Potential regulation of small RNAs on bacterial function activities in pig farm wastewater treatment plants. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
673901.0000Potential regulation of small RNAs on bacterial function activities in pig farm wastewater treatment plants. Small RNAs (sRNAs) are key players in the regulation of bacterial gene expression. However, the distribution and regulatory functions of sRNA in pig farm wastewater treatment plants (WWTPs) remains unknown. In this study, the wastewaters in anoxic and oxic tanks of the WWTPs were collected. The profiles of the community structure, mRNA expression, and sRNA expression of bacteria in pig farm wastewater were investigated using transcriptome sequencing and qPCR. This study demonstrated that there was a higher abundance of sRNA in the pig farm WWTPs and 52 sRNAs were detected. The sRNAs were mainly present in Proteobacteria and Firmicutes, including the potential human pathogenic bacteria (HPB) (Escherichia, Shigella, Bordetella and Morganella), crop pathogen (Pectobacterium) and denitrifying bacteria (Zobellella). And the sRNAs were involved in the bacterial functional activities such as translation, transcription, drug resistance, membrane transport and amino acid metabolism. In addition, most sRNAs had a higher abundance in anoxic tanks which contained a higher abundance of the genes associated with infectious diseases and drug resistance than that in oxic tanks. The results presented here show that in pig farm WWTPs, sRNA played an important role in bacterial function activities, especially the infectious diseases, drug resistance and denitrification, which can provide a new point of penetration for improving the pig farm WWTPs.202032172978
386010.9997Mobility of antibiotic resistance and its co-occurrence with metal resistance in pathogens under oxidative stress. The bacterial communities are challenged with oxidative stress during their exposure to bactericidal antibiotics, metals, and different levels of dissolved oxygen (DO) encountered in diverse environmental habitats. The frequency of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) co-selection is increased by selective pressure posed by oxidative stress. Hence, study of resistance acquisition is important from an evolutionary perspective. To understand the dependence of oxidative stress on the dissemination of ARGs and MRGs through a pathogenic bacterial population, 12 metagenomes belonging to gut, water and soil habitats were evaluated. The metagenome-wide analysis showed the chicken gut to pose the most diverse pool of ARGs (30.4 ppm) and pathogenic bacteria (Simpson diversity = 0.98). The most common types of resistances found in all the environmental samples were efflux pumps (13.22 ppm) and genes conferring resistance to vancomycin (12.4 ppm), tetracycline (12.1 ppm), or beta-lactam (9.4 ppm) antibiotics. Additionally, limiting DO level in soil was observed to increase the abundance of excision nucleases (uvrA and uvrB), DNA polymerase (polA), catalases (katG), and other oxidative stress response genes (OSGs). This was further evident from major variations occurred in antibiotic efflux genes due to the effect of DO concentration on two human pathogens, namely Salmonella enterica and Shigella sonnei found in all the selected habitats. In conclusion, the microbial community, when challenged with oxidative stress caused by environmental variations in oxygen level, tends to accumulate higher amounts of ARGs with increased dissemination potential through triggering non-lethal mutagenesis. Furthermore, the genetic linkage or co-occurrence of ARGs and MRGs provides evidence for selecting ARGs under high concentrations of heavy metals.202134298350
677320.9997Regulation of intracellular process by two-component systems: Exploring the mechanism of plasmid-mediated conjugative transfer. Plasmid-mediated conjugative transfer facilitates the dissemination of antibiotic resistance, yet the comprehensive regulatory mechanisms governing this process remain elusive. Herein, we established pure bacteria and activated sludge conjugation system to investigate the regulatory mechanisms of conjugative transfer, leveraging metformin as an exogenous agent. Transcriptomic analysis unveiled that substantial upregulation of genes associated with the two-component system (e.g., AcrB/AcrA, EnvZ/Omp, and CpxA/CpxR) upon exposure to metformin. Furthermore, downstream regulators of the two-component system, including reactive oxygen species (ROS), cytoplasmic membrane permeability, and adenosine triphosphate (ATP) production, were enhanced by 1.7, 1.4 and 1.1 times, respectively, compared to the control group under 0.1 mg/L metformin exposure. Moreover, flow sorting and high-throughput sequencing revealed increased microbial community diversity among transconjugants in activated sludge systems. Notably, the antibacterial potential of human pathogenic bacteria (e.g., Bacteroides, Escherichia-Shigella, and Lactobacillus) was augmented, posing a potential threat to human health. Our findings shed light on the spread of antibiotic resistance bacteria and assess the ecological risks associated with plasmid-mediated conjugative transfer in wastewater treatment systems.202438838482
