Exposure to Al(2)O(3) nanoparticles facilitates conjugative transfer of antibiotic resistance genes from Escherichia coli to Streptomyces. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
676101.0000Exposure to Al(2)O(3) nanoparticles facilitates conjugative transfer of antibiotic resistance genes from Escherichia coli to Streptomyces. The spread of antibiotic resistance genes (ARGs) has become a global environmental issue; it has been found that nanoparticles (NPs) can promote the transfer of ARGs between bacteria. However, it remains unclear whether NPs can affect this kind of conjugation in Streptomyces, which mainly conjugate with other bacteria via spores. In the present study, we demonstrated that Al(2)O(3) NPs significantly promote the conjugative transfer of ARGs from Escherichia coli (E. coli) ET12567 to Streptomyces coelicolor (S. coelicolor) M145 without the use of heat shock method. The number of transconjugants induced by Al(2)O(3) particles was associated with the size and concentration of Al(2)O(3) particles, exposure time, and the ratio of E. coli and spores. When nanoparticle size was 30 nm at a concentration of 10 mg/L, the conjugation efficiency reached a peak value of 182 cfu/10(8) spores, which was more than 60-fold higher than that of the control. Compared with nanomaterials, bulk particles exhibited no significant effect on conjugation efficiency. We also explored the mechanisms by which NPs promote conjugative transfer. After the addition of NPs, the intracellular ROS content increased and the expression of the classical porin gene ompC was stimulated. In addition, ROS enhanced the mRNA expression levels of conjugative genes by inhibiting global regulation genes. Meanwhile, expression of the conjugation-related gene intA was also stimulated, ultimately increasing the number of transconjugants. Our results indicated that Al(2)O(3) NPs significantly promoted the conjugative transfer of ARGs from bacteria to spores and aggravated the diffusion of resistance genes in the environment.201931561730
676210.9999Impacts of particle size and surface charge of ZnO on horizontal transformation of antibiotic resistance genes. The ever-growing antibiotic resistance in bacteria poses an enormous threat to public health and the environment. The horizontal transfer of antibiotic resistance genes (ARGs) is a major pathway for disseminating antibiotic resistance. As an inexpensive, nontoxic, and biocompatible material, ZnO with diverse sizes and surface properties have been prepared for widespread use. However, the effects and mechanisms of ZnO particles with different structural properties on the horizontal transfer of ARGs are not comprehensively understood. In this study, two groups of ZnO particles, one with the same size (93 nm) and different charge types (-9.5 and + 17.4 mV), and the other homogeneously positively charged but of different sizes (93, 215, and 2381 nm), were prepared. Their impacts on the horizontal transformation of ARGs mediated by plasmid pUC19 into E coli DH5α were investigated. In the positively charged group, the smallest ZnO nanoparticles at concentrations of 0.1-100 μg/mL induced 1.04-1.35 and 1.37-1.71-fold increases in transformation frequency when compared with that of the medium-sized and largest particles, respectively. In the similar-sized groups, positive ZnO promoted 1.06-1.32-fold increases than negative ZnO. Further investigation suggested that smaller and positive ZnO adsorbed more plasmids and correspondingly increased the uptake by recipient bacteria than that of larger and/or negative ZnO. In addition, the enhanced bacterial membrane permeability, ATP synthesis, and DNA replication were also accounted for the increased transformation. These results suggest that smaller-sized and positive ZnO poses a high environmental risk of spreading antibiotic resistance.202540527433
678120.9999Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation: Implications from oxidative stress and gene expression. Due to the significant public health risks, there is substantial scientific interest in the increasing abundance of antibiotic-resistance bacteria (ARB) and the spread of antibiotic-resistance genes (ARGs) in aquatic environments. To clearly understand the mechanism of ARG transfer, this study examined the conjugative transfer of genes encoding resistance to cephalosporin (bla(CTX)) and polymyxin (mcr-1) from two antibiotic-resistant donor strains, namely E. coli DH5α (CTX) and E. coli DH5α (MCR), and to a streptomycin-resistant receptor strain (E. coli C600 (Sm)). Conjugative transfer was specifically studied under different light irradiation conditions including visible light (VL), simulated sunlight (SS) and ultraviolet light (UV(254nm)). Results show that the conjugative transfer frequency was not affected by VL irradiation, while it was slightly improved (2-10 fold) by SS irradiation and