# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6792 | 0 | 1.0000 | Parity in bacterial communities and resistomes: Microplastic and natural organic particles in the Tyrrhenian Sea. Petroleum-based microplastic particles (MPs) are carriers of antimicrobial resistance genes (ARGs) in aquatic environments, influencing the selection and spread of antimicrobial resistance. This research characterized MP and natural organic particle (NOP) bacterial communities and resistomes in the Tyrrhenian Sea, a region impacted by plastic pollution and climate change. MP and NOP bacterial communities were similar but different from the free-living planktonic communities. Likewise, MP and NOP ARG abundances were similar but different (higher) from the planktonic communities. MP and NOP metagenome-assembled genomes contained ARGs associated with mobile genetic elements and exhibited co-occurrence with metal resistance genes. Overall, these findings show that MPs and NOPs harbor potential pathogenic and antimicrobial resistant bacteria, which can aid in the spread of antimicrobial resistance. Further, petroleum-based MPs do not represent novel ecological niches for allochthonous bacteria; rather, they synergize with NOPs, collectively facilitating the spread of antimicrobial resistance in marine ecosystems. | 2024 | 38759465 |
| 6429 | 1 | 0.9994 | Selective enrichment of bacteria and antibiotic resistance genes in microplastic biofilms and their potential hazards in coral reef ecosystems. Microplastics become hotspots for bacteria to trigger a series of ecological effects, but few studies have focused on the potential impacts of microplastic biofilms in coral reef ecosystems. Here, we measured the bacterial communities and antibiotic resistance genes (ARGs) in the seawater and microplastic biofilms. Results showed that microbial biofilms were formed on the surface of microplastics. The alpha diversity of the bacterial community in the microplastic biofilms was lower than that in the seawater, and the bacterial communities were distinct between the two. Further analysis revealed that several bacteria in the microplastic biofilms carried ARGs, and the proportion of which was correlated to the concentration of antibiotics in the seawater. Specifically, Vibrio was positively correlated to sul1 in the microplastic biofilms under higher concentrations of sulfonamides. Pathway analysis reflected significant overrepresentation of human disease related pathways in the bacterial community of microplastic biofilms. These results suggest that the microplastic biofilms could selectively enrich bacteria from the reef environments, causing the development of ARGs under antibiotic driving. This may pose a serious threat to coral reef ecosystems and human health. Our study provides new insights into the ecological impacts of microplastic biofilms in coral reef ecosystems. | 2024 | 38281603 |
| 6791 | 2 | 0.9994 | Microplastics in marine pollution: Oceanic hitchhikers for the global dissemination of antimicrobial-resistant bacteria. Microplastics (MPs) are globally anthropogenic contaminants of marine environments. Bacteria can colonize MPs forming biofilms that constitute the plastisphere. Carbapenem-resistant bacteria in plastisphere could be a hidden threat for marine life. The role of MPs in the spread of AMR bacteria/genes deserves global investigation. | 2025 | 40469541 |
| 6830 | 3 | 0.9994 | Heavy metal could drive co-selection of antibiotic resistance in terrestrial subsurface soils. Terrestrial surface ecosystems are important sinks for antibiotic resistance genes (ARGs) due to the continuous discharge of contaminants from human-impacted ecosystems. However, the abundance and resistance types of ARGs and their influencing factors in terrestrial subsurface soils are not well known. In this study, we investigated the abundance and diversity of ARGs, and their correlations with metal resistance genes (MRGs), mobile genetic elements (MGEs), bacteria, and heavy metals in subsurface soils using high throughput quantitative PCR and metagenomic sequencing approaches. Abundant and diverse ARGs were detected with high spatial heterogeneity among sampling sites. Vertically, there was no significant difference in ARG profiles between the aquifer and non-aquifer soils. Heavy metals were key factors shaping ARG profiles in soils with high heavy metal contents, while they showed no significant effect in low contents. Moreover, heavy metals could trigger the proliferation of antibiotic resistance by increasing MGE abundance or influencing bacterial communities. Metagenomic analysis also revealed the widespread co-occurrence of ARGs and MRGs, with heavy metals possibly enhancing the co-selection of ARGs and MRGs in soils with high heavy metal contents. This study highlighted the heavy metal-driven co-selection of ARGs and revealed the occurrence of ARG pollution in terrestrial subsurface soils. | 2021 | 33858075 |
