# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6757 | 0 | 1.0000 | Survival of coliforms and bacterial pathogens within protozoa during chlorination. The susceptibility of coliform bacteria and bacterial pathogens to free chlorine residuals was determined before and after incubation with amoebae and ciliate protozoa. Viability of bacteria was quantified to determine their resistance to free chlorine residuals when ingested by laboratory strains of Acanthamoeba castellanii and Tetrahymena pyriformis. Cocultures of bacteria and protozoa were incubated to facilitate ingestion of the bacteria and then were chlorinated, neutralized, and sonicated to release intracellular bacteria. Qualitative susceptibility of protozoan strains to free chlorine was also assessed. Protozoa were shown to survive and grow after exposure to levels of free chlorine residuals that killed free-living bacteria. Ingested coliforms Escherichia coli, Citrobacter freundii, Enterobacter agglomerans, Enterobacter cloacae, Klebsiella pneumoniae, and Klebsiella oxytoca and bacterial pathogens Salmonella typhimurium, Yersinia enterocolitica, Shigella sonnei, Legionella gormanii, and Campylobacter jejuni had increased resistance to free chlorine residuals. Bacteria could be cultured from within treated protozoans well after the time required for 99% inactivation of free-living cells. All bacterial pathogens were greater than 50-fold more resistant to free chlorine when ingested by T. pyriformis. Escherichia coli ingested by a Cyclidium sp., a ciliate isolated from a drinking water reservoir, were also shown to be more resistant to free chlorine. The mechanism that increased resistance appeared to be survival within protozoan cells. This study indicates that bacteria can survive ingestion by protozoa. This bacterium-protozoan association provides bacteria with increased resistance to free chlorine residuals which can lead to persistence of bacteria in chlorine-treated water. We propose that resistance to digestion by predatory protozoa was an evolutionary precursor of pathogenicity in bacteria and that today it is a mechanism for survival of fastidious bacteria in dilute and inhospitable aquatic environments. | 1988 | 3223766 |
| 6747 | 1 | 0.9996 | Tetracycline accumulation in biofilms enhances the selection pressure on Escherichia coli for expression of antibiotic resistance. Microorganisms are present as either biofilm or planktonic species in natural and engineered environments. Little is known about the selection pressure emanating from exposure to sub-minimal inhibitory concentration of antibiotics on planktonic vs. biofilm bacteria. In this study, an E. coli bioreporter was used to develop biofilms on glass and high-density polyethylene (HDPE) surfaces, and compared with the corresponding planktonic bacteria in antibiotic resistance expression when exposed to a range of μg/L levels of tetracycline. The antibiotic resistance-associated fluorescence emissions from biofilm E. coli reached up to 1.6 times more than those from planktonic bacteria. The intensively developed biofilms on glass surfaces caused the embedded bacteria to experience higher selection pressure and express more antibiotic resistance than those on HDPE surfaces. The temporal pattern of fluorescence emissions from biofilm E. coli was consistent with the biofilm-developing processes during the experimental period. The increased expression of antibiotic resistance from biofilm bacteria could be attributed to the high affinity of tetracycline with extracellular polymeric substances (EPS). The enhanced accumulation of tetracycline in biofilms could exert higher selection pressure on the embedded bacteria. These results suggest that in many natural and engineered systems the higher antibiotic resistance in biofilm bacteria could be attributed partially to the retention antibiotics by the EPS in biofilms. | 2023 | 36252660 |
| 3804 | 2 | 0.9996 | Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilm-bound bacteria: effects of substrate loading and antibiotic selection. Biofilms cause much of all human microbial infections. Attempts to eradicate biofilm-based infections rely on disinfectants and antibiotics. Unfortunately, biofilm bacteria are significantly less responsive to antibiotic stressors than their planktonic counterparts. Sublethal doses of antibiotics can actually enhance biofilm formation. Here, we have developed a non-invasive microscopic image analyses to quantify plasmid conjugation within a developing biofilm. Corroborating destructive samples were analyzed by a cultivation-independent flow cytometry analysis and a selective plate count method to cultivate transconjugants. Increases in substrate loading altered biofilm 3-D architecture and subsequently affected the frequency of