# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6732 | 0 | 1.0000 | Assessment of Bioavailability of Biochar-Sorbed Tetracycline to Escherichia coli for Activation of Antibiotic Resistance Genes. Human overuse and misuse of antibiotics have caused the wide dissemination of antibiotics in the environment, which has promoted the development and proliferation of antibiotic resistance genes (ARGs) in soils. Biochar (BC) with strong sorption affinity to many antibiotics is considered to sequester antibiotics and hence mitigate their impacts to bacterial communities in soils. However, little is known about whether BC-sorbed antibiotics are bioavailable and exert selective pressure on soil bacteria. In this study, we probed the bioavailability of tetracycline sorbed by BCs prepared from rice-, wheat-, maize-, and bean-straw feedstock using Escherichia coli MC4100/pTGM bioreporter strain. The results revealed that BC-sorbed tetracycline was still bioavailable to the E. coli attached to BC surfaces. Tetracycline sorbed by BCs prepared at 400 °C (BC400) demonstrated a higher bioavailability to bacteria compared to that sorbed by BCs prepared at 500 °C (BC500). Tetracycline could be sorbed primarily in the small pores of BC500 where bacteria could not access due to the size exclusion to bacteria. In contrast, tetracycline could be sorbed mainly on BC400 surfaces where bacteria could conveniently access tetracycline. Increasing the ambient humidity apparently enhanced the bioavailability of BC400-sorbed tetracycline. BC500-sorbed tetracycline exposed to varying levels of ambient humidity showed no significant changes in bioavailability, indicating that water could not effectively mobilize tetracycline from BC500 pores to surfaces where bacteria could access tetracycline. The results from this study suggest that BCs prepared at a higher pyrolysis temperature could be more effective to sequester tetracycline and mitigate the selective pressure on soil bacteria. | 2020 | 32786566 |
| 6733 | 1 | 0.9996 | Bioavailability of tetracycline to antibiotic resistant Escherichia coli in water-clay systems. Tetracyclines are a class of antimicrobials frequently found in the environment, and have promoted the proliferation of antibiotic resistance. An unanswered research question is whether tetracycline sorbed to soils is still bioavailable to bacteria and exerts selective pressure on the bacterial community for the development of antibiotic resistance. In this study, bioreporter E. coli MC4100/pTGM strain was used to probe the bioavailability of tetracycline sorbed by smectite clay, a class of common soil minerals. Batch sorption experiments were conducted to prepare clay samples with a wide range of sorbed tetracycline concentration. The bioreporter was incubated with tetracycline-sorbed clay at different clay/solution ratios and water contents, as well as using dialysis tubings to prevent the direct contact between bacterial cells and clay particles. The expression of antibiotic resistance genes from the bioreporter was measured using a flow cytometer as a measurement of bioavailability/selective pressure. The direct contact of bioreporter cells to clay surfaces represented an important pathway facilitating bacterial access to clay-sorbed tetracycline. In clay-water suspensions, reducing solution volume rendered more bacteria to attach to clay surfaces enhancing the bioavailability of clay-sorbed tetracycline. The strong fluorescence emission from bioreporter cells on clay surfaces indicated that clay-sorbed tetracycline was still bioavailable to bacteria. The formation of biofilms on clay surfaces could increase bacterial access to clay-sorbed tetracycline. In addition, desorption of loosely sorbed tetracycline into bulk solution contributed to bacterial exposure and activation of the antibiotic resistance genes. Tetracycline sorbed by soil geosorbents could exert selective pressure on the surrounding microbial communities via bacterial exposure to tetracycline in solution from desorption and to the geosorbent-sorbed tetracycline as well. | 2018 | 30253298 |
| 7976 | 2 | 0.9991 | Insights into the effects of Zn exposure on the fate of tylosin resistance genes and dynamics of microbial community during co-composting with tylosin fermentation dregs and swine manure. Though heavy metals are widely reported to induce antibiotic resistance propagation, how antibiotic resistance changes in response to heavy metal abundances remains unclearly. In this study, the tylosin fermentation dregs (TFDs) and swine manure co-composting process amended with two exposure levels of heavy metal Zn were performed. Results showed that the bioavailable Zn contents decreased 2.6-fold averagely, and the removal percentage of total tylosin resistance genes was around 23.5% after the co-composting completed. Furthermore, the tylosin resistance genes and some generic bacteria may exhibited a hormetic-like dose-response with the high-dosage inhibition and low dosage stimulation induced by bioavailable Zn contents during the co-composting process, which represented a beneficial aspect of adaptive responses to harmful environmental stimuli. This study provided a comprehensive understanding and predicted risk assessment for the Zn-contaminate solid wastes deposal and suggested that low levels of Zn or other heavy metals should receive more attention for their potential to the induction of resistance bacteria and propagation of antibiotic resistance genes. | 2021 | 33210251 |
