# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6736 | 0 | 1.0000 | Biotic pathways of reciprocal responses between antibiotic resistance genes and inorganic nitrogen cycling genes in amoxicillin-stressed compost ecosystems. This study explored the transformation of inorganic nitrogen, the expression levels of antibiotic resistance genes (ARGs), and the regulatory mechanisms of key species on ARGs and inorganic nitrogen cycling genes (INCGs) under different levels of amoxicillin (AMX) stress. High level of AMX inhibited the accumulation of NH(4)(+)-N, which increased by 531 % relative to the initial. Moreover, AMX to some extent increased the levels of nirS and nirK, which could potentially result in nitrogen loss and the accumulation of NO(2)(-). Actinobacteria might serve as potential hosts for ARGs during sludge composting. This stress induced a complex response between INCGs and ARGs more complex due to key species. Under high-level AMX pressure, most species associated with ARGs likely derived from nitrogen cycling functional species. To conclude, high levels of AMX stress might lead to nitrogen cycling imbalance and the dissemination of antibiotic resistance genes in composting systems. | 2024 | 38387840 |
| 8516 | 1 | 0.9998 | Graphene Oxide Inhibits Antibiotic Uptake and Antibiotic Resistance Gene Propagation. Antibiotics and antibiotic resistance genes (ARGs) in the natural environment have become substantial threats to the ecosystem and public health. Effective strategies to control antibiotics and ARG contaminations are emergent. A novel carbon nanomaterial, graphene oxide (GO), has attracted a substantial amount of attention in environmental fields. This study discovered the inhibition effects of GO on sulfamethoxazole (SMZ) uptake for bacteria and ARG transfer among microorganisms. GO promoted the penetration of SMZ from intracellular to extracellular environments by increasing the cell membrane permeability. In addition, the formation of a GO-SMZ complex reduced the uptake of SMZ in bacteria. Moreover, GO decreased the abundance of the sulI and intI genes by approximately 2-3 orders of magnitude, but the global bacterial activity was not obviously inhibited. A class I integron transfer experiment showed that the transfer frequency was up to 55-fold higher in the control than that of the GO-treated groups. Genetic methylation levels were not significant while sulI gene replication was inhibited. The biological properties of ARGs were altered due to the GO-ARG noncovalent combination, which was confirmed using multiple spectral analyses. This work suggests that GO can potentially be applied for controlling ARG contamination via inhibiting antibiotic uptake and ARG propagation. | 2016 | 27934199 |
| 8564 | 2 | 0.9998 | Effects of functional modules and bacterial clusters response on transmission performance of antibiotic resistance genes under antibiotic stress during anaerobic digestion of livestock wastewater. The formation and transmission of antibiotic resistance genes (ARGs) have attracted increasing attention. It is unclear whether the internal mechanisms by which antibiotics affect horizontal gene transfer (HGT) of ARGs during anaerobic digestion (AD) were influenced by dose and type. We investigated the effects of two major antibiotics (oxytetracycline, OTC, and sulfamethoxazole, SMX) on ARGs during AD according to antibiotic concentration in livestock wastewater influent. The low-dose antibiotic (0.5 mg/L) increased ROS and SOS responses, promoting the formation of ARGs. Meanwhile, low-dose antibiotics could also promote the spread of ARGs by promoting pili, communication responses, and the type IV secretion system (T4SS). However, different types and doses of antibiotics would lead to changes in the above functional modules and then affect the enrichment of ARGs. With the increasing dose of SMX, the advantages of pili and communication responses would gradually change. In the OTC system, low-dose has the strongest promoting ability in both pili and communication responses. Similarly, an increase in the dose of SMX would change T4SS from facilitation to inhibition, while OTC completely inhibits T4SS. Microbial and network analysis also revealed that low-dose antibiotics were more favorable for the growth of host bacteria. | 2023 | 36063716 |