| 6433 | 4 | 0.9994 | Do microplastic biofilms promote the evolution and co-selection of antibiotic and metal resistance genes and their associations with bacterial communities under antibiotic and metal pressures? Microplastic (MP) biofilms with heterogeneous bacterial compositions and structure have become a hotspot of antibiotic resistance genes (ARGs) in aquatic environments. The evolutionary features of ARGs and their related factors including class 1 integron (intI1), metal resistance genes (MRGs), and bacterial communities in MP biofilms under exogenous pressures and how they compared with natural substrates (NS) are unclear. The individual and combined pressures of sulfamethoxazole, tetracycline, and zinc were used to drive the dynamic evolution of ARGs, intI1, MRGs, and bacterial communities in the MP and NS biofilms. The exogenous pressures from the combined selection of sulfamethoxazole, tetracycline, and zinc and their increasing concentrations both significantly enhanced the abundances of ARGs on the MP compared to the NS. Meanwhile, the selective pressures resulted in obvious dissimilarities between the MP and NS bacterial communities. The core bacterial taxa and the co-occurrence patterns of ARGs and bacterial genera in the biofilms of MP and NS were obviously different, and more potential ARG host bacteria selectively colonized the MP. Metal pressure also enhanced the enrichment of ARGs in the MP biofilms by promoting the spread of intI1 via the co-selection mechanism. | 2022 | 34597934 |
| 6410 | 5 | 0.9994 | Microplastics are a hotspot for antibiotic resistance genes: Progress and perspective. Antibiotic resistance genes (ARGs) and microplastics in the environment are of great public concern due to their potential risk to human health. Microplastics can form distinct bacterial communities and absorb pollutants from the surrounding environment, which provide potential hosts and exert possible selection pressure of ARGs. We provide a practical evaluation of the scientific literature regarding this issue. The occurrence and transport of ARGs on microplastics in wastewater treatment plants, aquatic, terrestrial, and air environments were summarized. Selective enrichment of ARGs and antibiotic resistance bacteria on microplastics have been confirmed in different environments. Aggregates may be crucial to understand the behavior and transport of ARGs on microplastics, especially in the aquatic and terrestrial environment. Microplastics could be a carrier of ARGs between the environment and animals. Accumulation of pollutants and dense bacterial communities on microplastics provide favorable conditions for higher transfer rate and evolution of ARGs. More studies are still needed to understand the enrichment, transport, and transfer of ARGs on microplastics and provide a fundamental basis for evaluating their exposure health risk to humans. | 2021 | 33940744 |
| 6416 | 6 | 0.9994 | Antibiotic resistance in plastisphere. Microbial life on plastic debris, called plastisphere, has invoked special attention on aquatic ecosystems as emerging habitats for antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). There is scarce information concerning how properties of plastics influence ARGs and ARB, the effect of biofilms on enrichment of ARGs and ARB, and, especially, the influence of plastic transformation on ARGs and ARB. Limited research has shown that microplastic (MP) surfaces influence proliferation of antibiotic resistance (AR), aged MPs exhibit increased toxicity due to more adsorption-desorption of AR, and MP transformation is correlated with disseminating AR. Prevention measures of AR include minimizing MP releasing into aquatic environments and sewage treatment plants. The future research should aim to identify the interface mechanisms of transformed MNPs and antibiotics alone, or mixed with other contaminants, property changes of MNPs, and associated toxicity evaluation. | 2025 | 40265125 |