| 8518 | 3 | 0.9991 | Influence of Dissolved Organic Matter on Tetracycline Bioavailability to an Antibiotic-Resistant Bacterium. Complexation of tetracycline with dissolved organic matter (DOM) in aqueous solution could alter the bioavailability of tetracycline to bacteria, thereby alleviating selective pressure for development of antibiotic resistance. In this study, an Escherichia coli whole-cell bioreporter construct with antibiotic resistance genes coupled to green fluorescence protein was exposed to tetracycline in the presence of DOM derived from humic acids. Complexation between tetracycline and DOM diminished tetracycline bioavailability to E. coli, as indicated by reduced expression of antibiotic resistance genes. Increasing DOM concentration resulted in decreasing bioavailability of tetracycline to the bioreporter. Freely dissolved tetracycline (not complexed with DOM) was identified as the major fraction responsible for the rate and magnitude of antibiotic resistance genes expressed. Furthermore, adsorption of DOM on bacterial cell surfaces inhibited tetracycline diffusion into the bioreporter cells. The magnitude of the inhibition was related to the amount of DOM adsorbed and tetracycline affinity for the DOM. These findings provide novel insights into the mechanisms by which the bioavailability of tetracycline antibiotics to bacteria is reduced by DOM present in water. Agricultural lands receiving livestock manures commonly have elevated levels of both DOM and antibiotics; the DOM could suppress the bioavailability of antibiotics, hence reducing selective pressure on bacteria for development of antibiotic resistance. | 2015 | 26370618 |
| 3524 | 4 | 0.9991 | Evaluating the effects of chlortetracycline on the proliferation of antibiotic-resistant bacteria in a simulated river water ecosystem. Antibiotics and antibiotic metabolites have been found in the environment, but the biological activities of these compounds are uncertain, especially given the low levels that are typically detected in the environment. The objective of this study was to estimate the selection potential of chlortetracycline (CTC) on the antibiotic resistance of aerobic bacterial populations in a simulated river water ecosystem. Six replicates of a 10-day experiment using river water in continuous flow chemostat systems were conducted. Each replicate used three chemostats, one serving as a control to which no antibiotic was added and the other two receiving low and high doses of CTC (8 microg/liter and 800 microg/liter, respectively). The addition of CTC to the chemostats did not impact the overall level of cultivable aerobic bacteria (P = 0.51). The high-CTC chemostat had significantly higher tetracycline-resistant bacterial colony counts than both the low-CTC and the control chemostats (P < 0.035). The differences in resistance between the low-CTC and control chemostats were highly nonsignificant (P = 0.779). In general a greater diversity of tet resistance genes was detected in the high-CTC chemostat and with a greater frequency than in the low-CTC and control chemostats. Low levels of CTC in this in vitro experiment did not select for increased levels of tetracycline resistance among cultivable aerobic bacteria. This finding should not be equated with the absence of environmental risk, however. Low concentrations of antibiotics in the environment may select for resistant bacterial populations once they are concentrated in sediments or other locations. | 2007 | 17616621 |