extremely accelerated (up to 100 fold) by UV irradiation. Furthermore, this study also explored the link between ARG transfer and stress conditions. This was done by studying physiological and biochemical changes; oxidative stress response; and functional gene expression of co-cultured AR-E. coli strains under stress conditions. When correlated with the transfer frequency results, we found that VL irradiation did not affect the physiological and biochemical characteristics of the bacteria, or induce oxidative stress and gene expression. For SS irradiation, oxidative stress occurred slowly, with a slight increase in the expression of target genes in the bacterial cells. In contrast, UV irradiation, rapidly inactivated the bacteria, the degree of oxidative stress was very severe and the expression of the target genes was markedly up-regulated. Our study could provide new insight into the underlying mechanisms and links between accelerated conjugative transfer and oxidative stress, as well as the altered expression of genes relevant to conjugation and other stress responses in bacterial cells.201930465986
677530.9999Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera. The spread of antibiotic resistance has become a major concern for public health. As emerging contaminants, various metallic nanoparticles (NPs) and ionic heavy metals have been ubiquitously detected in various environments. Although previous studies have indicated NPs and ionic heavy metals could exhibit co-selection effects for antibiotic resistance, little is known about whether and how they could promote antibiotic resistance spread via horizontal gene transfer across bacterial genera. This study, we report both CuO NPs and copper ions (Cu(2+)) could stimulate the conjugative transfer of multiple-drug resistance genes. When exposing bacteria to CuO NPs or Cu(2+) at environmental-relevant and sub-inhibitory concentrations (e.g., 1-100 μmol/L), conjugation frequencies of plasmid-encoded antibiotic resistance genes across genera (i.e., from Escherichia coli to Pseudomonas putida) were significantly enhanced (p < 0.05). The over-production of reactive oxygen species played a crucial role in promoting conjugative transfer. Genome-wide RNA and protein sequencing suggested expressional levels of genes and proteins related to oxidative stress, cell membrane permeability, and pilus generation were significantly up-regulated under CuO NPs and Cu(2+) exposure (p < 0.05). This study provides insights in the contributions of NPs and heavy metals on the spread of antibiotic resistance.201931158594
762940.9998Graphene oxide in the water environment could affect tetracycline-antibiotic resistance. In recent years, the influence of new materials like nanoparticles in the water environment on biological substances has been widely studied. Antibiotic resistance genes (ARGs) represent a new type of pollutant in the environment. Graphene oxide (GO), as a nano material, because of its unique structure, may have an impact on antibiotic resistance bacteria (ARB) and ARGs; however the research in this area is rarely reported. Therefore, this study mainly investigated the effects of GO on bacterial antibiotic resistance. The results showed that GO had a limited effect on ARB inactivation. A high concentration of GO (>10 mg/L) can damage resistant plasmids to reduce bacterial resistance to antibiotics, but low concentrations of GO (<1 mg/L) led to almost no damage to the plasmid. However, all tested concentrations of GO promoted the conjugative transfer from 1to over 3 folds, with low concentrations and high concentration (1-10 and 100 mg/L) of GO samples the least promoted. The overall effect of GO on antibiotic resistance needs further investigation.201728549325
676050.9998Mechanism of antibiotic resistance spread during sub-lethal ozonation of antibiotic-resistant bacteria with different resistance targets. The increase and spread of antibiotic-resistant bacteria (ARB) in aquatic environments and the dissemination of antibiotic resistance genes (ARGs) greatly impact environmental and human health. It is necessary to understand the mechanism of action of ARB and ARGs to formulate measures to solve this problem. This study aimed to determine the mechanism of antibiotic resistance spread during sub-lethal ozonation of ARB with different antibiotic resistance targets, including proteins, cell walls, and cell membranes. ARB conjugation and transformation frequencies increased after exposure to 0-1.0 mg/L ozone for 10 min. During sub-lethal ozonation, compared with control groups not stimulated by ozone, the conjugative transfer frequencies of E. coli DH5α (CTX), E. coli DH5α (MCR), and E. coli DH5α (GEN) increased by 1.35-2.02, 1.13-1.58, and 1.32-2.12 times, respectively; the transformation frequencies of E. coli DH5α (MCR) and E. coli DH5α (GEN) increased by 1.49-3.02 and 1.45-1.92 times, respectively. When