| 6816 | 7 | 0.9994 | The impact of microplastics on antibiotic resistance genes, metal resistance genes, and bacterial community in aquaculture environment. Microplastics are emerging contaminants. However, their effects on antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and the structure and abundance of bacterial communities, particularly pathogens, in aquaculture environments remains poorly understood. Therefore, this study investigated the effect of microplastics of different sizes on the abundance and distribution of ARGs, MRGs, and bacterial communities in aquaculture environments. The results revealed that, compared with pond water, large microplastics harbored significantly higher ARG abundances, particularly for multidrug-resistant genes; notably, level-I- and -II-risk ARGs were more prevalent on microplastics, highlighting the potential for horizontal gene transfer. Microplastics also exhibited a propensity to aggregate pathogenic bacteria such as Brucella and Pseudomonas, which could pose direct risks to aquatic product safety and public health. Network and differential network analyses revealed significant correlations between bacterial genera and ARG/MRG abundance, particularly on microplastics. Therefore, our findings suggest that microplastics act as vectors for the spread of ARGs, MRGs, and pathogens in aquaculture, potentially leading to the formation of complexes of these materials that threaten ecosystem health and human well-being. This study provides critical insights into the need for targeted management strategies to mitigate microplastic pollution in aquaculture settings. | 2025 | 39987738 |
| 6434 | 8 | 0.9994 | Unraveling the role of microplastics in antibiotic resistance: Insights from long-read metagenomics on ARG mobility and host dynamics. As two emerging pollutants, microplastics (MPs) potentially serve as vectors for antibiotic resistance genes (ARGs) in aquatic environments, but the mechanisms driving ARG enrichment remain unclear. This study used long-read metagenomics to investigate ARG mobility and hosts dynamics within the biofilms of MPs and rocks in different water environments. We identified distinct enrichment patterns for microbial communities and ARGs, highlighting the significant role of horizontal gene transfer in ARG enrichment. Specifically, plasmid-encoded ARGs varied significantly among MP biofilms, rock biofilms, and water samples, while chromosome-encoded ARGs remained consistent across these environments, emphasizing the impact of plasmids on ARG enrichment. Despite this, 55.1 % of ARGs were on chromosomes, indicating that host organisms also play a crucial role. The related mechanisms driving ARG enrichment included enhanced cell adhesion, increased transmembrane transporter activity, and responses to environmental stressors, which led to an increased presence of plasmid-encoded ARGs on MP biofilms, facilitating more frequent horizontal gene transfer. Additionally, the diversity of hosts on MPs was notably lower compared to the water column, with specific bacteria, including Herbaspirillu, Limnohabitans, Polaromonas, Variovorax, Rubrivivax, and Thauera significantly driving ARG enrichment. This study highlights key mechanisms and bacterial taxa involved in ARG dynamics on MPs. | 2025 | 40056523 |
| 6823 | 9 | 0.9993 | Metagenomic assembly and binning analyses the prevalence and spread of antibiotic resistome in water and fish gut microbiomes along an environmental gradient. The pristine river and urban river show an environmental gradient caused by anthropogenic impacts such as wastewater treatment plants and domestic wastewater discharges. Here, metagenomic and binning analyses unveiled antibiotic resistance genes (ARGs) profiles, their co-occurrence with metal resistance genes (MRGs) and mobile genetic elements (MGEs), and their host bacteria in water and Hemiculter leucisculus samples of the river. Results showed that the decrease of ARG abundances from pristine to anthropogenic regions was attributed to the reduction of the relative abundance of multidrug resistance genes in water microbiomes along the environmental gradient. Whereas anthropogenic impact contributed to the enrichment of ARGs in fish gut microbiomes. From pristine to anthropogenic water samples, the dominant host bacteria shifted from Pseudomonas to Actinobacteria. Potential pathogens Vibrio parahaemolyticus, Enterobacter kobei, Aeromonas