| 7565 | 3 | 0.9998 | Microalgae Enhances the Adaptability of Epiphytic Bacteria to Sulfamethoxazole Stress and Proliferation of Antibiotic Resistance Genes Mediated by Integron. The transmission of ARGs in the microalgae-associated epiphytic bacteria remains unclear under antibiotic exposure, apart from altering the microbial community structure. In this study, Chlorella vulgaris cocultured with bacteria screened from surface water was examined to explore the spread of ARGs in the presence of sulfamethoxazole (SMX). The extracellular polymers released by Chlorella vulgaris could reduce antibiotic-induced collateral damage to bacteria, thus increasing the diversity of the microalgae-associated epiphytic bacteria. The abundances of sul1 and intI1 in the phycosphere at 1 mg/L SMX dose increased by 290 and 28 times, respectively. Metagenomic sequencing further confirmed that SMX bioaccumulation stimulated the horizontal transfer of sul1 mediated by intI1 in the microalgae-associated epiphytic bacteria, while reactive oxygen species (ROS)-mediated oxidative stress induced the SOS response and thus enhanced the transformation of sul1 in the J group. This is the first study to verify that microalgae protect bacteria from antibiotic damage and hinder the spread of ARGs mediated by SOS response, while the transfer of ARGs mediated by integron is promoted due to the bioaccumulation of SMX in the phycosphere. The results contribute to present comprehensive understanding of the risk of ARG proliferation by the presence of emerging contaminants residues in river. | 2024 | 39417646 |
| 8563 | 4 | 0.9998 | Overlooked role of extracellular polymeric substances in antibiotic-resistance gene transfer within microalgae-bacteria system. Controlling the spread of antibiotic-resistance genes (ARGs) under antibiotic stress has become an increasingly urgent issue. Microalgae possess the capability to remove antibiotics while concurrently inhibiting ARGs. Microalgae-bacteria systems can produce significant quantities of extracellular polymeric substances (EPS). However, the roles of EPS in the spread of ARGs have not been sufficiently explored, resulting in an insufficient understanding of the contribution of each EPS component and a lack of analysis on the complex interactions between EPS and ARGs. This study systematically explored the overlooked role of EPS in the transmission of ARGs within microalgae-bacteria systems. The current results showed that the potential of the microalgae-bacteria system for treating antibiotic wastewater. The tightly bound-EPS (TB-EPS) can acquire the higher absolute abundances of ARGs compared with the loosely bound-EPS (LB-EPS). The correlation coefficient between polysaccharides and TB-EPS ARGs was higher than that between polysaccharides and LB-EPS ARGs. The gene patterns of LB-EPS closely clustered with those of TB-EPS, while intracellular ARG gene patterns differed from both TB-EPS and LB-EPS. Metagenomic analyses indicated that the relative abundances of sul1 and sul2 were considerably higher at the beginning stage compared to the end stage. The abundance of Achromobacter, increased by the end stage, aligning with its potential to produce exopolysaccharide. Additionally, the absolute abundance of genes encoding exopolysaccharides (nagB and galE) and conjugative transfer transcription regulator (traF), increased over time. These findings enhanced our comprehension of the significance of EPS on the fate of ARGs in microalgae-bacteria systems during the treatment of antibiotic-contaminated wastewater. | 2025 | 39879767 |
| 8562 | 5 | 0.9998 | Nitrogen and phosphorus limitations promoted bacterial nitrate metabolism and propagation of antibiotic resistome in the phycosphere of Auxenochlorella pyrenoidosa. Despite that nitrogen (N) and phosphorus (P) play critical roles in the lifecycle of microalgae, how N and P further affect the distribution of bacteria and antibiotic resistance genes (ARGs) in the phycosphere is still poorly understood. In this study, the effects of N and P on the distribution of ARGs in the phycosphere of Auxenochlorella pyrenoidosa were investigated. Results showed that the growth and chlorophyll synthesis of microalgae were inhibited when N or P was limited, regardless of the N/P ratios, but the extracellular polymeric substances content and nitrate assimilation efficiency were enhanced in contrast. Metagenomic sequencing revealed that N or P limitation resulted in the recruitment of specific bacteria that highly contribute to the nitrate metabolism in the phycosphere. Besides, N or P limitation promoted the propagation of phycosphere ARGs, primarily through horizontal gene transfer mediated by mobile genetic elements. The enrichment of specific bacteria induced by changes in the algal physiology also contributed to the ARGs proliferation under nutrient limitation. Our results demonstrated that the reduction of algal cells caused by nutrient limitation could promote the propagation of ARGs, which provides new insights into the occurrence and spread of ARGs in the phycosphere. | 2024 | 38367442 |