target inhibitors were added, the conjugative transfer frequencies of antibiotics targeting cell wall and membrane synthesis decreased 0.59-0.75 and 0.43-0.76 times, respectively, while that for those targeting protein synthesis increased by 1-1.38 times. After inhibitor addition, the transformation frequencies of bacteria resistant to antibiotics targeting the cell membrane and proteins decreased by 0.76-0.89 and 0.69-0.78 times, respectively. Cell morphology, cell membrane permeability, reactive oxygen species, and antioxidant enzymes changed with different ozone concentrations. Expression of most genes related to regulating different antibiotic resistance targets was up-regulated when bacteria were exposed to sub-lethal ozonation, further confirming the target genes playing a crucial role in the inactivation of different target bacteria. These results will help guide the careful utilization of ozonation for bacterial inactivation, providing more detailed reference information for ozonation oxidation treatment of ARB and ARGs in aquatic environments.202438810347
677160.9998Triclosan at environmental concentrations can enhance the spread of extracellular antibiotic resistance genes through transformation. The dissemination of antibiotic resistance mediated by horizontal transfer of antibiotic resistance genes (ARGs) is exacerbating the global antibiotic crisis. Currently, little is known about whether non-antibiotic, anti-microbial (NAAM) chemicals are associated with the dissemination of ARGs in the environment. In this study, we aimed to evaluate whether a ubiquitous NAAM chemical, triclosan (TCS), is able to promote the transformation of plasmid-borne antibiotic resistance genes (ARGs). By using the plasmid pUC19 carrying ampicillin resistance genes as the extracellular ARG and a model microorganism Escherichia coli DH5ɑ as the recipient, we found that TCS at environmentally detected concentrations (0.2 μg/L to 20 μg/L) significantly enhanced the transformation of plasmid-borne ARGs into E. coli DH5ɑ for up to 1.4-fold. The combination of phenotypic experiments, genome-wide RNA sequencing and proteomic analyses revealed that TCS exposure stimulated the reactive oxygen species (ROS) production for 1.3- to 1.5-fold, induced bacterial membrane damage and up-regulated the translation of outer membrane porin. Moreover, general secretion system Sec (1.4-fold), twin arginine translocation system Tat (1.2-fold) and type IV pilus secretion systems (2.5-fold) were enhanced by TCS, which might contribute to the DNA searching/capture by pilus. Together, TCS might increase the transformation frequency of ARGs into E. coli DH5ɑ by ROS over-production, damaging cell membrane barrier, mediating the pilus capture of plasmid and the translocation of plasmid via cell membrane channels. This study reports that TCS could accelerate the transformation of extracellular ARGs to competent bacteria at environmentally relevant concentrations. The findings advance our understanding of the fate of ARGs in ecosystems and call for risk assessments of NAAM chemicals on disseminating antibiotic resistance.202032019018
675070.9998Viable but non-culturable E. coli induced by low level chlorination have higher persistence to antibiotics than their culturable counterparts. Disinfectant used in drinking water treatment and distribution system can induce culturable bacteria, including various kinds of pathogenic bacteria, into viable but non-culturable (VBNC) state. The loss of cultural state, resuscitation and environmental persistence of VBNC bacteria will severely damage drinking water microbiological safety and thus pose a risk to public health. The manner in which chlorination treatment induced a VBNC state in Escherichia coli and the antibiotic persistence of VBNC bacteria was investigated. It was found that low dosage of chlorine (0.5 mg L(-1)) disinfection effectively reduced the culturability of E. coli and induced a VBNC state, after which metabolic activity was reduced and persistence to 9 typical antibiotics was enhanced. Furthermore, RT-qPCR results showed that stress resistance genes (rpoS, marA, ygfA, relE) and ARGs, especially efflux genes were up-regulated compared with culturable cells. The intracellular concentration was tested and found to be lower in VBNC cells than in actively growing E. coli, which suggested a higher efflux rate. The data presented indicate that VBNC E. coli are more persistent than culturable counterparts to a wide variety of antibiotics. VBNC E. coli constitute a potential source of contamination and should be considered during monitoring of drinking water networks.201728662489
