lake ecosystems has been less intensively investigated. In this study, the broad-spectrum ARG profiles, microbial community composition and the comprehensive associations between microbiome and antimicrobial resistome in four salt lakes were investigated using a metagenomic approach. A total of 175 ARG subtypes affiliated with 19 ARG types were detected, and ARGs conferring resistance to multidrug, bacitracin, and macrolide-lincosamide-streptogramin (MLS) accounted for 71.2% of the total ARG abundance. However, the abundance of ARGs significantly decreased with the increasing salinity in the lakes. Both ARG profiles and microbial community structure presented remarkable discrepancies in different lakes, as well as in different sample types. Microbes such as genera Azoarcus, Aeromonas, Pseudomonas, and Kocuria, significantly co-occurred with multiple ARGs, indicating that these bacteria are potential ARG hosts in salt lake ecosystems. Collectively, this work provides new insights into the occurrence and distribution of ARGs in salt lake ecosystems. | 2021 | 34380279 |
| 7375 | 10 | 0.9991 | Assessing microbial ecology and antibiotic resistance genes in river sediments. Anthropogenic activities greatly affect the Karon River leading to deterioration of water quality. This investigation utilizes environmental genomic techniques to delineate microbial populations, examine functional genomics, and evaluate the occurrence of virulence determinants and antibiotic resistance genes (ARGs) in fluvial sediment. Taxonomic assessment identified that Firmicutes were the predominant phyla, with Bacillus being the most abundant genus across samples. Functional analysis revealed the metabolic capabilities of sediment-associated bacteria, linking them to biogeochemical processes and potential health impacts. The S2 samples exhibited the highest virulence factor genes, while the S3 samples had the most ARGs (30), highlighting concerns about pathogenicity. Analyzing ARGs provides critical insights into environmental data collected, such as water quality parameters (e.g., nutrient concentrations, pH) or pollution levels, prevalence, and distribution of these resistance factors within the sediment samples, helping to identify potential hotspots of antibiotic resistance in the Karon River ecosystem. The study identified similar operational taxonomic units (OTUs) across sampling sites at the phylogenetic level, indicating a consistent presence of certain microbial taxa. However, the lack of variation in functional classification suggests that while these taxa may be present, they are not exhibiting significant differences in metabolic capabilities or functional roles. These findings emphasize the significance of metagenomic methods in understanding microbial ecology and antibiotic resistance in aquatic environments, suggesting a need for further research into the restoration of microbial functions related to ARGs and virulence factors. | 2025 | 40127879 |
| 7516 | 11 | 0.9991 | Functional gene array-based analysis of microbial communities in heavy metals-contaminated lake sediments. Lake DePue (IL, USA) has been contaminated for > 80 years by an adjacent Zn-smelting facility. Previous work indicated that sulfate reduction increased and biomass declined as pore-water metal concentrations increased, while 16S rRNA gene profiles remained relatively stable. To better understand this phenomenon, the sediment microbial community structure and functional potential were investigated using a functional gene microarray (GeoChip) targeting > 10,000 functional genes. Nonmetric multidimensional scaling and clustering analyses showed that the overall community structure was similar across all sites based on the relative abundance of all detected genes, but some individual gene categories did show differences. A subset of sulfate reduction genes (dsr) and the most relevant metal resistance genes were more abundant than other categories and were highly correlated with metal contamination. The most significant correlations were between pore-water metal concentrations and dsr, with Zn, Cd, and Mn as the most predictive for the presence of dsr. These results suggest that metal contamination influences sediment microbial community structure and function by increasing the abundance of relevant metal-resistant and sulfate-reducing populations. These populations therefore appear to contribute significantly to the resistance and stability of the microbial communities throughout the gradient of metal contamination in Lake DePue. | 2013 | 23710534 |