| 8515 | 6 | 0.9997 | In vitro assessment of the bacterial stress response and resistance evolution during multidrug-resistant bacterial invasion of the Xenopus tropicalis intestinal tract under typical stresses. The intestinal microbiome might be both a sink and source of resistance genes (RGs). To investigate the impact of environmental stress on the disturbance of exogenous multidrug-resistant bacteria (mARB) within the indigenous microbiome and proliferation of RGs, an intestinal conjugative system was established to simulate the invasion of mARB into the intestinal microbiota in vitro. Oxytetracycline (OTC) and heavy metals (Zn, Cu, Pb), commonly encountered in aquaculture, were selected as typical stresses for investigation. Adenosine 5'-triphosphate (ATP), hydroxyl radical (OH·(-)) and extracellular polymeric substance (EPS) were measured to investigate their influence on the acceptance of RGs by intestinal bacteria. The results showed that the transfer and diffusion of RGs under typical combined stressors were greater than those under a single stressor. Combined effect of OTC and heavy metals (Zn, Cu) significantly increased the activity and extracellular EPS content of bacteria in the intestinal conjugative system, increasing intI3 and RG abundance. OTC induced a notable inhibitory response in Citrobacter and exerted the proportion of Citrobacter and Carnobacterium in microbiota. The introduction of stressors stimulates the proliferation and dissemination of RGs within the intestinal environment. These results enhance our comprehension of the typical stresses effect on the RGs dispersal in the intestine. | 2024 | 38280323 |
| 7958 | 7 | 0.9997 | Microbial response and recovery strategy of the anammox process under ciprofloxacin stress from pure strain and consortia perspectives. Ciprofloxacin (CIP) poses a high risk of resistance development in water environments. Therefore, comprehensive effects and recovery strategies of CIP in anaerobic ammonia oxidation (anammox) process were systematically elucidated from consortia and pure strains perspectives. The anammox consortia was not significantly affected by the stress of 10 mg L(-1) CIP, while the higher concentration (20 mg L(-1)) of CIP caused a dramatic reduction in the nitrogen removal performance of anammox system. Simultaneously, the abundances of dominant functional bacteria and corresponding genes also significantly decreased. Such inhibition could not be mitigated by the recovery strategy of adding hydrazine and hydroxylamine. Reducing nitrogen load rate from 5.1 to 1.4 kg N m(-3) d(-)(1) promoted the restoration of three reactors. In addition, the robustness and recovery of anammox systems was evaluated using starvation and shock strategies. Simultaneously, antibiotic resistance genes and key metabolic pathways of anammox consortia were upregulated, such as carbohydrate and energy metabolisms. In addition, 11 pure stains were isolated from the anammox system and identified through phylogenetic analysis, 40 % of which showed multidrug resistance, especially Pseudomonas. These findings provide deep insights into the responding mechanism of anammox consortia to CIP stress and promote the application of anammox process for treating wastewater containing antibiotics. | 2024 | 38554504 |
| 7566 | 8 | 0.9997 | Antibiotic sulfadiazine degradation by persulfate oxidation: Intermediates dependence of ecotoxicity and the induction of antibiotic resistance genes. To preserve the water resources, this study has analyzed the ecotoxicity and antibiotic resistance genes (ARGs) induction capacity of sulfadiazine degradation intermediates resulting from persulfate activation oxidation enhanced by ultraviolet, ultrasound and microwave. The five degradation pathways caused by the contribution discrepancy of electron transfer and singlet oxygen ((1)O(2)) and variations in the ecotoxicity of different degradation products were analyzed. Microcosm experiment exhibited that the microbial community in actual water changed significantly with SDZ and degradation intermediates, in which the dominant genera were Aeromonas, Cupriavidus, Elizabethkingia and Achromobacter. Except for the selective pressure on bacteria, the degradation intermediates also exert a certain degree or even stronger induction on sulfonamide ARGs (sul4, sul1 and sul2) than SDZ. Furthermore, the potential hosts for sulfonamide ARGs were revealed by network analysis. These results provide a better understanding of antibiotics degradation mechanism and ARGs occurrence, which is useful for controlling the spread of ARGs. | 2023 | 36372382 |