676380.9998Sub-lethal photocatalysis promotes horizontal transfer of antibiotic resistance genes by conjugation and transformability. The spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in water is increasingly becoming a worldwide problem due to frequent recent major public health events. Herein, the horizontal ARG transfer mechanisms were studied under sub-lethal photocatalysis. The results show that ARGs had at most a 3- to 6-fold increase in the conjugative transfer frequency when only donor bacteria were induced with sub-lethal photocatalysis, while the frequency exhibited a trend toward inhibition when only the recipient bacteria were induced. However, when the donor or recipient bacteria were induced beforehand for a specific time, the frequency increased by a maximum of 10- to 22-fold. Moreover, the horizontal transfer frequency and its mechanism were related to the oxidative stress systems, ATP systems and the expression of related genes. Furthermore, the transformability of extracellular plasmids of the ARB and the contribution in horizontal transfer were also studied. Results show that the transformation frequency accounted for up to 50% of the total number of transconjugants, indicating that transformation might be a primary mode of horizontal ARG transfer by ARB in water. All of the above results demonstrate that sub-lethal photocatalysis will increase the frequency of horizontal gene transfer of ARGs through both conjugative transfer and the transformation pathway, which increases the risk of ARB in aquatic environments.202235841790
674990.9998The influence of ZnO nanoparticles on horizontal transfer of resistance genes in lab and soil conditions. Antibiotic resistance is a severe problem that threatens the achievements of modern medicine. Metallic nanoparticles may promote the horizontal transfer of resistance genes due to their toxicity to bacterial cells and metal-induced co-selection mechanisms. In this study, we investigated the toxicity of ZnO nanoparticles to E. coli DH5α laboratory strain and the abundance of soil microbial community. Moreover, the influence of ZnO nanoparticles on resistance gene transfer in laboratory and soil conditions was evaluated. ZnO nanoparticles at concentrations up to 10 mg L(-1) reduced the survival of E. coli cells by 14.6% and increased the transformation frequency by almost 1.8 fold. In soil, ZnO nanoparticles at a concentration of 1000 mg kg(-1) affected the total abundance of bacteria, causing a decrease in the 16S rRNA gene copy number. We did not detect the presence of 11 target antibiotic resistance genes (sul1, sul2, imp2, imp5, bla(CTX-M), ermB, mefA, strB, aadA1, tetA1, tetB), which confer resistance to five classes of antibiotics in soil treated with ZnO nanoparticles. No elevated conjugation frequency was observed in soil microbial communities treated with ZnO nanoparticles. However, the increase in czcA gene copies indicates the spread of genetic elements harbouring metal resistance. The data shows that metallic nanoparticles promote the spread of antibiotic and metal resistance genes. The broad implication of the present research is that the inevitable nanoparticles environmental pollution may lead to the further dissemination of antibiotic resistance and profoundly influence public health.202336764431
6767100.9998Effects of iron mineral adhesion on bacterial conjugation: Interfering the transmission of antibiotic resistance genes through an interfacial process. Bacterial conjugation is one of the most prominent ways for antibiotic resistance genes (ARGs) transmission in the environment. Interfacial interactions between natural colloidal minerals and bacteria can alter the effective contact of bacteria, thereby affecting ARGs conjugation. Understanding the impact of iron minerals, a core component of colloidal minerals, on ARGs conjugation can help assess and intervene in the risk of ARGs transmission. With three selected iron minerals perturbation experiments, it was found that the conjugative transfer of plasmid that carried kanamycin resistance gene was 1.35 - 3.91-fold promoted by low concentrations of iron minerals (i.e., 5 - 100 mg L(-1)), but inhibited at high concentrations (i.e., 1000 - 2000 mg L(-1)) as 0.10 - 0.22-fold. Conjugation occurrence was highly relevant to the number of bacteria adhering per unit mass of mineral, thus switch in the adhesion modes of mineral-bacterial determined whether the conjugate transfer of ARGs was facilitated or inhibited. In addition, a unified model was formularized upon the physicochemical and physiological effects of adhesion on conjugation, and it can be used in estimating the critical inhibitory concentration of different iron minerals on conjugation. Our findings indicate natural colloidal minerals have great potential for applications in preventing the environmental propagation of ARGs through interfacial interactions.202235472548