| 6831 | 12 | 0.9991 | Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes. Antibiotic resistance is ancient and prevalent in natural ecosystems and evolved long before the utilization of synthetic antibiotics started, but factors influencing the large-scale distribution patterns of natural antibiotic resistance genes (ARGs) remain largely unknown. Here, a large-scale investigation over 4000 km was performed to profile soil ARGs, plant communities and bacterial communities from 300 quadrats across five forest biomes with minimal human impact. We detected diverse and abundant ARGs in forests, including over 160 genes conferring resistance to eight major categories of antibiotics. The diversity of ARGs was strongly and positively correlated with the diversity of bacteria, herbaceous plants and mobile genetic elements (MGEs). The ARG composition was strongly correlated with the taxonomic structure of bacteria and herbs. Consistent with this strong correlation, structural equation modelling demonstrated that the positive effects of bacterial and herb communities on ARG patterns were maintained even when simultaneously accounting for multiple drivers (climate, spatial predictors and edaphic factors). These findings suggest a paradigm that the interactions between aboveground and belowground communities shape the large-scale distribution of soil resistomes, providing new knowledge for tackling the emerging environmental antibiotic resistance. | 2018 | 29687575 |
| 6886 | 13 | 0.9991 | Bacterial community and antibiotic resistance genes assembly processes were shaped by different mechanisms in the deep-sea basins of the Western Pacific Ocean. As the intrinsic property of microorganisms, antibiotic resistance genes (ARGs) are fundamentally coupled to microbially-linked biogeochemical processes within ecosystems. However, human activities often obscure the natural distribution of ARGs through deterministic selective pressures. The deep-sea basin of the western Pacific Ocean is one of the least disturbed areas globally by human activities, providing a natural laboratory to investigate the intrinsic mechanisms governing ARGs in natural environments. In this study, we analyzed bacterial community and ARG diversity in 15 surface sediment samples from three deep-sea basins in the western Pacific Ocean. The relative abundance of ARGs in the surface sediments ranged from 3.10 × 10(-3) to 5.37 × 10(-2) copies/16S rRNA copies, with multidrug and β-lactam resistance genes dominated in all samples (49.06%-100%). The bacteria were mainly dominated by the Proteobacteria. The principal coordinate analysis (PCoA) showed significant spatial heterogeneity of ARGs and bacteria among the three basins. Null model, neutral community models (NCM), and normalized stochasticity ratio (NST) indicated that bacterial community was dominated by stochastic assembly, driven by geographic barriers leading to independent evolution. Conversely, the NST revealed that the ARGs profile was mainly shaped by deterministic processes. Environmental factors are more crucial than geographical factors and bacterial community for ARG occurrence among the selected factors. Meanwhile, we found that the spread of ARGs was mainly through vertical gene transfer in the pre-antibiotic era. The disparity between the assembly processes of bacterial community and ARGs may be attributed to the fact that ARG hosts were not the dominant bacteria in the community. This study first reported the distribution and assembly processes of ARGs and bacterial community in surface sediments of the western Pacific. | 2024 | 39481517 |
| 6982 | 14 | 0.9991 | Viral Communities Suppress the Earthworm Gut Antibiotic Resistome by Lysing Bacteria on a National Scale. Earthworms are critical in regulating soil processes and act as filters for antibiotic resistance genes (ARGs). Yet, the geographic patterns and main drivers of earthworm gut ARGs remain largely unknown. We collected 52 earthworm and soil samples from arable and forest ecosystems along a 3000 km transect across China, analyzing the diversity and abundance of ARGs using shotgun metagenomics. Earthworm guts harbored a lower diversity and abundance of ARGs compared to soil, resulting in a stronger distance-decay rate of ARGs in the gut. Greater deterministic assembly processes of ARGs were found in the gut than in soil. The earthworm gut had a lower frequency of co-occurrence patterns between ARGs and mobile genetic elements (MGEs) in forest than in arable systems. Viral diversity was higher in the gut compared to soil and was negatively correlated with bacterial diversity. Bacteria such as Streptomyces and Pseudomonas were potential hosts of both viruses and ARGs. Viruses had negative effects on the diversity and abundance of ARGs, likely due to the lysis on ARG-bearing bacteria. These findings provide new insights into the variations of ARGs in the earthworm gut and highlight the vital role of viruses in the regulation of ARGs in the soil ecosystem. | 2024 | 39037720 |