| 7070 | 5 | 0.9991 | Tetracycline resistance in semi-arid agricultural soils under long-term swine effluent application. Annually, millions pounds of antibiotics are released unmetabolized into environment along with animal wastes. Accumulation of antibiotics in soils could potentially induce the persistence of antibiotic resistant bacteria. Antibiotics such as tetracyclines and tetracycline-resistant bacteria have been previously detected in fields fertilized with animal manure. However, little is known about the accumulation of tetracyclines and the development of tetracycline resistance in semi-arid soils. Here we demonstrate that continuous land application with swine effluent, containing trace amounts of chlortetracycline, does not necessarily induce tetracycline resistance in soil bacteria. Based on the testing of more than 3,000 bacteria isolated from the amended soils, we found no significant increase in the occurrence and level of chlortetracycline resistant bacteria in soils after 15 years of continuous swine effluent fertilization. To account for a possible transfer of tetracycline-resistant bacteria originated from the swine effluent to soils, we analyzed two commonly found tetracycline resistant genes, tet(O) and tet(M), in the swine effluent and fertilized soils. Both genes were present in the swine effluent, however, they were not detectable in soils applied with swine effluent. Our data demonstrate that agronomic application of manure from antibiotic treated swine effluent does not necessarily result in the development of antibiotic bacterial resistance in soils. Apparently, concentrations of chlortetracycline present in manure are not significant enough to induce the development of antibiotic bacterial resistance. | 2017 | 28277084 |
| 6952 | 6 | 0.9991 | Modeling the vertical transport of antibiotic resistance genes in agricultural soils following manure application. Antibiotic resistance genes (ARGs) may be introduced to agricultural soil through the land application of cattle manure. During a rainfall event, manure-borne ARGs may infiltrate into subsurface soil and leach into groundwater. The objective of this study was to characterize and model the vertical transport of manure-borne ARGs through soil following the land application of beef cattle manure on soil surface. In this study, soil column experiments were conducted to evaluate the influence of manure application on subsurface transport of four ARGs: erm(C), erm(F), tet(O) and tet(Q). An attachment-detachment model with the decay of ARGs in the soil was used to simulate the breakthrough of ARGs in leachates from the control column (without manure) and treatment (with manure) soil columns. Results showed that the first-order attachment coefficient (k(a)) was five to six orders of magnitude higher in the treatment column than in the control column. Conversely, the first-order detachment and decay coefficients (k(d) and μ(s)) were not significantly changed due to manure application. These findings suggest that in areas where manure is land-applied, some manure-borne bacteria-associated ARGs will be attached to the soil, instead of leaching to groundwater in near terms. | 2021 | 34087637 |
| 6748 | 7 | 0.9991 | Time-dependent effects of ZnO nanoparticles on bacteria in an estuarine aquatic environment. Many studies have examined the acute toxicity of nanoparticles (NPs) towards model bacteria. In this study, we report the time-dependent effects of ZnO NPs on native, selected Zn-resistant and dominant bacteria in estuarine waters. An initial inhibition of bacterial growth followed by a recovery at 24 h was observed, and this rebound phenomenon was particularly notable when the raw water samples were treated with relatively high ZnO NP concentrations (1 and 10 mg/L).By comparing the groups treated with Zn(2+), Zn(2+) was shown to largely explain the acute cytotoxic effect of ZnO NPs on bacteria in raw waters. Furthermore, similar to the native bacteria, especially the dominant bacteria, the viability of Escherichia coli (E. coli) decreased with the increasing treatments time and the concentrations of ZnO NPs in water with different salinities. Moreover, the expression of Zn-resistance genes including zntA and zntR in E. coli suggested that the Zn-resistance system in E. coli can be activated to defend against the stress of Zn(2+) released from ZnO NPs, and salinity may promote this process in estuarine aquatic systems. Thus, the effect of ZnO NPs on bacteria in estuarine water bodies is likely determined by the synergistic effect of environmental salinity and dissolved Zn ions. As such, our findings are of high relevance and importance for understanding the ecological disturbances caused by anthropogenic NPs in estuarine environments. | 2020 | 31505343 |