veronii and Microcystis aeruginosa_C with multiple ARGs were retrieved from fish gut microbes in lower reach of Ba River. The increasing trends in the proportion of the contigs carrying ARGs (ARCs) concomitant with plasmids along environmental gradient indicated that plasmids act as efficient mobility vehicles to enhance the spread of ARGs under anthropogenic pressures. Moreover, the higher co-occurrence of ARGs and MRGs on plasmids revealed that anthropogenic impacts accelerated the co-transfer potential of ARGs and MRGs and the enrichment of ARGs. Partial least squares path modeling revealed anthropogenic contamination could shape fish gut antibiotic resistome mainly via affecting ARG host bacteria in water microbiomes, following by ARGs co-occurrence with MGEs and MRGs in gut microbiomes. This study enhanced our understanding of the mechanism of the anthropogenic activities on the transmission of antibiotic resistome in river ecosystem and emphasized the risk of ARGs and pathogens transferring from an aquatic environment to fish guts. | 2022 | 35716556 |
| 6814 | 10 | 0.9993 | Watershed urbanization enhances the enrichment of pathogenic bacteria and antibiotic resistance genes on microplastics in the water environment. Microplastics (MPs) serve as vectors for microorganisms and antibiotic resistance genes (ARGs) and contribute to the spread of pathogenic bacteria and ARGs across various environments. Patterns of microbial communities and ARGs in the biofilm on the surface of MPs, also termed as plastisphere, have become an issue of global concern. Although antibiotic resistome in the plastisphere has been detected, how watershed urbanization affects patterns of potential pathogens and ARGs in the microplastic biofilms is still unclear. Here, we compared the bacterial communities, the interaction between bacterial taxa, pathogenic bacteria, and ARGs between the plastisphere and their surrounding water, and revealed the extensive influence of urbanization on them. Our results showed that bacterial communities and interactions in the plastisphere differed from those in their surrounding water. Microplastics selectively enriched Bacteroidetes from water. In non-urbanized area, the abundance of Oxyphotobacteria was significantly (p < 0.05) higher in plastisphere than that in water, while α-Proteobacteria was significantly (p < 0.05) higher in plastisphere than those in water of urbanized area. Pathogenic bacteria, ARGs, and mobile genetic elements (MGEs) were significantly (p < 0.05) higher in the urbanized area than those in non-urbanized area. MPs selectively enriched ARG-carrying potential pathogens, i.e., Klebsiella pneumoniae and Enterobacter cloacae, and exhibited a distinct effect on the relative abundance of ARG and pathogens in water with different urbanization levels. We further found ARGs were significantly correlated to MGEs and pathogenic bacteria. These results suggested that MPs would promote the dissemination of ARGs among microbes including pathogenic bacteria, and urbanization would affect the impact of MPs on microbes, pathogens, and ARGs in water. A high level of urbanization could enhance the enrichment of pathogens and ARGs by MPs in aquatic systems and increase microbial risk in aquatic environments. Our findings highlighted the necessity of controlling the spread of ARGs among pathogens and the usage of plastic products in ecosystems of urban areas. | 2022 | 36108884 |
| 6808 | 11 | 0.9993 | Antibiotics and antibiotic resistance change bacterial community compositions in marine sediments. Emerging contaminants, including antibiotics, antibiotic-resistant bacteria (ARB), and extracellular antibiotic resistance genes (eARGs), have been detected in large numbers in the aquatic environment. The effects of emerging contaminants on bacterial communities in marine sediments are not well studied. In this study, the effects of emerging contaminants (antibiotics, ARB, and eARGs) on the variations of bacterial populations in marine sediments of the Bohai Sea, Yellow Sea, East China Sea, and South China Sea were investigated. The results showed that the abundance of the host bacterial phylum Probacteria in the marine sediments of the Bohai Sea was the lowest among the four seas after exposure to different antibiotics, ARB, and eARGs. The inputs of exogenous antibiotics and resistance genes significantly affected the community function, resulting in significant differences in community abundance at the genus level. The abundance of Halomonas, Sulfitobacter, and Alcanivorax in the four sea areas displayed noteworthy differences in response to the addition of exogenous antibiotics and eARGs. These findings contribute to a more comprehensive understanding of the intricate interplay between emerging contaminants and the dynamics of bacterial communities in natural ecosystems. | 2024 | 38135101 |