| 6836 | 15 | 0.9991 | Microbiome and antibiotic resistome in household dust from Beijing, China. We spend ever-increasing time indoors along with urbanization; however, the geographical distribution patterns of microbiome and antibiotic resistome, and their driving forces in household environment remains poorly characterized. Here, we surveyed the bacterial and fungal communities, and the resistome in settled dust gathered from 82 homes located across Beijing, China, employing Illumina sequencing and high-throughput quantitative PCR techniques. There was no clear geographical distribution pattern in dust-related bacterial communities although a slight but significant (P < 0.05) distance-decay relationship occurred in its community similarity; by contrast, a relatively distinct geographical clustering and a stronger distance-decay relationship were observed in fungal communities at the local scale. The cross-domain (bacteria versus fungi) relationships in the microbiome of the dust samples were mostly observed as robust co-occurrence correlations. The bacterial communities were dominated by Proteobacteria and Actinobacteria phyla, with human skin, soil and plants being potential major sources. The fungal communities largely comprised potential allergens (a median 61% of the fungal sequences), with Alternaria genus within Ascomycota phylum being the most predominant taxa. The profile of dust-related bacterial communities was mainly affected by housing factors related to occupants and houseplants, while that of fungal communities was determined by georeferenced environmental factors, particularly vascular plant diversity. Additionally, a great diversity (1.96 on average for Shannon index) and normalized abundance (2.22 copies per bacterial cell on average) of antibiotic resistance genes were detected across the dust samples, with the dominance of genes resistant to vancomycin and Macrolide-Lincosamide-Streptogramin B. The resistome profile exhibited no distinct geographical pattern, and was primarily driven by certain bacterial phyla and occupancy-related factors. Overall, we underline the significance of anthropogenic impacts and house location in structuring bacterial and fungal communities inside homes, respectively, and suggest that household dust is an overlooked reservoir for antibiotic resistance. | 2020 | 32248025 |
| 6902 | 16 | 0.9991 | Antibiotic resistance genes in surface water and groundwater from mining affected environments. Mining activities are known to generate a large amount of mine tailings and acid mine drainage which contain varieties of heavy metals. Heavy metals play an important role in co-selection for bacterial antibiotic resistance. However, the characteristics of antibiotic resistance genes (ARGs) in mining-affected water environments are still unclear. Here we investigated the pollution of metals, profiles of ARGs, mobile genetic elements (MGEs) and microbial community in mining-affected surface water and groundwater. The results showed that in the tested water samples, the concentrations of Zn and Mn were the highest, and Ni was the lowest. Higher abundances of ARGs with great proportion of sulfonamides, chloramphenicols and tetracyclines resistance genes were found in mining-affected water when compared with those without mining activities. Additionally, there were positive correlations between heavy metals (especially Ni, Zn and Mn) and these ARGs. Linear regression analysis suggested that MGEs were positively correlated with ARGs. In addition, total phosphorus was correlated with ARGs (p < 0.05). The microbial community was different between the mining-affected water and the reference (p < 0.05). Proteobacteria, Bacteroidetes and Actinobacteria were dominant phyla in the surface water and groundwater. Network analysis showed that many ARGs were significantly associated with these dominant bacteria, which suggested they might be potential hosts for these ARGs. These findings provide a clear evidence that the mining activities in the study area had a significant impact on surface water and groundwater to different degrees. | 2021 | 33571766 |
| 7047 | 17 | 0.9991 | Characteristics of airborne bacterial communities and antibiotic resistance genes under different air quality levels. Pathogenic bacteria and antibiotic resistance genes (ARGs) in bioaerosols are major threats to human health. In this study, the microbial community structure and ARG distribution characteristics of airborne bacteria in total suspended particulates (TSP) and PM(2.5) were investigated under different air quality levels in Xinxiang, Central China. The results revealed that with the deterioration of air quality, the concentrations of airborne bacteria in both TSP and PM(2.5) decreased; however, the relative amounts of pathogenic bacteria increased. The predominant genera in pathogenic bacteria of Bacillus, Sphingomonas, Corynebacterium, Rhodococcus, and Staphylococcus were identified in both TSP and PM(2.5). Although the airborne bacteria concentrations and absolute abundances of ARGs in TSP were higher than those in PM(2.5) under identical air quality conditions, the bacterial community structure and relative amounts of pathogenic