| 7981 | 8 | 0.9991 | Dissolved biochar eliminates the effect of Cu(II) on the transfer of antibiotic resistance genes between bacteria. The proliferation of antibiotic resistance genes (ARGs) has posed significant risks to human and environmental health. Research has confirmed that Cu(II) could accelerate the conjugative transfer of ARGs between bacteria. This study found that adding dissolved biochar effectively weakened or eliminated the Cu(II)-facilitated efficient transfer of ARGs. The efficiency of conjugative transfer was promoted after treatment with Cu(II) (0.05 mg/L) or dissolved biochar at a pyrolysis temperature of 300 °C. When exposed to the combination of Cu(II) and dissolved biochar, the transfer frequency was significantly reduced; this occurred regardless of the Cu(II) concentration or pyrolysis temperature of dissolved biochar. In particular, when the Cu(II) concentration exceeded 0.5 mg/L, the transfer efficiency was entirely inhibited. Gene expression analysis indicated that different treatments affect transfer efficiency by regulating the expression of three global regulatory genes: korA, korB, and trbA. Among them, humic acid repressed the expression of these genes; however, Cu(II) formed complex with the humic acid-like components, gradually weakening the inhibitive effect of these components. The promotion of low molecule organic matters dominated, resulting in a dynamic decline in the transfer efficiency. This study provides a new environmental contaminant treatment approach to eliminate the heavy metal-facilitated transfer of ARGs between bacteria. | 2022 | 34583164 |
| 8515 | 9 | 0.9990 | In vitro assessment of the bacterial stress response and resistance evolution during multidrug-resistant bacterial invasion of the Xenopus tropicalis intestinal tract under typical stresses. The intestinal microbiome might be both a sink and source of resistance genes (RGs). To investigate the impact of environmental stress on the disturbance of exogenous multidrug-resistant bacteria (mARB) within the indigenous microbiome and proliferation of RGs, an intestinal conjugative system was established to simulate the invasion of mARB into the intestinal microbiota in vitro. Oxytetracycline (OTC) and heavy metals (Zn, Cu, Pb), commonly encountered in aquaculture, were selected as typical stresses for investigation. Adenosine 5'-triphosphate (ATP), hydroxyl radical (OH·(-)) and extracellular polymeric substance (EPS) were measured to investigate their influence on the acceptance of RGs by intestinal bacteria. The results showed that the transfer and diffusion of RGs under typical combined stressors were greater than those under a single stressor. Combined effect of OTC and heavy metals (Zn, Cu) significantly increased the activity and extracellular EPS content of bacteria in the intestinal conjugative system, increasing intI3 and RG abundance. OTC induced a notable inhibitory response in Citrobacter and exerted the proportion of Citrobacter and Carnobacterium in microbiota. The introduction of stressors stimulates the proliferation and dissemination of RGs within the intestinal environment. These results enhance our comprehension of the typical stresses effect on the RGs dispersal in the intestine. | 2024 | 38280323 |
| 7627 | 10 | 0.9990 | Fish skin mucosal surface becomes a barrier of antibiotic resistance genes under apramycin exposure. Antibiotic resistance genes (ARGs) are a kind of emerging environmental contamination, and are commonly found in antibiotic application situations, attracting wide attention. Fish skin mucosal surface (SMS), as the contact interface between fish and water, is the first line of defense against external pollutant invasion. Antibiotics are widely used in aquaculture, and SMS may be exposed to antibiotics. However, what happens to SMS when antibiotics are applied, and whether ARGs are enriched in SMS are not clear. In this study, Zebrafish (Danio rerio) were exposed to antibiotic and antibiotic resistant bacteria in the laboratory to simulate the aquaculture situation, and the effects of SMS on the spread of ARGs were explored. The results showed that SMS maintained the stability of the bacterial abundance and diversity under apramycin (APR) and bacterial exposure effectively. Until 11 days after stopping APR exposure, the abundance of ARGs in SMS (mean value was 3.32 × 10(-3) copies/16S rRNA copies) still did not recover to the initial stage before exposure, which means that enriched ARGs in SMS were persistently remained. Moreover, non-specific immunity played an important role in resisting infection of external contamination. Besides, among antioxidant proteins, superoxide dismutase showed the highest activity. Consequently, it showed that SMS became a barrier of antibiotic resistance genes under APR exposure, and ARGs in SMS were difficult to remove once colonized. This study provided a reference for understanding the transmission, enrichment process, and ecological impact of antibiotics and ARGs in aquatic environments. | 2024 | 38615788 |