963430.9997New perspectives on bacterial chlorine resistance: Phages encoding chlorine resistance genes improve bacterial adaptation. Bacterial resistance to chlorine disinfectant reduces its effectiveness in killing pathogenic bacteria and poses a severe threat to environmental and health safety. The interaction between bacteria and phages is the most frequent biological activity in Earth's biosphere, but little is known about what role and mechanism phages play in the resistance of bacterial communities to chlorine disinfectants. Here, we investigated the changes in the abundance, activity and function of the bacterial-phage community under the effect of chlorine disinfectants in a 92-day running anaerobic-anoxic-oxic system, using metagenomics and metatranscriptomics sequencing. We found that transcriptional activities of both bacteria and phage are highly sensitive to chlorine disinfectants, although their relative abundance was not obviously altered. The increase in both phage diversity and the ratio of temperate to lytic phages' average activity indicated phages, especially temperate, could play a crucial role in the response to chlorine disinfectants. Interestingly, the phages that carry chlorine resistance genes (CRGs) were the drivers of the phage and microbial community when chlorine disinfectants were present, but they followed the dynamics of community in the absence of chlorine disinfectants. Based on the association bipartite network, we further found that phages directly mediated the horizontal transfer of CRGs among bacteria, facilitating the spread of CRGs in the bacterial community. Moreover, the 4 CRGs related to cell wall repair, redox balance regulation, and efflux pumps that were carried by the phages but lacking in the hosts suggest the potential compensatory effects of the phage for the chlorine resistance of their hosts. Our findings reveal the important role of phages in improving the resistance of bacterial communities to chlorine disinfectants, providing a new perspective on the co-evolution of phages and bacteria to adapt to environments.202540245807
729940.9997Short-term exposure to benzalkonium chloride in bacteria from activated sludge alters the community diversity and the antibiotic resistance profile. The continuous introduction of cleaning products containing benzalkonium chloride (BAC) from household discharges can mold the microbial communities in wastewater treatment plants (WWTPs) in a way still poorly understood. In this study, we performed an in vitro exposure of activated sludge from a WWTP in Costa Rica to BAC, quantified the changes in intI1, sul2, and qacE/qacEΔ1 gene profiles, and determined alterations in the bacterial community composition. The analysis of the qPCR data revealed elevated charges of antibiotic resistance genes in the microbial community; after BAC's exposure, a significant increase in the qacE/qacEΔ1 gene, which is related to ammonium quaternary resistance, was observed. The 16S rRNA gene sequences' analysis showed pronounced variations in the structure of the bacterial communities, including reduction of the alpha diversity values and an increase of the relative abundance of Alphaproteobacteria, particularly of Rhodospseudomonas and Rhodobacter. We confirmed that the microbial communities presented high resilience to BAC at the mg/mL concentration, probably due to constant exposure to this pollutant. They also presented antibiotic resistance-related genes with similar mechanisms to tolerate this substance. These mechanisms should be explored more thoroughly, especially in the context of high use of disinfectant.202134874898