bacteria were similar. In addition, the relationship between environmental factors of ions, metal elements, and meteorological parameters and the community structures of airborne bacteria and pathogenic bacteria were also analyzed. The effects of soluble ions and metal elements on several dominant genera of total bacteria and pathogenic bacteria differed, probably due to the strong tolerance of pathogenic bacteria to harsh atmospheric environments Different subtypes of ARGs showed various distribution characteristics with variations in air quality. The deterioration of air quality can inhibit the dissemination of ARGs, as the minimum values of all ARGs and class 1 integrase intI1 were observed under Severely Polluted conditions. This study provides a comprehensive understanding of the effect of air pollution levels on the airborne bacteria community composition and ARG distribution. | 2022 | 35180669 |
| 3174 | 18 | 0.9991 | Spatio-temporal variation of the microbiome and resistome repertoire along an anthropogenically dynamic segment of the Ganges River, India. Aquatic ecosystems are regarded as a hub of antibiotic and metal resistance genes. River Ganges is a unique riverine system in India with socio-cultural and economic significance. However, it remains underexplored for its microbiome and associated resistomes along its anthropogenically impacted course. The present study utilized a nanopore sequencing approach to depict the microbial community structure in the sediments of the river Ganges harboring antibiotic and metal resistance genes (A/MRGs) in lower stretches known for anthropogenic impact. Comprehensive microbiome analyses revealed resistance genes against 23 different types of metals and 28 classes of antibiotics. The most dominant ARG category was multidrug resistance, while the most prevalent MRGs conferred resistance against copper and zinc. Seasonal differences dismally affected the microbiota of the Ganges. However, resistance genes for fosmidomycin and tetracycline varied with season ANOVA, p < 0.05. Interestingly, 333 and 334 ARG subtypes were observed at all the locations in pre-monsoon and post-monsoon, respectively. The taxa associated with the dominant ARGs and MRGs were Pseudomonas and Burkholderia, which are important nosocomial pathogens. A substantial phage diversity for pathogenic and putrefying bacteria at all locations attracts attention for its use to tackle the dissemination of antibiotic and metal-resistant bacteria. This study suggests the accumulation of antibiotics and metals as the driving force for the emergence of resistance genes and the affiliated bacteria trafficking them. The present metagenomic assessment highlights the need for comprehensive, long-term biological and physicochemical monitoring and mitigation strategies toward the contaminants associated with ARGs and MRGs in this nationally important river. | 2023 | 36773904 |
| 7009 | 19 | 0.9990 | Antibiotic resistance genes and bacterial communities in cornfield and pasture soils receiving swine and dairy manures. Land application of animal manure could change the profiles of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and bacterial communities in receiving soils. Using high-throughput real-time quantitative PCR and 16S rRNA amplicon sequencing techniques, this study investigated the ARGs and bacterial communities in field soils under various crop (corn and pasture) and manure (swine and dairy) managements, which were compared with those of two non-manured reference soils from adjacent golf course and grassland. In total 89 unique ARG subtypes were found in the soil samples and they conferred resistance via efflux pump, cellular protection and antibiotic deactivation. Compared to the ARGs in the golf course and grassland soils (28 and 34 subtypes respectively), manured soils generally had greater ARG diversity (36-55 subtypes). Cornfield soil frequently receiving raw swine manure had the greatest ARG abundance. The short-term (one week) application of composted and liquid swine manures increased the diversity and total abundance of ARGs in cornfield soils. Intriguingly the composted swine manure only marginally increased the total abundance of ARGs, but substantially increased the number of ARG subtypes in the cornfield soils. The network analysis revealed three major network modules in the co-occurrence patterns of ARG subtypes, and the hubs of these major modules (intl1-1, vanC, and pncA) may be candidates for selecting indicator genes for surveillance of ARGs in manured soils. The network analyses between ARGs and bacteria taxa revealed the potential host bacteria for the detected ARGs (e.g., aminoglycoside resistance gene aacC4 may be mainly carried by Acidobacteriaceae). Overall, this study highlighted the potentially varying impact of various manure management on antibiotic resistome and microbiome in cornfield and pasture soils. | 2019 | 30861417 |