| 7068 | 11 | 0.9990 | Land application of sewage sludge: Response of soil microbial communities and potential spread of antibiotic resistance. The effect of land application of sewage sludge on soil microbial communities and the possible spread of antibiotic- and metal-resistant strains and resistance determinants were evaluated during a 720-day field experiment. Enzyme activities, the number of oligotrophic bacteria, the total number of bacteria (qPCR), functional diversity (BIOLOG) and genetic diversity (DGGE) were established. Antibiotic and metal resistance genes (ARGs, MRGs) were assessed, and the number of cultivable antibiotic- (ampicillin, tetracycline) and heavy metal- (Cd, Zn, Cu, Ni) resistant bacteria were monitored during the experiment. The application of 10 t ha(-1) of sewage sludge to soil did not increase the organic matter content and caused only a temporary increase in the number of bacteria, as well as in the functional and structural biodiversity. In contrast to expectations, a general adverse effect on the tested microbial parameters was observed in the fertilized soil. The field experiment revealed a significant reduction in the activities of alkaline and acid phosphatases, urease and nitrification potential. Although sewage sludge was identified as the source of several ARGs and MRGs, these genes were not detected in the fertilized soil. The obtained results indicate that the effect of fertilization based on the recommended dose of sewage sludge was not achieved. | 2021 | 33383416 |
| 8093 | 12 | 0.9990 | Acidic conditions enhance the removal of sulfonamide antibiotics and antibiotic resistance determinants in swine manure. Manure pH may vary depending on its inherent composition or additive contents. However, the effect of pH on the fate of antibiotics and antibiotic resistance determinants in manure remains unclear. This work demonstrated that pH adjustment promoted the removal of different sulfonamide antibiotics (SAs) within swine manure under incubation conditions, which increased from 26-60.8% to 75.0-86.0% by adjusting the initial pH from neutral (7.4) to acidic (5.4-4.8). Acidification was also demonstrated to inhibit the accumulation of antibiotic resistance genes in manure during incubation. Acidified manure contained both lower absolute and relative abundances of sul1 and sul2 than those at a neutral pH like 7.4. Further investigation indicated that acidification promoted the reduction of sul genes in manure by restricting sulfonamide-resistant bacteria (SRB) proliferation and inhibiting IntI1 accumulation. Furthermore, pH adjustment significantly influenced the composition of the manure bacterial community after incubation, which increased Firmicutes and decreased Proteobacteria. Close relationships were observed between pH-induced enrichment of the Firmicutes bacterial phylum, enhanced SAs degradation, and the fates of antibiotic resistance determinants. Overall, lowering the pH of manure promotes the degradation of SAs, decreases sul genes and SRB, and inhibits horizontal sul gene transfer, which could be a simple yet highly-effective manure management option to reduce antibiotic resistance. | 2020 | 32302890 |
| 7594 | 13 | 0.9990 | The impacts of triclosan on anaerobic community structures, function, and antimicrobial resistance. Triclosan is a widespread antimicrobial agent that accumulates in anaerobic digesters used to treat the residual solids generated at municipal wastewater treatment plants; there is very little information, however, about how triclosan impacts microbial communities in anaerobic digesters. We investigated how triclosan impacts the community structure, function and antimicrobial resistance genes in lab-scale anaerobic digesters. Previously exposed (to triclosan) communities were amended with 5, 50, and 500 mg/kg of triclosan, corresponding to the median, 95th percentile, and 4-fold higher than maximum triclosan concentration that has been detected in U.S. biosolids. Triclosan amendment caused all of the Bacteria and Archaea communities to structurally diverge from that of the control cultures (based on ARISA). At the end of the experiment, all triclosan-amended Archaea communities had diverged from the control communities, regardless of the triclosan concentration added. In contrast, over time the Bacteria communities that were amended with lower concentrations of triclosan (5 mg/kg and 50 mg/kg) initially diverged and then reconverged with the control community structure. Methane production at 500 mg/kg was nearly half the methane production in control cultures. At 50 mg/kg, a large variability in methane production was observed, suggesting that 50 mg/kg may be a tipping point where function begins to fail in some communities. When previously unexposed communities were exposed to 500 mg triclosan/kg, function was maintained, but the abundance of a gene encoding for triclosan resistance (mexB) increased. This research suggests that triclosan could inhibit methane production in anaerobic digesters if concentrations were to increase and may also select for resistant Bacteria. In both cases, microbial community composition and exposure history alter the influence of triclosan. | 2014 | 24915110 |