762950.9997Graphene oxide in the water environment could affect tetracycline-antibiotic resistance. In recent years, the influence of new materials like nanoparticles in the water environment on biological substances has been widely studied. Antibiotic resistance genes (ARGs) represent a new type of pollutant in the environment. Graphene oxide (GO), as a nano material, because of its unique structure, may have an impact on antibiotic resistance bacteria (ARB) and ARGs; however the research in this area is rarely reported. Therefore, this study mainly investigated the effects of GO on bacterial antibiotic resistance. The results showed that GO had a limited effect on ARB inactivation. A high concentration of GO (>10 mg/L) can damage resistant plasmids to reduce bacterial resistance to antibiotics, but low concentrations of GO (<1 mg/L) led to almost no damage to the plasmid. However, all tested concentrations of GO promoted the conjugative transfer from 1to over 3 folds, with low concentrations and high concentration (1-10 and 100 mg/L) of GO samples the least promoted. The overall effect of GO on antibiotic resistance needs further investigation.201728549325
674660.9997Environmental concentration of the quaternary ammonium disinfectant benzalkonium chloride strongly induces resistance gene profiles in fish. Disinfectants are non-antibiotic biocides that have been used extensively in daily life, particularly since the onset of the COVID-19 pandemic. However, their effect on drug resistance has not received sufficient attention. Here, marine medaka were subjected to an environmental concentration (10 μg/L) of benzalkonium chloride (BAC), sulfamethazine (SMZ), and their combination, aiming to elucidate their contributions to antibiotic resistance. Overall, 10 μg/L BAC exhibited a stronger induction potential for multiple antibiotic resistance genes (ARGs) relative to a similar level of SMZ. Specifically, tetracycline resistance genes were readily induced, regardless of exposure to BAC, SMZ, or their combination. BAC exhibited a more pronounced induction of ARGs than SMZ and showed a stronger potential to stimulate multidrug resistance. SMZ and BAC induced distinct virulence factors. Bacteria increased pathogenicity primarily through biofilm formation and enhanced community sensing under SMZ exposure, whereas iron acquisition and the production of reactive oxygen species appeared to be the main mechanisms by which bacteria evaded host defenses under BAC exposure. A greater number of ARGs demonstrated a significant positive correlation with virulence factors following BAC exposure compared to both the SMZ exposure group and the co-exposure group, which further confirmed the strong ability of BAC to induce multidrug resistance. In summary, owing to the typically unregulated and low-dose use of disinfectants in daily life and their pseudo-persistence in the environment, their potential to induce resistance may exceed that of antibiotics. Therefore, increased attention and preventive measures are required to address their resistance-inducing effects.202540073566
751070.9996Impacts of antibiotics on biofilm bacterial community and disinfection performance on simulated drinking water supply pipe wall. Overuse of antibiotics is accelerating the spread of resistance risk in the environment. In drinking water supply systems, the effect of antibiotics on the resistance of biofilm is unclear, and there have been few studies in disinfectant-containing systems. Here, we designed a series of drinking water supply reactors to investigate the effects of antibiotics on biofilm and bacteria in the water. At low concentrations, antibiotics could promote the growth of bacteria in biofilm; among the tested antibiotics (tetracycline, sulfadiazine and chloramphenicol), tetracycline had the strongest ability to promote this. And the antibiotic resistant bacteria (ARB) could inhibit the growth of bacteria in drinking water. Results have shown that antibiotics enhanced the bacterial chlorine resistance in the effluent, but reduced that in the biofilm. Furthermore, metagenomic analysis showed that antibiotics reduced the richness of biofilm communities. The dominant phyla in the biofilm were Proteobacteria, Planctomycetes, and Firmicutes. In tetracycline-treated biofilm, the dominant phylum was Planctomycetes. In sulfadiazine- and chloramphenicol-treated groups, bacteria with complex cell structures preferentially accumulated. The dominant class in biofilm in the ARB-added group was Gammaproteobacteria. The abundance of antibiotic resistant genes (ARGs) was correlated with biofilm community structure. This study shows that antibiotics make the biofilm community structure of drinking water more resistant to chlorine. ARGs may be selective for certain bacteria in the process, and there may ultimately be enhanced chlorine and antibiotic resistance of effluent bacteria in drinking water.202134256291