plasmid conjugation (decreases at least two times) in the absence of any antibiotic selective pressure. More importantly, donor populations in biofilms exposed to a sublethal dose of kanamycin exhibited enhanced transfer efficiency of plasmids containing the kanamycin resistance gene, up to tenfold. However, when stressed with a different antibiotic, imipenem, transfer of plasmids containing the kan(R+) gene was not enhanced. These preliminary results suggest biofilm bacteria "sense" antibiotics to which they are resistant, which enhances the spread of that resistance. Confocal scanning microscopy coupled with our non-invasive image analysis was able to estimate plasmid conjugative transfer efficiency either averaged over the entire biofilm landscape or locally with individual biofilm clusters. | 2013 | 22669634 |
| 3843 | 3 | 0.9995 | Bacterivorous Ciliate Tetrahymena pyriformis Facilitates vanA Antibiotic Resistance Gene Transfer in Enterococcus faecalis. Background: Wastewater treatment plants (WWTPs) are hotspots for the emergence and spread of antibiotic resistance genes (ARGs). In activated sludge treatment systems, bacterivorous protozoa play a crucial role in biological processes, yet their impact on the horizontal gene transfer in Gram-positive enteric bacteria remains largely unexplored. This study investigated whether the ciliate Tetrahymena pyriformis facilitates the transfer of antibiotic resistance genes between Enterococcus faecalis strains. Methods: Conjugation assays were conducted under laboratory conditions using a vanA-carrying donor and a rifampicin-resistant recipient at an initial bacterial concentration of 10(9) CFU/mL and ciliate density of 10(5) N/mL. Results: Transconjugant numbers peaked at 2 h when experiments started with recipient bacteria harvested in the exponential growth phase, and at 24 h when bacteria were in the stationary phase. In both cases, vanA gene transfer frequency was highest at 24 h (10(-4)-10(-5) CFU/mL), and the presence of energy sources increased gene transfer frequency by one order of magnitude. Conclusions: These findings suggest that ciliate grazing may contribute to vanA gene transfer in WWTP effluents, potentially facilitating its dissemination among permissive bacteria. Given the ecological and public health risks associated with vanA gene persistence in wastewater systems, understanding protozoan-mediated gene transfer is crucial for mitigating the spread of antibiotic resistance in aquatic environments. | 2025 | 40426515 |
| 6750 | 4 | 0.9995 | Viable but non-culturable E. coli induced by low level chlorination have higher persistence to antibiotics than their culturable counterparts. Disinfectant used in drinking water treatment and distribution system can induce culturable bacteria, including various kinds of pathogenic bacteria, into viable but non-culturable (VBNC) state. The loss of cultural state, resuscitation and environmental persistence of VBNC bacteria will severely damage drinking water microbiological safety and thus pose a risk to public health. The manner in which chlorination treatment induced a VBNC state in Escherichia coli and the antibiotic persistence of VBNC bacteria was investigated. It was found that low dosage of chlorine (0.5 mg L(-1)) disinfection effectively reduced the culturability of E. coli and induced a VBNC state, after which metabolic activity was reduced and persistence to 9 typical antibiotics was enhanced. Furthermore, RT-qPCR results showed that stress resistance genes (rpoS, marA, ygfA, relE) and ARGs, especially efflux genes were up-regulated compared with culturable cells. The intracellular concentration was tested and found to be lower in VBNC cells than in actively growing E. coli, which suggested a higher efflux rate. The data presented indicate that VBNC E. coli are more persistent than culturable counterparts to a wide variety of antibiotics. VBNC E. coli constitute a potential source of contamination and should be considered during monitoring of drinking water networks. | 2017 | 28662489 |
| 8952 | 5 | 0.9995 | Correlation between the development of phage resistance and the original antibiotic resistance of host bacteria under the co-exposure of antibiotic and bacteriophage. Bacteriophages (phages) are viruses capable of regulating the proliferation of antibiotic resistant bacteria (ARB). However, phages that directly cause host lethality may quickly select for phage resistant bacteria, and the co-evolutionary trade-offs under varying environmental conditions, including the presence of antibiotics, remains unclear as to their impact on phage and antibiotic resistance. Here, we report the emergence of phage resistance in three distinct E. coli strains with varying resistance to β-lactam antibiotics, treated with different ampicillin (AMP) concentrations. Hosts exhibiting stronger antibiotic resistance demonstrated a higher propensity to develop and maintain stable phage resistance. When exposed to polyvalent phage KNT-1, the growth of AMP-sensitive E. coli K12 was nearly suppressed within 18 h, while the exponential growth of AMP-resistant E. coli TEM and super-resistant E. coli NDM-1 was delayed by 12 h and 8 h, respectively. The mutation frequency and mutated colony count of E. coli NDM-1 were almost unaffected by co-existing AMP, whereas for E. coli TEM and K12, these metrics significantly decreased with increasing AMP concentration from 8 to 50 μg/mL, becoming unquantifiable at 100 μg/mL. Furthermore, the fitness costs of phage resistance mutation and its impact on initial antibiotic resistance in bacteria were further examined, through analyzing AMP susceptibility, biofilm formation and EPS secretion of the isolated phage resistant mutants. The results indicated that acquiring phage resistance could decrease antibiotic resistance, particularly for hosts lacking strong antibiotic resistance. The ability of mutants to form biofilm contributes to antibiotic resistance, but the correlation is not entirely positive, while the secretion of extracellular polymeric substance (EPS), especially the protein content, plays a crucial role in protecting the bacteria from both antibiotic and phage exposure. This study explores phage resistance development in hosts with different antibiotic resistance and helps to understand the limitations and possible solutions of phage-based technologies. | 2024 | 38631474 |
| 4732 | 6 | 0.9995 | A Comparison of Antibiotics' Resistance Patterns of E. coli and B. subtilis in their Biofilms and Planktonic Forms. BACKGROUND: A biofilm refers to a community of microbial cells that adhere to surfaces that are surrounded by an extracellular polymeric substance. Bacteria employ various defence mechanisms, including biofilm formation, to enhance their survival and resistance against antibiotics. OBJECTIVE: The current study aims to investigate the resistance patterns of Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) in both biofilms and their planktonic forms. METHODS: E. coli and B. subtilis were used to compare resistance patterns in biofilms versus planktonic forms of bacteria. An antibiotic disc diffusion test was performed to check the resistance pattern of biofilm and planktonic bacteria against different antibiotics such as penicillin G, streptomycin, and ampicillin. Biofilm formation and its validation were done by using quantitative (microtiter plate assay) and qualitative analysis (Congo red agar media). RESULTS: A study of surface-association curves of E. coli and B. subtilis revealed that surface adhesion in biofilms was continuously constant as compared to their planktonic forms, thereby confirming the increased survival of bacteria in biofilms. Also, biofilms have shown high resistance towards the penicillin G, ampicillin and streptomycin as compared to their planktonic form. CONCLUSION: It is safely inferred that E. coli and B. subtilis, in their biofilms, become increasingly resistant to penicillin G, ampicillin and streptomycin. | 2025 | 39092644 |
| 8955 | 7 | 0.9995 | Increasing resistance of planktonic and biofilm cultures of Burkholderia cepacia to ciprofloxacin and ceftazidime during exponential growth. The change in resistance of Burkholderia cepacia to ceftazidime and to ciprofloxacin during the exponential phase and up to the onset of stationary phase was assessed along the growth curve in batch culture. B. cepacia was grown in planktonic culture and in a biofilm on a membrane support. Resistance increased progressively during the exponential phase, being increased by ten-fold about every four generations. Bacteria grown in a biofilm were about 15 times more resistant than equivalent planktonic-grown bacteria. The growth rate was not the key factor for the development of resistance. The growth phase and the mode of growth have a fundamental impact on the susceptibility of B. cepacia towards antimicrobial agents. Bacteria growing at the same rate may differ greatly in their resistance to antimicrobial agents. | 1998 | 9738832 |