6770110.9998Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera. BACKGROUND: Antibiotic resistance poses an increasing threat to public health. Horizontal gene transfer (HGT) promoted by antibiotics is recognized as a significant pathway to disseminate antibiotic resistance genes (ARGs). However, it is unclear whether non-antibiotic, anti-microbial (NAAM) chemicals can directly promote HGT of ARGs in the environment. OBJECTIVES: We aimed to investigate whether triclosan (TCS), a widely-used NAAM chemical in personal care products, is able to stimulate the conjugative transfer of antibiotic multi-resistance genes carried by plasmid within and across bacterial genera. METHODS: We established two model mating systems, to investigate intra-genera transfer and inter-genera transfer. Escherichia coli K-12 LE392 carrying IncP-α plasmid RP4 was used as the donor, and E. coli K-12 MG1655 or Pseudomonas putida KT2440 were the intra- and inter-genera recipients, respectively. The mechanisms of the HGT promoted by TCS were unveiled by detecting oxidative stress and cell membrane permeability, in combination with Nanopore sequencing, genome-wide RNA sequencing and proteomic analyses. RESULTS: Exposure of the bacteria to environmentally relevant concentrations of TCS (from 0.02 μg/L to 20 μg/L) significantly stimulated the conjugative transfer of plasmid-encoded multi-resistance genes within and across genera. The TCS exposure promoted ROS generation and damaged bacterial membrane, and caused increased expression of the SOS response regulatory genes umuC, dinB and dinD in the donor. In addition, higher expression levels of ATP synthesis encoding genes in E. coli and P. putida were found with increased TCS dosage. CONCLUSIONS: TCS could enhance the conjugative ARGs transfer between bacteria by triggering ROS overproduction at environmentally relevant concentrations. These findings improve our awareness of the hidden risks of NAAM chemicals on the spread of antibiotic resistance.201830389380
6768120.9998Biofilm formation mechanisms of mixed antibiotic-resistant bacteria in water: Bacterial interactions and horizontal transfer of antibiotic-resistant plasmids. Over 95 % of bacteria on water supply pipeline surfaces exist in biofilms, which are hotspots for antibiotic resistance gene (ARG) transmission. This study established mixed biofilm culture systems on a metal iron substrate using Escherichia coli: antibiotic-sensitive bacteria (ASB) and antibiotic-resistant bacteria (ARB). The growth rate and extracellular polymeric substances (EPS) content of mixed biofilm surpassed single-species biofilms due to synergistic interactions among different bacteria. However, the composition of mixed biofilms formed by ASB and ARB became unstable after 72 h, linked to reduced polysaccharide proportions in EPS and inter-bacterial competition. The bacterial composition and conjugative transfer frequency of ARGs in mixed biofilms indicate that biofilm formation significantly enhances horizontal transfer of ARGs. Notably, the conjugative transfer frequency of the mixed biofilm formed by two ARB increased 100-fold within five days. In contrast, the conjugative transfer frequency in the mixed biofilm formed by ASB and ARB was unstable; inter-bacterial competition led to plasmid loss associated with horizontal transfer of ARGs, ultimately resulting in biofilm shedding. Furthermore, genes associated with ARG transfer and biofilm growth up-regulated by 1.5 - 6 and 2 - 7 times, respectively, in mixed biofilm. These findings highlight a mutually reinforcing relationship between biofilm formation and horizontal ARG transmission, with significant environmental implications.202539566460
6751130.9998Assessment of chlorine and hydrogen peroxide on airborne bacteria: Disinfection efficiency and induction of antibiotic resistance. Airborne pathogens severely threaten public health worldwide. Air disinfection is essential to ensure public health. However, excessive use of disinfectants may endanger environmental and ecological security due to the residual disinfectants and their by-products. This study systematically evaluated disinfection efficiency, induction of multidrug resistance, and the underlying mechanisms of disinfectants (NaClO and H(2)O(2)) on airborne bacteria. The results showed that airborne bacteria were effectively inactivated by atomized NaClO (>160 μg/L) and H(2)O(2) (>320 μg/L) after 15 min. However, some bacteria still survived after disinfection by atomized NaClO (0-80 μg/L) and H(2)O(2) (0-160 μg/L), and they exhibited significant increases in antibiotic resistance. The whole-genome sequencing of the resistant bacteria revealed distinct mutations that were responsible for both antibiotic resistance and virulence. This study also provided evidences and insights into possible mechanisms underlying the induction of antibiotic resistance by air disinfection, which involved intracellular reactive oxygen species formation, oxidative stress responses, alterations in bacterial membranes, activation of efflux pumps, and the thickening of biofilms. The present results also shed light on the role of air disinfection in inducing antibiotic resistance, which could be a crucial factor contributing to the global spread of antibiotic resistance through the air.202438823102