385380.9996Co-selection of antibiotic-resistant bacteria in a paddy soil exposed to As(III) contamination with an emphasis on potential pathogens. The increased acquisition of antibiotic resistance by pathogens is a global health concern. The environmental selection of antibiotic resistance can be caused by either antibiotic residues or co-selecting agents such as toxic metal(loid)s. This study explored the potential role of As(III) as a co-selecting driver in the spread of antibiotic resistance in paddy soils. By applying high-throughput sequencing, we found that the diversity and composition of soil microbial communities was significantly altered by As(III) exposure, resulting in an increased proportion of potential pathogens (9.9%) compared to the control soil (0.1%). Meanwhile, a total of 46 As(III)-resistant isolates were obtained from As(III)-exposure soil, among which potential pathogens accounted for 54.3%. These As(III)-resistant bacteria showed a high incidence of resistance to sulfanilamide (100%) and streptomycin (88-93%). The association between antibiotic and As(III) resistances was further investigated in a potentially pathogenic isolate by whole-genome sequencing and a transcription assay. The results showed that As(III) and antibiotic resistance genes might co-occur in a mobile genomic island and be co-regulated by As(III), implying that antibiotic resistance could be co-selected by As(III) via co-resistance and co-regulation mechanisms. Overall, these results suggest that As(III) exposure provides a strong selective pressure for the expansion of soil bacterial resistome.202032302839
674090.9996Metatranscriptomics reveals that plant tannins regulate the expression of intestinal antibiotic resistance genes in Qinghai voles (Neodon fuscus). Antibiotic resistance genes (ARGs) are a persistent harmful environmental pollutant, epidemic of ARGs thought to be a result of antibiotic misuse. Tannin acid (TA) is a natural plant compounds with bactericidal properties. Nowadays, TA is considered to be a potential replacement of antibiotics. However, the role of TA on ARGs is also not yet clear. To address this knowledge gap, we fed the model plateau animal Qinghai voles (Neodon fuscus) with different concentrations of TA. We used 16S rDNA sequencing for revealing total bacteria, 16S rRNA sequencing for revealing active bacteria, and metatranscriptomics (active function) sequencing for revealing ARGs and other functions. Our results showed that although TA reduced macrolide ARGs, TA group enriched 6-fold for tetracycline ARGs, 3-fold for multidrug ARGs, and 5-fold for aminoglycoside ARGs compared with control group. Moreover, TA reduced animal growth performance, and regulated gut microbiome more stable by improving microbial diversity. And TA promoted the production of short-chain fatty acids by gut microbes, such as lactate and acetate. This study reveals modulation of ARGs and gut microbiome by TA and also provides scientific value for the proper use of TA in feed and medical treatment.202539952456
8983100.9996Chlorine disinfectants promote microbial resistance in Pseudomonas sp. The substantial use of disinfectants has increased antibiotic resistance, thereby mediating serious ecological safety issues worldwide. Accumulating studies have reported the role of chlorine disinfectants in promoting disinfectant resistance. The present study sought to investigate the role of chlorine disinfectants in developing multiple resistance in Pseudomonas sp. isolated from the river through antioxidant enzyme measurement, global transcriptional analyses, Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results demonstrated that 100 mg/L sodium hypochlorite could increase disinfectant resistance and antibiotic resistance. The SOS response (a conserved response to DNA damage) triggered by oxidative stress makes bacteria resistant to chlorine. An increase in antibiotic resistance could be attributed to a decreased membrane permeability, increased expression of MuxABC-OpmB efflux pump, beta-lactamase, and antioxidant enzymes. Additionally, KEGG enrichment analysis suggested that the differentially expressed genes were highly enriched in the metabolic pathways. In summary, the study results revealed the impact of chlorine disinfectants in promoting microbial disinfectant resistance and antibiotic resistance. This study will provide insight into disinfectant resistance mechanisms.202134010624