| 7560 | 9 | 0.9997 | The effect of bacterial functional characteristics on the spread of antibiotic resistance genes in Expanded Granular Sludge Bed reactor treating the antibiotic wastewater. To explore the fate and spreading mechanism of antibiotics resistance genes (ARGs) in antibiotics wastewater system, a laboratory-scale (1.47 L) Expanded Granular Sludge Bed (EGSB) bioreactor was implemented. The operating parameters temperature (T) and hydraulic retention time (HRT) were mainly considered. This result showed the removal of ARGs and COD was asynchronous, and the recovery speed of ARGs removal was slower than that COD removal. The decreasing T was attributed to the high growth rate of ARGs host bacteria, while the shortened HRT could promote the horizontal and vertical gene transfer of ARGs in the sludge. The analysis result of potential bacterial host showed more than half of the potential host bacteria carried 2 or more ARGs and suggested an indirect mechanism of co-selection of multiple ARGs. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was used to investigate the functional characteristics of bacterial community. This result showed the bacterial functional genes contributed 40.41% to the abundance change of ARGs in the sludge, which was higher that of bacterial community. And the function genes of "aromatic hydrocarbon degradation", "Replication, recombination and repair proteins" and "Flagellar assembly" were mainly correlated with the transfer of ARGs in the sludge. This study further revealed the mechanism of ARGs spread in the EGSB system, which would provide new ideas for the development of ARGs reduction technology. | 2021 | 34488144 |
| 7959 | 10 | 0.9997 | Evolution of microbial community and antibiotic resistance genes in anammox process stressed by oxytetracycline and copper. The individual and combined impacts of copper ion (Cu(2+)) and oxytetracycline (OTC) on anaerobic ammonium oxidation (anammox) performance and its self-recovery process were examined. Experimental results showed that the anammox performance and activity of anammox bacteria were inhibited by 1.0 mg L(-1) OTC, Cu(2+) and OTC + Cu(2+), and both single and combined inhibitions were reversible. The abundance of functional genes and parts of antibiotic resistance genes (ARGs) were positively related to the dominant bacterium Ca. Kuenenia, implying that the recovery of the performance was associated with the progressive induction of potentially resistant species after inhibition. The above outcomes illustrated that anammox bacteria were stressed by metals and antibiotics, but they still could remove nitrogen at a rate higher than 20.6 ± 0.8 kg N m(-3) d(-1), providing guidance for engineering applications of anammox processes. | 2021 | 32949830 |
| 7562 | 11 | 0.9997 | Nanoparticles and antibiotics stress proliferated antibiotic resistance genes in microalgae-bacteria symbiotic systems. The comprehensive effect of exogenous pollutants on the dispersal and abundance of antibiotic-resistance genes (ARGs) in the phycosphere, bacterial community and algae-bacteria interaction remains poorly understood. We investigated community structure and abundance of ARGs in free-living (FL) and particle-attached (PA) bacteria in the phycosphere under nanoparticles (silver nanoparticles (AgNPs) and hematite nanoparticles (HemNPs)) and antibiotics (tetracycline and sulfadiazine) stress using high-throughput sequencing and real-time quantitative PCR. Meanwhile, the intrinsic connection of algae-bacteria interaction was explored by transcriptome and metabolome. The results showed that the relative abundance of sulfonamide and tetracycline ARGs in PA and FL bacteria increased 103-129 % and 112-134 %, respectively, under combined stress of nanoparticles and antibiotics. Antibiotics have a greater effect on ARGs than nanoparticles at environmentally relevant concentrations. Proteobacteria, Firmicutes, and Bacteroidetes, as the primary potential hosts of ARGs, were the dominant phyla. Lifestyle, i.e., PA and FL, significantly determined the abundance of ARGs and bacterial communities. Moreover, algae can provide bacteria with nutrients (carbohydrates and amino acids), and can also produce antibacterial substances (fatty acids). This algal-bacterial interaction may indirectly affect the distribution and abundance of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in microalgae-bacteria symbiotic systems. | 2023 | 36283215 |