8508140.9998Phenolic compounds promote the horizontal transfer of antibiotic resistance genes in activated sludge. Phenolic compounds are common organic pollutants in wastewater. During the wastewater treatment process, these compounds may influence the microbial community structure and functions. However, the impact of the phenolic compounds in the wastewater treatment plants on the horizontal transfer of antibiotic resistance genes (ARGs) has not been well assessed. In this study, we investigated the horizontal transfer of ARGs under the stress of phenolic compounds. The results showed that in pure culture bacteria system, p-nitrophenol (PNP), p-aminophenol (PAP) and phenol (PhOH) (10-100 mg/L) can significantly increase the horizontal transfer frequency of ARGs by 2.2-4.6, 3.6-9.4 and 1.9-9.0 fold, respectively. And, the RP4 plasmid transfer from Escherichia coli HB101 (E. coli HB101) to the bacteria in activated sludge increased obviously under the stress of phenolic compounds. Further investigation revealed that the PNP and PhOH at the concentration of 10-100 mg/L increased the production of reactive oxygen species and the permeability of cell membrane in the donor and recipient, which could be the causes of horizontal transfer of RP4 plasmid. In addition, it was also found that PNP, PAP and PhOH stress inhibit the expression of the global regulatory genes korB and trbA in the RP4 plasmid, and increase the expression level of the traF gene, thereby promoting the conjugative transfer of the RP4 plasmid. Taken together, these results improved our understanding of the horizontal transfer of ARGs under the stress of phenolic compounds and provided basic information for management of the systems that treat wastewater containing phenolic compounds.202134392203
6748150.9998Time-dependent effects of ZnO nanoparticles on bacteria in an estuarine aquatic environment. Many studies have examined the acute toxicity of nanoparticles (NPs) towards model bacteria. In this study, we report the time-dependent effects of ZnO NPs on native, selected Zn-resistant and dominant bacteria in estuarine waters. An initial inhibition of bacterial growth followed by a recovery at 24 h was observed, and this rebound phenomenon was particularly notable when the raw water samples were treated with relatively high ZnO NP concentrations (1 and 10 mg/L).By comparing the groups treated with Zn(2+), Zn(2+) was shown to largely explain the acute cytotoxic effect of ZnO NPs on bacteria in raw waters. Furthermore, similar to the native bacteria, especially the dominant bacteria, the viability of Escherichia coli (E. coli) decreased with the increasing treatments time and the concentrations of ZnO NPs in water with different salinities. Moreover, the expression of Zn-resistance genes including zntA and zntR in E. coli suggested that the Zn-resistance system in E. coli can be activated to defend against the stress of Zn(2+) released from ZnO NPs, and salinity may promote this process in estuarine aquatic systems. Thus, the effect of ZnO NPs on bacteria in estuarine water bodies is likely determined by the synergistic effect of environmental salinity and dissolved Zn ions. As such, our findings are of high relevance and importance for understanding the ecological disturbances caused by anthropogenic NPs in estuarine environments.202031505343
7966160.9998How heavy metal stress promotes dissemination of antibiotic resistance genes in the activated sludge process. Heavy metals have been recently revealed as promoters to antibiotic resistance gene (ARG) dissemination in water environment, but their influence on ARG transfer in the activated sludge process has not been clear. In this study, a set of sequencing batch reactors (SBRs) and micro-scale microfluidic chips were established to quantify the impacts of heavy metals (0.5 mM of Pb, 0.1 mM of As, and 0.005 mM of Hg) on the ARG spreading in the activated sludge consortium. Under heavy metal stress, transfer frequencies were 1.7-3.6 folds increase compared to the control. Gram-negative bacteria increased significantly after heavy metal added, which were more prone to receiving resistant plasmid from donors. Meanwhile, the relative expression of genes related to conjugation changed in activated sludge, especially the expression of outer membrane protein and oxidative stress regulatory genes increased by 2.9-7.4 folds and 7.8-13.1 folds, respectively. Furthermore, using microfluidic chips, the dynamics of ARG transfer was observed at single cell level under heavy metal pressure. Heavy metals firstly promoted conjugation and then vertical gene transfer played an important part for ARG spreading. The results provided in-depth understanding of the influence of heavy metals on ARG behavior in the environment.202235724617