| 3790 | 8 | 0.9995 | Acanthamoeba castellanii Can Facilitate Plasmid Transfer Between Environmental Pseudomonas spp. The conditions in which antimicrobial resistance (AMR) genes are transferred in natural environments are poorly understood. Acanthamoeba castellanii (a cosmopolitan environmental amoeba) feeds on bacteria by phagocytosis, which places the consumed bacteria closely together in a food vacuole (phagosome) of the amoeba. This way, amoebae can facilitate genetic exchanges between intra-amoebal bacteria. We studied this phenomenon in the clinically relevant bacteria Pseudomonas oleovorans and Pseudomonas aeruginosa (strain 957). The internalization of both the plasmid donor and recipient bacteria was shown by confocal microscopy. In seven independent experiments, an on average 12-fold increase in transfer of the bla(VIM-2) gene between these two Pseudomonas strains was observed in the presence of A. castellanii compared to its absence. Negligible or no plasmid transfer was observed from P. oleovorans to 18 other investigated strains of P. aeruginosa. AMR gene transfer via plasmids between Pseudomonas species is highly strain-dependent and A. castellanii can substantially enhance plasmid transfer. This process of plasmid transfer might also occur between other bacteria and predatory protozoa, such as amoebae that reside in the gut of humans and animals. | 2025 | 40350664 |
| 8954 | 9 | 0.9995 | Effect of biofilm formation by antimicrobial-resistant gram-negative bacteria in cold storage on survival in dairy processing lines. Antimicrobial-resistant gram-negative bacteria in dairy products can transfer antimicrobial resistance to gut microbiota in humans and can adversely impact the product quality. In this study, we aimed to investigate their distribution in dairy processing lines and evaluate biofilm formation and heat tolerance under dairy processing line-like conditions. Additionally, we compared the relative expression of general and heat stress-related genes as well as spoilage-related gene between biofilm and planktonic cells under consecutive stresses, similar to those in dairy processing lines. Most species of gram-negative bacteria isolated from five different dairy processing plants were resistant to one or more antimicrobials. Biofilm formation by the bacteria at 5 °C increased with the increase in exposure time. Moreover, cells in biofilms remained viable under heat treatment, whereas all planktonic cells of the selected strains died. The expression of heat-shock-related genes significantly increased with heat treatment in the biofilms but mostly decreased in the planktonic cells. Thus, biofilm formation under raw milk storage conditions may improve the tolerance of antimicrobial-resistant gram-negative bacteria to pasteurization, thereby increasing their persistence in dairy processing lines and products. Furthermore, the difference in response to heat stress between biofilm and planktonic cells may be attributed to the differential expression of heat stress-related genes. Therefore, this study contributes to the understanding of how gram-negative bacteria persist under consecutive stresses in dairy processing procedures and the potential mechanism underlying heat tolerance in biofilms. | 2023 | 36436412 |
| 3792 | 10 | 0.9995 | Transfer and expression of a multiple antibiotic resistance plasmid in marine bacteria. Conjugal transfer of a multiresistance plasmid from Pseudomonas fluorescens to halophilic and halotolerant bacteria was studied under in vitro and in situ conditions. Mating conducted in broth as well as on plates yielded a plasmid transfer frequency of as high as 10(-3). Among these two, plate mating facilitated conjugal transfer of plasmid, because the cell-to-cell contact is more in plate mating. When P. fluorescens was incubated in seawater, the organism progressively lost its colony forming activity within 15 days. Microscopic examination revealed the presence of very short rods, indicating that the cells have become viable but nonculturable (VNC). Mating conducted in natural seawater without any added nutrients revealed that the conjugal transfer is influenced by the physical state of the donor and the recipients as well as the availability of nutrients. But a plasmid transfer frequency of 10(-7) was obtained even after the donor cells have become VNC suggesting that the nonculturable state and nutrient deprived condition may not limit plasmid transfer. The results suggest that the terrestrial bacteria entering into the seawaters with antibiotic resistance plasmids may be responsible for the prevalence of resistance genes in the marine environment. | 1998 | 9767716 |