| 7966 | 12 | 0.9997 | How heavy metal stress promotes dissemination of antibiotic resistance genes in the activated sludge process. Heavy metals have been recently revealed as promoters to antibiotic resistance gene (ARG) dissemination in water environment, but their influence on ARG transfer in the activated sludge process has not been clear. In this study, a set of sequencing batch reactors (SBRs) and micro-scale microfluidic chips were established to quantify the impacts of heavy metals (0.5 mM of Pb, 0.1 mM of As, and 0.005 mM of Hg) on the ARG spreading in the activated sludge consortium. Under heavy metal stress, transfer frequencies were 1.7-3.6 folds increase compared to the control. Gram-negative bacteria increased significantly after heavy metal added, which were more prone to receiving resistant plasmid from donors. Meanwhile, the relative expression of genes related to conjugation changed in activated sludge, especially the expression of outer membrane protein and oxidative stress regulatory genes increased by 2.9-7.4 folds and 7.8-13.1 folds, respectively. Furthermore, using microfluidic chips, the dynamics of ARG transfer was observed at single cell level under heavy metal pressure. Heavy metals firstly promoted conjugation and then vertical gene transfer played an important part for ARG spreading. The results provided in-depth understanding of the influence of heavy metals on ARG behavior in the environment. | 2022 | 35724617 |
| 8541 | 13 | 0.9997 | Insights into the response of anammox process to oxytetracycline: Impacts of static magnetic field. The long-term effects of oxytetracycline (OTC) with a high concentration on the anaerobic ammonium oxidation (Anammox) process were evaluated, and the role of static magnetic field (SMF) was further explored. The stress of OTC at 50 mg/L had little effect on the nitrogen removal of anammox process at the first 16 days. With the continuous addition of OTC and the increase of nitrogen loading, the OTC inhibited the nitrogen removal and anammox activity severely. During the 32 days of recovery period without OTC addition, the nitrogen removal was further deteriorated, indicating the inhibition of OTC on anammox activity was irreversible and persistent. The application of SMF alleviated the inhibition of OTC on anammox to some extent, and the specific anammox activity was enhanced by 47.1% compared to the system without SMF during the OTC stress stage. Antibiotic efflux was the major resistance mechanism in the anammox process, and tetA, tetG and rpsJ were the main functional antibiotic resistance genes. The addition of OTC weakened the metabolic interactions between the anammox bacteria and the symbiotic bacteria involved in the metabolism of cofactors and secondary metabolites, leading to the poor anammox activity. The adaptability of microbes to the OTC stress was improved by the application of SMF, which can enhance the metabolic pathways related to bacterial growth and resistance to environmental stress. | 2023 | 37586490 |
| 7628 | 14 | 0.9997 | Mechanism of antibiotic resistance development in an activated sludge system under tetracycline pressure. The mechanism of antibiotic resistance (AR) development in an activated sludge system under tetracycline (TC) pressure was discussed and analyzed. According to the variation of macro-factors, including TC, COD, TN, TP, NH(3)-N, pH, heavy metals, and reactor settings, the tet genes respond accordingly. Consequently, the enrichment sites of tet genes form an invisible AR selection zone, where AR microorganisms thrive, gather, reproduce, and spread. The efflux pump genes tetA and tetB prefer anaerobic environment, while ribosome protective protein genes tetM, tetO, tetQ, tetT, and tetW were more concentrated in aerobic situations. As a corresponding micro-effect, different types of tet genes selected the corresponding dominant bacteria such as Thauera and Arthrobacter, suggesting the intrinsic relationship between tet genes and potential hosts. In summary, the macro-response and micro-effect of tet genes constitute an interactive mechanism with tet genes as the core, which is the crucial cause for the continuous development of AR. This study provides an executable strategy to control the development of AR in actual wastewater treatment plants from the perspective of macro-factors and micro-effects. | 2023 | 37464207 |