| 6432 | 12 | 0.9993 | Antibiotic resistance genes in the coastal atmosphere under varied weather conditions: Distribution, influencing factors, and transmission mechanisms. Antibiotic resistance genes (ARGs) have escalated to levels of concern worldwide as emerging environmental pollutants. Increasing evidence suggests that non-antibiotic antimicrobial substances expedite the spread of ARGs. However, the drivers and mechanisms involved in the generation and spread of ARGs in the atmosphere remain inadequately elucidated. Co-occurrence networks, mantel test analysis, and partial least squares path modeling were used to analyze the symbiotic relationships of ARGs with meteorological conditions, atmospheric pollutants, water-soluble inorganic ions, bacteria, mobile genetic elements (MGEs), antibacterial biocide and metal resistance genes, and to identify the direct drivers of ARGs. The types and abundance of ARGs exhibited different seasonal distribution. Specifically, the types exhibited a strong alignment with the diversity of air masses terrestrial sources, while the abundance displayed a significant positive correlation with both biocide resistance genes (BRGs) and metal resistance genes (MRGs). The contribution of bacterial communities and MGEs to the generation and spread of ARGs was constrained by the low levels of antibiotics in the atmosphere and the existence of "viral intermediates". Conversely, antibacterial biocides and metals influenced mutation rates, cellular SOS responses, and oxidative stress of bacteria, consequently facilitating the generation and spread of ARGs. Moreover, the co-selection among their derivatives, resistance genes, ensured a stable presence of ARGs. The research highlighted the significant impact of residual antimicrobial substances on both the generation and spread of ARGs. Elucidating the sources of aerosols and the co-selection mechanism linking with ARGs, BRGs, and MRGs were crucial for preserving the stability of ARGs in the atmosphere. | 2025 | 39824332 |
| 6427 | 13 | 0.9993 | Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems. Cyanobacterial blooms are a global ecological problem that directly threatens human health and crop safety. Cyanobacteria have toxic effects on aquatic microorganisms, which could drive the selection for resistance genes. The effect of cyanobacterial blooms on the dispersal and abundance of antibiotic-resistance genes (ARGs) of concern to human health remains poorly known. We herein investigated the effect of cyanobacterial blooms on ARG composition in Lake Taihu, China. The numbers and relative abundances of total ARGs increased obviously during a Planktothrix bloom. More pathogenic microorganisms were present during this bloom than during a Planktothrix bloom or during the non-bloom period. Microcosmic experiments using additional aquatic ecosystems (an urban river and Lake West) found that a coculture of Microcystis aeruginosa and Planktothrix agardhii increased the richness of the bacterial community, because its phycosphere provided a richer microniche for bacterial colonization and growth. Antibiotic-resistance bacteria were naturally in a rich position, successfully increasing the momentum for the emergence and spread of ARGs. These results demonstrate that cyanobacterial blooms are a crucial driver of ARG diffusion and enrichment in freshwater, thus providing a reference for the ecology and evolution of ARGs and ARBs and for better assessing and managing water quality. | 2020 | 33277584 |