7511110.9996Antibiotic resistome promotion in drinking water during biological activated carbon treatment: Is it influenced by quorum sensing? The contamination of antibiotic resistance genes (ARGs) in drinking water may pose a direct threat to human health. This study applied high-throughput qPCR and sequencing to investigate the dynamics of ARGs and bacterial communities during the advanced treatment of drinking water using biological activated carbon. The promotion of ARGs was observed, and the normalized copy number of ARGs increased significantly after BAC treatment, raising the number of detected ARGs from 84 to 159. Twenty-nine ARGs were identified as biofilm-influencing sources in the BAC, and they persisted after chlorination. The shift of bacterial communities primarily had effects on the changes in resistome. Firmicutes, Cyanobacteria were related to persistent ARGs mostly in the BAC biofilm. Meanwhile, the Acyl-Homoserine Lactones (AHLs), quorum sensing molecules, and bacteria that produced AHLs were identified to understand the promotion of ARGs. The isolated AHL-producing bacteria belonged to the Proteobacteria, Firmicutes and Bacteroidetes phyla. Six detectable AHLs had an influence on plasmid-based horizontal gene transfer in the intragenus mating systems, indicating that the dynamics of ARGs were strongly affected by quorum sensing between specific bacteria in the biofilm. These results provide new insight into the mechanism of antibiotic resistome promotion in BAC biofilms.201828846900
7628120.9996Mechanism of antibiotic resistance development in an activated sludge system under tetracycline pressure. The mechanism of antibiotic resistance (AR) development in an activated sludge system under tetracycline (TC) pressure was discussed and analyzed. According to the variation of macro-factors, including TC, COD, TN, TP, NH(3)-N, pH, heavy metals, and reactor settings, the tet genes respond accordingly. Consequently, the enrichment sites of tet genes form an invisible AR selection zone, where AR microorganisms thrive, gather, reproduce, and spread. The efflux pump genes tetA and tetB prefer anaerobic environment, while ribosome protective protein genes tetM, tetO, tetQ, tetT, and tetW were more concentrated in aerobic situations. As a corresponding micro-effect, different types of tet genes selected the corresponding dominant bacteria such as Thauera and Arthrobacter, suggesting the intrinsic relationship between tet genes and potential hosts. In summary, the macro-response and micro-effect of tet genes constitute an interactive mechanism with tet genes as the core, which is the crucial cause for the continuous development of AR. This study provides an executable strategy to control the development of AR in actual wastewater treatment plants from the perspective of macro-factors and micro-effects.202337464207
7419130.9996The bacterial microbiota in florfenicol contaminated soils: The antibiotic resistome and the nitrogen cycle. Soil antibiotic resistome and the nitrogen cycle are affected by florfenicol addition to manured soils but their interactions have not been fully described. In the present study, antibiotic resistance genes (ARGs) and nitrogen cycle genes possessed by soil bacteria were characterized using real-time fluorescence quantification PCR (qPCR) and metagenomic sequencing in a short-term (30 d) soil model experiment. Florfenicol significantly changed in the abundance of genes conferring resistance to aminoglycosides, β-lactams, tetracyclines and macrolides. And the abundance of Sphingomonadaceae, the protein metabolic and nitrogen metabolic functions, as well as NO reductase, nitrate reductase, nitrite reductase and N(2)O reductase can also be affected by florfenicol. In this way, ARG types of genes conferring resistance to aminoglycosides, β-lactamases, tetracyclines, colistin, fosfomycin, phenicols and trimethoprim were closely associated with multiple nitrogen cycle genes. Actinobacteria, Chlorobi, Firmicutes, Gemmatimonadetes, Nitrospirae, Proteobacteria and Verrucomicrobia played an important role in spreading of ARGs. Moreover, soil physicochemical properties were important factors affecting the distribution of soil flora. This study provides a theoretical basis for further exploration of the transmission regularity and interference mechanism of ARGs in soil bacteria responsible for nitrogen cycle.202032023788
3859140.9996Co-selection of antibiotic resistance via copper shock loading on bacteria from a drinking water bio-filter. Heavy metal contamination of source water frequently occurred in developing countries as a result of accidents. To address the problems, most of the previous studies have focused on engineering countermeasures. In this study, we investigated the effects of heavy metals, particularly copper, on the development of antibiotic resistance by establishing a copper shock loading test. Results revealed that co-selection occurred rapidly within 6 h. Copper, at the levels of 10 and 100 mg/L, significantly increased bacterial resistance to the antibiotics tested, including rifampin, erythromycin, kanamycin, and a few others. A total of 117 antimicrobial-resistance genes were detected from 12 types of genes, and the relative abundance of most genes (particularly mobile genetic elements intⅠand transposons) was markedly enriched by at least one