| 8517 | 15 | 0.9997 | Influences of graphene on microbial community and antibiotic resistance genes in mouse gut as determined by high-throughput sequencing. Graphene is a promising candidate as an antibacterial material owning to its bacterial toxicity. However, little information on influence of graphene on gut microbiota is available. In this study, mice were exposed to graphene for 4 weeks, and high-throughput sequencing was applied to characterize the changes in microbial community and antibiotic resistance genes (ARGs) in mouse gut. The results showed that graphene exposure increased biodiversity of gut microbiota, and changed their community. The 1 μg/d graphene exposure had higher influences on the gut microbiota than 10 μg/d and 100 μg/d graphene exposures, which might be due to higher aggregation of high-level graphene. The influence of graphene on gut microbiota might attribute to that graphene could induce oxidative stress and damage of cell membrane integrity. The results were verified by the increase of ratio of Gram-negative bacteria. Outer membrane of Gram-negative bacteria could reduce the membrane damage induced by graphene and make them more tolerance to graphene. Further, we found that graphene exposure significantly increased the abundance and types of ARGs, indicating a potential health risk of graphene. This study firstly provides new insight to the health effects of graphene on gut microbiota. | 2016 | 26476051 |
| 8565 | 16 | 0.9997 | Deciphering the transfers of antibiotic resistance genes under antibiotic exposure conditions: Driven by functional modules and bacterial community. Antibiotics can exert selective pressures on sludge as well as affect the emergence and spread of antibiotic resistance genes (ARGs). However, the underlying mechanisms of ARGs transfers are still controversial and not fully understood in sludge system. In present study, two anaerobic sequence batch reactors (ASBR) were constructed to investigate the development of ARGs exposed to two sulfonamide antibiotics (SMs, sulfadiazine SDZ and sulfamethoxazole SMX) with increasing concentrations. The abundance of corresponding ARGs and total ARGs obviously increased with presence of SMs. Functional analyses indicated that oxidative stress response, signal transduction and type IV secretion systems were triggered by SMs, which would promote ARGs transfers. Network analysis revealed 18 genera were possible hosts of ARGs, and their abundances increased with SMs. Partial least-squares path modeling suggested functional modules directly influenced mobile genetic elements (MGEs) as well as the ARGs might be driven by both functional modules and bacteria community, while bacteria community composition played a more key role. Sludge with refractory antibiotics (SDZ) may stimulate the relevant functions and shift the microbial composition to a greater extent, causing more ARGs to emerge and spread. The mechanisms of ARGs transfers are revealed from the perspective of functional modules and bacterial community in sludge system for the first time, and it could provide beneficial directions, such as oxidative stress reduction, cellular communication control, bacterial composition directional regulation, for ARGs spread controlling in the future. | 2021 | 34563930 |
| 6737 | 17 | 0.9997 | Microbial-mediated conversion of soil organic carbon co-regulates the evolution of antibiotic resistance. The influence of organic carbon on the proliferation of antibiotic resistance genes (ARGs) in the soil has been widely documented. However, it is unclear how soil organic carbon (SOC) interacts with the evolution of antibiotic resistance in bacteria. Here, we examined the variations in ARGs abundance during SOC mineralization and explored the microbiological mechanisms and key metabolic pathways involved in their coevolution. The results showed that the SOC mineralization rate was closely correlated with ARGs abundance (p < 0.05). High organic carbon (OC) mineralization was conducive to the occurrence of multidrug resistance genes. For example, multidrug_transporter and mexB increased 2.26 and 7.83 times from the initial level. The competitor (stress) evolutionary strategy model revealed