| 6813 | 14 | 0.9993 | Spread performance and underlying mechanisms of pathogenic bacteria and antibiotic resistance genes adhered on microplastics in the sediments of different urban water bodies. Urban water bodies often pose frequent human activities, the pollution of microplastics (MPs) in these sediments, and pathogenic bacteria and antibiotic resistance genes (ARGs) enriched on the MPs may have risk to human health. However, there is little known about these issues. In this paper, three typical urban water bodies (the urban park lake, the urban inland river, and the urban-rural lake) were selected to identify the characteristics of MPs. Furthermore, the enrichment and driving mechanisms of pathogenic bacteria and ARGs on MPs in sediments were studied. These three water bodies were polluted with MPs, dominated by polyethylene (PE)-MPs and polystyrene (PS)-MPs. Gammaproteobacteria, Pseudomonadota, etc. as the main types of pathogenic bacteria, with Pseudomonas aeruginosa and Acinetobacter baumannii as significantly enriched in the urban inland rivers. The predominant ARGs were bacitracin- (bacA) and sulfonamide- (sul1) resistant ARGs. Transposase was the main genetic elements that drove the transfer of ARGs and the main resistance mechanism of ARGs was antibiotic efflux. The enrichment behavior of pathogenic bacteria and ARGs on MPs was also driven by the types of MPs, especially PS-MPs. The pathogenic bacteria at urban inland rivers had more types of ARGs, transfer elements and resistance mechanisms, thus the risk of pathogenic bacteria resistance needed specific concern. The results of our study were of great significance to gain insights into the pathogenic resistance risks and ecological risks of pathogenic bacteria and ARGs in sediments of urban water bodies. | 2025 | 40609890 |
| 6425 | 15 | 0.9993 | Freshwater plastisphere: a review on biodiversity, risks, and biodegradation potential with implications for the aquatic ecosystem health. The plastisphere, a unique microbial biofilm community colonizing plastic debris and microplastics (MPs) in aquatic environments, has attracted increasing attention owing to its ecological and public health implications. This review consolidates current state of knowledge on freshwater plastisphere, focussing on its biodiversity, community assembly, and interactions with environmental factors. Current biomolecular approaches revealed a variety of prokaryotic and eukaryotic taxa associated with plastic surfaces. Despite their ecological importance, the presence of potentially pathogenic bacteria and mobile genetic elements (i.e., antibiotic resistance genes) raises concerns for ecosystem and human health. However, the extent of these risks and their implications remain unclear. Advanced sequencing technologies are promising for elucidating the functions of plastisphere, particularly in plastic biodegradation processes. Overall, this review emphasizes the need for comprehensive studies to understand plastisphere dynamics in freshwater and to support effective management strategies to mitigate the impact of plastic pollution on freshwater resources. | 2024 | 38699475 |
| 8581 | 16 | 0.9993 | Tire particles and its leachates: Impact on antibiotic resistance genes in coastal sediments. Tire particles (TPs), a significant group of microplastics, can be discharged into the coastal environments in various ways. However, our understanding of how TPs impact the antibiotic resistance and pathogenic risks of microorganisms in coastal sediments remains limited. In this study, we used metagenomics to investigate how TPs and their leachates could affect the prevalence of antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and their potential risks to the living creatures such as soil invertebrates and microorganisms in the coastal sediments. We discovered that TP addition significantly increased the abundance and diversity of ARGs and VFGs in coastal sediments, with raw TPs displayed higher impacts than TP leachates and TPs after leaching on ARGs and VFGs. With increasing TP exposure concentrations, the co-occurrence frequency of ARGs and mobile genetic elements (MGEs) in the same contig also increased, suggesting that TPs could enhance the dispersal risk of ARGs. Our metagenome-based binning analysis further revealed that exposure to TPs increased the abundance of potentially pathogenic antibiotic-resistant bacteria (PARB). In addition, chemical additives of TP leachates (e.g., Zn and N-cyclohexylformamide) significantly affected the changes of ARGs in the pore water. In summary, our study provides novel insights into the adverse effects of TP pollutions on aggravating the dissemination and pathogenic risks of ARGs and PARB in the coastal environment. | 2024 | 38147751 |