| 3803 | 11 | 0.9995 | Modeling Antibiotic Concentrations in the Vicinity of Antibiotic-Producing Bacteria at the Micron Scale. It is generally thought that antibiotics confer upon the producing bacteria the ability to inhibit or kill neighboring microorganisms, thereby providing the producer with a significant competitive advantage. Were this to be the case, the concentrations of emitted antibiotics in the vicinity of producing bacteria might be expected to fall within the ranges of MICs that are documented for a number of bacteria. Furthermore, antibiotic concentrations that bacteria are punctually or chronically exposed to in environments harboring antibiotic-producing bacteria might fall within the range of minimum selective concentrations (MSCs) that confer a fitness advantage to bacteria carrying acquired antibiotic resistance genes. There are, to our knowledge, no available in situ measured antibiotic concentrations in the biofilm environments that bacteria typically live in. The objective of the present study was to use a modeling approach to estimate the antibiotic concentrations that might accumulate in the vicinity of bacteria that are producing an antibiotic. Fick's law was used to model antibiotic diffusion using a series of key assumptions. The concentrations of antibiotics within a few microns of single producing cells could not reach MSC (8 to 16 μg/L) or MIC (500 μg/L) values, whereas the concentrations around aggregates of a thousand cells could reach these concentrations. The model outputs suggest that single cells could not produce an antibiotic at a rate sufficient to achieve a bioactive concentration in the vicinity, whereas a group of cells, each producing the antibiotic, could do so. IMPORTANCE It is generally assumed that a natural function of antibiotics is to provide their producers with a competitive advantage. If this were the case, sensitive organisms in proximity to producers would be exposed to inhibitory concentrations. The widespread detection of antibiotic resistance genes in pristine environments suggests that bacteria are indeed exposed to inhibitory antibiotic concentrations in the natural world. Here, a model using Fick's law was used to estimate potential antibiotic concentrations in the space surrounding producing cells at the micron scale. Key assumptions were that per-cell production rates drawn from the pharmaceutical manufacturing industry are applicable in situ, that production rates were constant, and that produced antibiotics are stable. The model outputs indicate that antibiotic concentrations in proximity to aggregates of a thousand cells can indeed be in the minimum inhibitory or minimum selective concentration range. | 2023 | 36975795 |
| 6753 | 12 | 0.9995 | Survival of subsurface microorganisms exposed to UV radiation and hydrogen peroxide. Aerobic and microaerophilic subsurface bacteria were screened for resistance to UV light. Contrary to the hypothesis that subsurface bacteria should be sensitive to UV light, the organisms studied exhibited resistance levels as efficient as those of surface bacteria. A total of 31% of the aerobic subsurface isolates were UV resistant, compared with 26% of the surface soil bacteria that were tested. Several aerobic, gram-positive, pigmented, subsurface isolates exhibited greater resistance to UV light than all of the reference bacterial strains tested except Deinococcus radiodurans. None of the microaerophilic, gram-negative, nonpigmented, subsurface isolates were UV resistant; however, these isolates exhibited levels of sensitivity similar to those of the gram-negative reference bacteria Escherichia coli B and Pseudomonas fluorescens. Photoreactivation activity was detected in three subsurface isolates, and strain UV3 exhibited a more efficient mechanism than E. coli B. The peroxide resistance of four subsurface isolates was also examined. The aerobic subsurface bacteria resistant to UV light tolerated higher levels of H2O2 than the microaerophilic organisms. The conservation of DNA repair pathways in subsurface microorganisms may be important in maintaining DNA integrity and in protecting the organisms against chemical insults, such as oxygen radicals, during periods of slow growth. | 1993 | 8285661 |
| 8956 | 13 | 0.9995 | Biofilm characteristics and transcriptomic profiling of Acinetobacter johnsonii defines signatures for planktonic and biofilm cells. Most bacteria in the natural environment have a biofilm mode of life, which is intrinsically tolerant to antibiotics. While until now, the knowledge of biofilm formation by Acinetobacter johnsonii is not well understood. In this study, the characteristics and the effect of a sub-inhibitory concentration of antibiotic on A. johnsonii biofilm and planktonic cells were determined. We discovered a positive relationship between biofilm formation and tetracycline resistance, and biofilms rapidly evolve resistance to tetracycline they are treated with. Persister cells commonly exist in both planktonic and biofilm cells, with a higher frequency in the latter. Further transcriptomic analysis speculates that the overexpression of multidrug resistance genes and stress genes were mainly answered to sub lethal concentration of tetracycline in planktonic cells, and the lower metabolic levels after biofilm formation result in high resistance level of biofilm cells to tetracycline. Altogether, these data suggest that A. johnsonii can adjust its phenotype when grown as biofilm and change its metabolism under antibiotic stress, and provide implications for subsequent biofilm control. | 2022 | 35718162 |