7845170.9998Mechanism and potential risk of antibiotic resistant bacteria carrying last resort antibiotic resistance genes under electrochemical treatment. The significant rise in the number of antibiotic resistance genes (ARGs) that resulted from our abuse of antibiotics could do severe harm to public health as well as to the environment. We investigated removal efficiency and removal mechanism of electrochemical (EC) treatment based on 6 different bacteria isolated from hospital wastewater carrying 3 last resort ARGs including NDM-1, mcr-1 and tetX respectively. We found that the removal efficiency of ARGs increased with the increase of both voltage and electrolysis time while the maximum removal efficiency can reach 90%. The optimal treatment voltage and treatment time were 3 V and 120 min, respectively. Temperature, pH and other factors had little influence on the EC treatment process. The mechanism of EC treatment was explored from the macroscopic and microscopic levels by scanning electron microscopy (SEM) and flow cytometry. Our results showed that EC treatment significantly changed the permeability of cell membrane and caused cells successively experience early cell apoptosis, late cell apoptosis and cell necrosis. Moreover, compared with traditional disinfection methods, EC treatment had less potential risks. The conjugative transfer frequencies of cells were significantly reduced after treatment. Less than 1% of bacteria entered the viable but nonculturable (VBNC) state and less than 5% of intracellular ARGs (iARGs) turned into extracellular ARGs (eARGs). Our findings provide new insights into as well as important reference for future electrochemical treatment in removing ARB from hospital wastewater.202235085630
8499180.9998Inhibited conjugative transfer of antibiotic resistance genes in antibiotic resistant bacteria by surface plasma. Antibiotic resistant bacteria (ARB) and resistance genes (ARGs) are emerging environmental pollutants with strong pathogenicity. In this study, surface plasma was developed to inactivate the donor ARB with Escherichia coli (AR E. coli) as a model, eliminate ARGs, and inhibit conjugative transfer of ARGs in water, highlighting the influences of concomitant inorganic ions. Surface plasma oxidation significantly inactivated AR E. coli, eliminated ARGs, and inhibited conjugative transfer of ARGs, and the presence of NO(3)(-), Cu(2+), and Fe(2+) all promoted these processes, and SO(4)(2-) did not have distinct effect. Approximately 4.5log AR E. coli was inactivated within 10 min treatment, and it increased to 7.4log AR E. coli after adding Fe(2+). Integrons intI1 decreased by 3.10log (without Fe(2+)) and 4.43log (adding Fe(2+)); the addition of Fe(2+) in the surface plasma induced 99.8% decline in the conjugative transfer frequency. The inhibition effects on the conjugative transfer of ARGs were mainly attributed to the reduced reactive oxygen species levels, decreased DNA damage-induced response, decreased intercellular contact, and down-regulated expression of plasmid transfer genes. This study disclosed underlying mechanisms for inhibiting ARGs transfer, and supplied a prospective technique for ARGs control.202134536683
7630190.9998Coexistence of silver ion and tetracycline at environmentally relevant concentrations greatly enhanced antibiotic resistance gene development in activated sludge bioreactor. Antibiotic resistance has become a global public health problem. Recently, various environmental pollutants have been reported to induce the proliferation of antibiotic resistance. However, the impact of multiple pollutants (e.g., heavy metals and antibiotics), which more frequently occur in practical environments, is poorly understood. Herein, one widely distributed heavy metal (Ag(+)) and one frequently detected antibiotic (tetracycline) were chosen to investigate their coexisting effect on the proliferation of antibiotic resistance in the activated sludge system. Results show that the co-occurrence of Ag(+) and tetracycline at environmentally relevant concentrations exhibited no distinct inhibition in reactor performances. However, they inhibited the respiratory activity by 42%, destroyed the membrane structure by 218%, and increased membrane permeability by 29% compared with the blank control bioreactor. Moreover, the relative abundances of target antibiotic resistance genes (ARGs) (e.g., tetA, bla(TEM-1), and sulII) in effluent after exposure of coexisting Ag(+) and tetracycline were increased by 92-1983% compared with those in control reactor, which were 1.1-4.3 folds higher than the sum of the sole ones. These were possibly attributed to the enrichments of antibiotic-resistant bacteria. The results would illumine the coexisting effect of heavy metals and antibiotics on the dissemination of ARGs in activated sludge system.202234482077