| 6809 | 17 | 0.9993 | High-throughput profiling of antibiotic resistance gene dynamic in a drinking water river-reservoir system. The rapid construction of reservoir in river basin generates a river-reservoir system containing an environmental gradient from river system to reservoir system in modern aquatic environment worldwide. Profiles of antibiotic resistance genes (ARGs) in river-reservoir system is essential to better understand their dynamic mechanisms in aquatic eco-environment. In this study, we investigated the diversity, abundance, distribution of ARGs and mobile genetic elements (MGEs) in a representative river-reservoir system using high-throughput quantitative PCR, as well as ranked the factors (e.g. antibiotics, bacterial biomass, bacteria communities, and MGEs) influencing the patterns of ARGs based on structural equation models (SEMs). Seasonal variations in absolute abundance of ARGs and MGEs exhibited similar trends with local rainfall, suggesting that seasonal runoff induced by the rainfall potentially promote the absolute abundance of ARGs and MGEs. In contrast, environmental gradient played more important roles in the detected number, relative abundance, distribution pattern of ARGs and MGEs in the river-reservoir system. Moreover, environmental gradient also made the co-occurrence patterns associated with ARGs subtypes, MGEs and bacteria genera in river system different from those in reservoir system. The SEMs revealed that MGEs contributed the most to shape the ARG profiles. Overall, our findings provide novel insights into the mechanisms of environmental gradient on ARGs dynamics in river-reservoir system, probably via influencing the MGEs, antibiotics, pathogenic bacteria community and nonpathogenic bacteria community. | 2019 | 30447523 |
| 6815 | 18 | 0.9993 | Bacterial community succession and the enrichment of antibiotic resistance genes on microplastics in an oyster farm. Microplastics can be colonized by microorganisms and form plastisphere. However, knowledge of bacterial community succession and the enrichment of antibiotic resistance genes (ARGs) and pathogens on microplastics in aquaculture environments is limited. Here, we conducted a 30-day continuous exposure experiment at an oyster farm. Results showed that the alpha-diversity of communities on most microplastics continuously increased and was higher than in planktonic communities after 14 days. Microplastics could selectively enrich certain bacteria from water which can live a sessile lifestyle and promote colonization by other bacteria. The composition and function of plastisphere communities were distinct from those in the surrounding water and influenced by polymer type and exposure time. Microplastics can enrich ARGs (sul1, qnrS and bla(TEM)) and harbor potential pathogens (e.g., Pseudomonas aeruginosa). Therefore, microplastic pollution may pose a critical threat to aquaculture ecosystems and human health. Our study provides further insight into the ecological risks of microplastics. | 2023 | 37611336 |
| 6820 | 19 | 0.9993 | Microcosm experiments deciphered resistome coalescence, risks and source-sink relationship of antibiotic resistance in the soil irrigated with reclaimed water. Reclaimed water is widely used in agriculture irrigation to alleviate water scarcity, whereas the dissemination of antibiotic resistance genes (ARGs) in the soil it introduces has attracted widespread attention. Currently, few studies have systematically elucidated the coalescence of the resistome originating from reclaimed water with the soil's native community. Also, the effects and mechanisms of irrigation on the dissemination of ARGs in soils have yet to be demonstrated. To address this gap, microcosm experiments have been conducted in this study to decipher the resistome coalescence, risks and source-sink relationship of ARGs in soils irrigated with reclaimed water. The results show 237 ARGs, 55 mobile genetic elements (MGEs) and 28 virulence factors were identified in the irrigated soils. Irrigation increased the abundance and diversity of ARGs in the soil by introducing antibiotic-resistant bacteria, altering the microbial community and facilitating horizontal transfer of ARGs via MGEs, and ultimately exacerbated resistome risks in the environment. Relatively, a larger volume of irrigation water led to a more complex propagation network of the resistome. Source apportionment analysis suggested reclaimed water contributed less than 15 % of ARGs in the irrigated soils, whereas its contribution proportion increased with a larger volume of irrigation water. | 2025 | 39874760 |