| 6743 | 14 | 0.9995 | Impact of acute and chronic exposure to sulfamethoxazole on the kinetics and microbial structure of an activated sludge community. The aim of this study was to reveal the microbial and kinetic impacts of acute and chronic exposure to one of the frequently administered antibiotics, i.e., sulfamethoxazole, on an activated sludge biomass. Respirometric analysis and model evaluation of the oxygen utilization rate profiles were the backbone of this study. The results showed that continuous exposure to sulfamethoxazole resulted in the inhibition of substrate storage and an increase in the endogenous decay rates by twofold, which was supported by analysis of the resistance genes. A mild inhibition on the growth and hydrolysis kinetics was also observed. Moreover, sulfamethoxazole had a binding impact with available organic carbon, resulting in a slightly less oxygen consumption. DNA sequencing and antibiotic resistance gene analyses showed that continuous exposure to sulfamethoxazole caused a change in the community structure at the species level. Resistant bacteria including Arthrobacter sp. and members of the Chitinophagaceae and Intrasporangiaceae families were found to have dominated the bacterial community. The impact of intermittent exposure was also investigated, and the results indicated a drop in the severity of the impact after 20 days of intermittence. | 2024 | 39816257 |
| 8953 | 15 | 0.9995 | Evolution of antibiotic resistance impacts optimal temperature and growth rate in Escherichia coli and Staphylococcus epidermidis. AIMS: Bacterial response to temperature changes can influence their pathogenicity to plants and humans. Changes in temperature can affect cellular and physiological responses in bacteria that can in turn affect the evolution and prevalence of antibiotic-resistance genes. Yet, how antibiotic-resistance genes influence microbial temperature response is poorly understood. METHODS AND RESULTS: We examined growth rates and physiological responses to temperature in two species-E. coli and Staph. epidermidis-after evolved resistance to 13 antibiotics. We found that evolved resistance results in species-, strain- and antibiotic-specific shifts in optimal temperature. When E. coli evolves resistance to nucleic acid and cell wall inhibitors, their optimal growth temperature decreases, and when Staph. epidermidis and E. coli evolve resistance to protein synthesis and their optimal temperature increases. Intriguingly, when Staph. epidermidis evolves resistance to Teicoplanin, fitness also increases in drug-free environments, independent of temperature response. CONCLUSION: Our results highlight how the complexity of antibiotic resistance is amplified when considering physiological responses to temperature. SIGNIFICANCE: Bacteria continuously respond to changing temperatures-whether through increased body temperature during fever, climate change or other factors. It is crucial to understand the interactions between antibiotic resistance and temperature. | 2022 | 36070219 |
| 6781 | 16 | 0.9995 | Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation: Implications from oxidative stress and gene expression. Due to the significant public health risks, there is substantial scientific interest in the increasing abundance of antibiotic-resistance bacteria (ARB) and the spread of antibiotic-resistance genes (ARGs) in aquatic environments. To clearly understand the mechanism of ARG transfer, this study examined the conjugative transfer of genes encoding resistance to cephalosporin (bla(CTX)) and polymyxin (mcr-1) from two antibiotic-resistant donor strains, namely E. coli DH5α (CTX) and E. coli DH5α (MCR), and to a streptomycin-resistant receptor strain (E. coli C600 (Sm)). Conjugative transfer was specifically studied under different light irradiation conditions including visible light (VL), simulated sunlight (SS) and ultraviolet light (UV(254nm)). Results show that the conjugative transfer frequency was not affected by VL irradiation, while it was slightly improved (2-10 fold) by SS irradiation and extremely accelerated (up to 100 fold) by UV irradiation. Furthermore, this study also explored the link between ARG transfer and stress conditions. This was done by studying physiological and biochemical changes; oxidative stress response; and functional gene expression of co-cultured AR-E. coli strains under stress conditions. When correlated with the transfer frequency results, we found that VL irradiation did not affect the physiological and biochemical characteristics of the bacteria, or induce oxidative stress and gene expression. For SS irradiation, oxidative stress occurred slowly, with a slight increase in the expression of target genes in the bacterial cells. In contrast, UV irradiation, rapidly inactivated the bacteria, the degree of oxidative stress was very severe and the expression of the target genes was markedly up-regulated. Our study could provide new insight into the underlying mechanisms and links between accelerated conjugative transfer and oxidative stress, as well as the altered expression of genes relevant to conjugation and other stress responses in bacterial cells. | 2019 | 30465986 |