fold. Furthermore, the copper shock loading altered the bacterial community. Numerous heavy metal and antibiotic resistant strains were screened out and enriched. These strains are expected to enhance the overall level of resistance. More noticeably, the majority of the co-selected antibiotic resistance could sustain for at least 20 h in the absence of copper and antimicrobial drugs. Resistance to vancomycin, erythromycin and lincomycin even could remain for 7 days. The prominent selection pressure by the copper shock loading implies that a real accident most likely poses similar impacts on the water environment. An accidental release of heavy metals would not only cause harm to the ecological environment, but also contribute to the development of bacterial antibiotic resistance. Broader concerns should be raised about the biological risks caused by sudden releases of pollutants by accidents.201829059628
6747150.9996Tetracycline accumulation in biofilms enhances the selection pressure on Escherichia coli for expression of antibiotic resistance. Microorganisms are present as either biofilm or planktonic species in natural and engineered environments. Little is known about the selection pressure emanating from exposure to sub-minimal inhibitory concentration of antibiotics on planktonic vs. biofilm bacteria. In this study, an E. coli bioreporter was used to develop biofilms on glass and high-density polyethylene (HDPE) surfaces, and compared with the corresponding planktonic bacteria in antibiotic resistance expression when exposed to a range of μg/L levels of tetracycline. The antibiotic resistance-associated fluorescence emissions from biofilm E. coli reached up to 1.6 times more than those from planktonic bacteria. The intensively developed biofilms on glass surfaces caused the embedded bacteria to experience higher selection pressure and express more antibiotic resistance than those on HDPE surfaces. The temporal pattern of fluorescence emissions from biofilm E. coli was consistent with the biofilm-developing processes during the experimental period. The increased expression of antibiotic resistance from biofilm bacteria could be attributed to the high affinity of tetracycline with extracellular polymeric substances (EPS). The enhanced accumulation of tetracycline in biofilms could exert higher selection pressure on the embedded bacteria. These results suggest that in many natural and engineered systems the higher antibiotic resistance in biofilm bacteria could be attributed partially to the retention antibiotics by the EPS in biofilms.202336252660
7595160.9996Performance and microbial community variations of anaerobic digesters under increasing tetracycline concentrations. The impact of different concentrations of tetracycline on the performance of anaerobic treatment was evaluated. Results revealed that for all of the tested tetracycline concentrations, no major sustained impact on methane production was observed. Instead, a significant increase in propionic acid was observed in the reactor subjected to the highest concentration of tetracycline (20 mg/L). Microbial community analyses suggest that an alternative methanogenic pathway, specifically that of methanol-utilizing methanogens, may be important for ensuring the stability of methane production in the presence of high tetracycline concentrations. In addition, the accumulation of propionate was due to an increase in volatile fatty acids (VFA)-producing bacteria coupled with a reduction in propionate utilizers. An increase in the abundance of tetracycline resistance genes associated with ribosomal protection proteins was observed after 30 days of exposure to high concentrations of tetracycline, while other targeted resistance genes showed no significant changes. These findings suggest that anaerobic treatment processes can robustly treat wastewater with varying concentrations of antibiotics while also deriving value-added products and minimizing the dissemination of associated antibiotic resistance genes.201728365798