that higher OC inputs drive environmental microorganisms to evolve from stress tolerant to high resistance and strong adaptation. Meta-genomic and transcriptomic analyses revealed that the conversion process of pyruvate to acetyl-CoA to acetate was the critical metabolic pathway for the co-regulation of antibiotic resistance. Gene deletion validation trials have demonstrated that the key functional genes (ackA and pta) involved in this process can modulate the development of vancomycin and multidrug resistance. This outcome provides a preliminary framework for microbial mechanisms that target the co-regulation of microbial OC conversion and the evolution of antibiotic resistance. | 2024 | 38688217 |
| 8567 | 18 | 0.9997 | System-dependent divergence of microbial community and resistome in two anaerobic niches under sulfamethoxazole selection. The prevalence of sulfamethoxazole (SMX) in high-strength wastewater poses a significant threat to the stability and efficiency of anaerobic biological treatment systems, particularly when deployed as initial treatment units. However, the complex interactions arising from SMX biodegradation and their resultant effects on typical anaerobic digestion (AD) and sulfate-reducing (SR) systems are not thoroughly understood. This study revealed that SMX exposure stimulated methanogenesis in the AD system and sulfate reduction in the SR system, driven primarily by enriched key functional taxa (e.g., methanogens, sulfate-reducing bacteria). Organic matter removal efficiency increased significantly in the AD system under SMX stress, attributed to the enrichment of fermentative bacteria. Notably, the enriched class Actinomycetes was capable of SMX biodegradation, thereby likely mitigating SMX stress for other microorganisms. In contrast, the SR system exhibited significantly diminished organic matter removal despite developing a more functionally specialized community under SMX exposure. This community harbored fewer SMX degraders, perpetuating selective pressure on the microbiota. Increasing SMX concentrations failed to induce significant shifts in overall community structure in either system, while significantly promoted the proliferation of antibiotic resistance genes (ARGs), particularly pronounced in the SR system exhibiting high SMX accumulation. Moreover, mobile genetic elements mediated the horizontal transfer of the sulfonamide resistance gene sul1 and other co-occurring ARGs located on plasmids. This study provides novel insights into the convergent and divergent microbial responses in the AD and SR systems under SMX exposure, highlighting the dual effects (both stimulatory and inhibitory) of SMX on the functionality of these anaerobic systems. | 2025 | 41130171 |
| 8534 | 19 | 0.9997 | Response of microbial nitrogen transformation processes to antibiotic stress in a drinking water reservoir. Effects of antibiotics on microbial nitrogen transformation processes in natural aquatic ecosystems are largely unknown. In this study, we utilized the (15)N stable isotope tracers and metagenomic sequencing to identify how antibiotics drive nitrogen transformation processes in Danjiangkou Reservoir, which is the largest artificial drinking water reservoir in China. We retrieved 51 nitrogen functional genes, and found that the highest abundances of nitrate reduction and denitrification-related genes occurred in dissimilatory nitrogen transformation pathways. (15)N-labelling analysis substantiated that denitrification was the main pathway for nitrogen removal, accounting for 57.1% of nitrogen loss. Nitrogen functional genes and antibiotic resistance genes co-occurred in Danjiangkou Reservoir, and they were mainly carried by the denitrifying bacteria such as Rhodoferax, Polaromonas, Limnohabitans, Pararheinheimera, Desulfobulbus, and Pseudopelobacter. Genome annotation revealed that antibiotic deactivation, Resistance-Nodulation-Division and facilitator superfamily efflux pumps were responsible for the multiple-resistance to antibiotics in these bacteria. Moreover, antibiotics showed non-significant effects on nitrogen transformation processes. It is speculated that denitrifying bacteria harboring ARGs played crucial roles in protecting nitrogen transformation from low-level antibiotics stress in the reservoir. Our results highlight that denitrifying bacteria are important hosts of ARGs, which provides a novel perspective for evaluating the effects of antibiotics on nitrogen cycle in natural aquatic ecosystems. | 2021 | 34303244 |