| 3793 | 17 | 0.9995 | Physicochemical Factors That Favor Conjugation of an Antibiotic Resistant Plasmid in Non-growing Bacterial Cultures in the Absence and Presence of Antibiotics. Horizontal gene transfer (HGT) of antibiotic resistance genes has received increased scrutiny from the scientific community in recent years owing to the public health threat associated with antibiotic resistant bacteria. Most studies have examined HGT in growing cultures. We examined conjugation in growing and non-growing cultures of E. coli using a conjugative multi antibiotic and metal resistant plasmid to determine physiochemical parameters that favor horizontal gene transfer. The conjugation frequency in growing and non-growing cultures was generally greater under shaken than non-shaken conditions, presumably due to increased frequency of cell collisions. Non-growing cultures in 9.1 mM NaCl had a similar conjugation frequency to that of growing cultures in Luria-Bertaini broth, whereas those in 1 mM or 90.1 mM NaCl were much lower. This salinity effect on conjugation was attributed to differences in cell-cell interactions and conformational changes in cell surface macromolecules. In the presence of antibiotics, the conjugation frequencies of growing cultures did not increase, but in non-growing cultures of 9.1 mM NaCl supplemented with Cefotaxime the conjugation frequency was as much as nine times greater than that of growing cultures. The mechanism responsible for the increased conjugation in non-growing bacteria was attributed to the likely lack of penicillin-binding protein 3 (the target of Cefotaxime), in non-growing cells that enabled Cefotaxime to interact with the plasmid and induce conjugation. Our results suggests that more attention may be owed to HGT in non-growing bacteria as most bacteria in the environment are likely not growing and the proposed mechanism for increased conjugation may not be unique to the bacteria/plasmid system we studied. | 2018 | 30254617 |
| 8919 | 18 | 0.9995 | Gene expression in Pseudomonas aeruginosa biofilms. Bacteria often adopt a sessile biofilm lifestyle that is resistant to antimicrobial treatment. Opportunistic pathogenic bacteria like Pseudomonas aeruginosa can develop persistent infections. To gain insights into the differences between free-living P. aeruginosa cells and those in biofilms, and into the mechanisms underlying the resistance of biofilms to antibiotics, we used DNA microarrays. Here we show that, despite the striking differences in lifestyles, only about 1% of genes showed differential expression in the two growth modes; about 0.5% of genes were activated and about 0.5% were repressed in biofilms. Some of the regulated genes are known to affect antibiotic sensitivity of free-living P. aeruginosa. Exposure of biofilms to high levels of the antibiotic tobramycin caused differential expression of 20 genes. We propose that this response is critical for the development of biofilm resistance to tobramycin. Our results show that gene expression in biofilm cells is similar to that in free-living cells but there are a small number of significant differences. Our identification of biofilm-regulated genes points to mechanisms of biofilm resistance to antibiotics. | 2001 | 11677611 |
| 6745 | 19 | 0.9995 | Decreased Antibiotic Susceptibility in Pseudomonas aeruginosa Surviving UV Irradition. Given its excellent performance against the pathogens, UV disinfection has been applied broadly in different fields. However, only limited studies have comprehensively investigated the response of bacteria surviving UV irradiation to the environmental antibiotic stress. Here, we investigated the antibiotic susceptibility of Pseudomonas aeruginosa suffering from the UV irradiation. Our results revealed that UV exposure may decrease the susceptibility to tetracycline, ciprofloxacin, and polymyxin B in the survival P. aeruginosa. Mechanistically, UV exposure causes oxidative stress in P. aeruginosa and consequently induces dysregulation of genes contributed to the related antibiotic resistance genes. These results revealed that the insufficient ultraviolet radiation dose may result in the decreased antibiotic susceptibility in the pathogens, thus posing potential threats to the environment and human health. | 2021 | 33613479 |