8516170.9996Graphene Oxide Inhibits Antibiotic Uptake and Antibiotic Resistance Gene Propagation. Antibiotics and antibiotic resistance genes (ARGs) in the natural environment have become substantial threats to the ecosystem and public health. Effective strategies to control antibiotics and ARG contaminations are emergent. A novel carbon nanomaterial, graphene oxide (GO), has attracted a substantial amount of attention in environmental fields. This study discovered the inhibition effects of GO on sulfamethoxazole (SMZ) uptake for bacteria and ARG transfer among microorganisms. GO promoted the penetration of SMZ from intracellular to extracellular environments by increasing the cell membrane permeability. In addition, the formation of a GO-SMZ complex reduced the uptake of SMZ in bacteria. Moreover, GO decreased the abundance of the sulI and intI genes by approximately 2-3 orders of magnitude, but the global bacterial activity was not obviously inhibited. A class I integron transfer experiment showed that the transfer frequency was up to 55-fold higher in the control than that of the GO-treated groups. Genetic methylation levels were not significant while sulI gene replication was inhibited. The biological properties of ARGs were altered due to the GO-ARG noncovalent combination, which was confirmed using multiple spectral analyses. This work suggests that GO can potentially be applied for controlling ARG contamination via inhibiting antibiotic uptake and ARG propagation.201627934199
6742180.9996Influence of epiphytic bacteria on arsenic metabolism in Hydrilla verticillata. Microbial assemblages such as biofilms around aquatic plants play a major role in arsenic (As) cycling, which has often been overlooked in previous studies. In this study, arsenite (As(III))-oxidizing, arsenate (As(V))-reducing and As(III)-methylating bacteria were found to coexist in the phyllosphere of Hydrilla verticillata, and their relative activities were shown to determine As speciation, accumulation and efflux. When exposed to As(III), As(III) oxidation was not observed in treatment H(III)-B, whereas treatment H(III)+B showed a significant As(III) oxidation ability, thereby indicating that epiphytic bacteria displayed a substantial As(III) oxidation ability. When exposed to As(V), the medium only contained 5.89% As(III) after 48 h of treatment H(V)-B, while an As(III) content of 86.72% was observed after treatment H(V)+B, thereby indicating that the elevated As(III) in the medium probably originated from As(V) reduction by epiphytic bacteria. Our data also indicated that oxidizing bacteria decreased the As accumulation (by approximately 64.44% compared with that of treatment H(III)-B) in plants, while reducing bacteria played a critical role in increasing As accumulation (by approximately 3.31-fold compared with that of treatment H(V)-B) in plants. Regardless of whether As(III) or As(V) was supplied, As(III) was dominant in the plant tissue (over 75%). Furthermore, the presence of epiphytic bacteria enhanced As efflux by approximately 9-fold. Metagenomic analysis revealed highly diverse As metabolism genes in epiphytic bacterial community, particularly those related to energetic metabolism (aioAB), and As resistance (arsABCR, acr3, arsM). Phylogenetic analysis of As metabolism genes revealed evidence of both vertical inheritance and horizontal gene transfer, which might have contributed to the evolution of the As metabolism genes. Taken together, our research suggested that the diversity of As metabolism genes in epiphytic bacterial community is associated with aquatic submerged macrophytes which may play an important role in As biogeochemistry in aquatic environments.202032114122
9270190.9996Activation of class 1 integron integrase is promoted in the intestinal environment. Class 1 integrons are widespread genetic elements playing a major role in the dissemination of antibiotic resistance. They allow bacteria to capture, express and exchange antibiotic resistance genes embedded within gene cassettes. Acquisition of gene cassettes is catalysed by the class 1 integron integrase, a site-specific recombinase playing a key role in the integron system. In in vitro planktonic culture, expression of intI1 is controlled by the SOS response, a regulatory network which mediates the repair of DNA damage caused by a wide range of bacterial stress, including antibiotics. However, in vitro experimental conditions are far from the real lifestyle of bacteria in natural environments such as the intestinal tract which is known to be a reservoir of integrons. In this study, we developed an in vivo model of intestinal colonization in gnotobiotic mice and used a recombination assay and quantitative real-time PCR, to investigate the induction of the SOS response and expression and activity of the class 1 integron integrase, IntI1. We found that the basal activity of IntI1 was higher in vivo than in vitro. In addition, we demonstrated that administration of a subinhibitory concentration of ciprofloxacin rapidly induced both the SOS response and intI1 expression that was correlated with an increase of the activity of IntI1. Our findings show that the gut is an environment in which the class 1 integron integrase is induced and active, and they highlight the potential role of integrons in the acquisition and/or expression of resistance genes in the gut, particularly during antibiotic therapy.202235482826