| 7615 | 14 | 0.9990 | Biofilm processes in treating mariculture wastewater may be a reservoir of antibiotic resistance genes. Antibiotics are heavily used in Chinese mariculture, but only a small portion of the added antibiotics are absorbed by living creatures. Biofilm processes are universally used in mariculture wastewater treatment. In this study, removal of antibiotics (norfloxacin, rifampicin, and oxytetracycline) from wastewater by moving bed biofilm reactors (MBBRs) and the influence of antibiotics on reactor biofilm were investigated. The results demonstrated that there was no significant effect of sub-μg/L-sub-mg/L concentrations of antibiotics on TOC removal. Moreover, the relative abundance of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARB) in MBBR biofilm increased because of selective pressure of antibiotics. In addition, antibiotics decreased the diversity of the biofilm bacterial community and altered bacterial community structure. These findings provide an empirical basis for the development of appropriate practices for mariculture, and suggest that disinfection and advanced oxidation should be applied to eliminate antibiotics, ARGs, and ARB from mariculture wastewater. | 2017 | 28285703 |
| 7966 | 15 | 0.9990 | How heavy metal stress promotes dissemination of antibiotic resistance genes in the activated sludge process. Heavy metals have been recently revealed as promoters to antibiotic resistance gene (ARG) dissemination in water environment, but their influence on ARG transfer in the activated sludge process has not been clear. In this study, a set of sequencing batch reactors (SBRs) and micro-scale microfluidic chips were established to quantify the impacts of heavy metals (0.5 mM of Pb, 0.1 mM of As, and 0.005 mM of Hg) on the ARG spreading in the activated sludge consortium. Under heavy metal stress, transfer frequencies were 1.7-3.6 folds increase compared to the control. Gram-negative bacteria increased significantly after heavy metal added, which were more prone to receiving resistant plasmid from donors. Meanwhile, the relative expression of genes related to conjugation changed in activated sludge, especially the expression of outer membrane protein and oxidative stress regulatory genes increased by 2.9-7.4 folds and 7.8-13.1 folds, respectively. Furthermore, using microfluidic chips, the dynamics of ARG transfer was observed at single cell level under heavy metal pressure. Heavy metals firstly promoted conjugation and then vertical gene transfer played an important part for ARG spreading. The results provided in-depth understanding of the influence of heavy metals on ARG behavior in the environment. | 2022 | 35724617 |
| 8519 | 16 | 0.9990 | Effects of Antibiotic Resistance Genes and Antibiotics on the Transport and Deposition Behaviors of Bacteria in Porous Media. Antibiotics present in the natural environment would induce the generation of antibiotic-resistant bacteria (ARB), causing great environmental risks. The effects of antibiotic resistance genes (ARGs) and antibiotics on bacterial transport/deposition in porous media yet are unclear. By using E. coli without ARGs as antibiotic-susceptible bacteria (ASB) and their corresponding isogenic mutants with ARGs in plasmids as ARB, the effects of ARGs and antibiotics on bacterial transport in porous media were examined under different conditions (1-4 m/d flow rates and 5-100 mM NaCl solutions). The transport behaviors of ARB were comparable with those of ASB under antibiotic-free conditions, indicating that ARGs present within cells had negligible influence on bacterial transport in antibiotic-free solutions. Interestingly, antibiotics (5-1000 μg/L gentamicin) present in solutions increased the transport of both ARB and ASB with more significant enhancement for ASB. This changed bacterial transport induced by antibiotics held true in solution with humic acid, in river water and groundwater samples. Antibiotics enhanced the transport of ARB and ASB in porous media via different mechanisms (ARB: competition of deposition sites; ASB: enhanced motility and chemotaxis effects). Clearly, since ASB are likely to escape sites containing antibiotics, these locations are more likely to accumulate ARB and their environmental risks would increase. | 2023 | 37406198 |
| 7502 | 17 | 0.9990 | Differential dose-response patterns of intracellular and extracellular antibiotic resistance genes under sub-lethal antibiotic exposure. Although antibiotics are one of the most significant factors contributing to the propagation of antibiotic resistance genes (ARGs), studies on the dose-response relationship at sub-lethal concentrations of antibiotics remain scarce, despite their importance for assessing the risks of antibiotics in the environment. In this study, we constructed a series of microcosms to investigate the propagation of intracellular (iARGs) and extracellular (eARGs) ARGs in both water and biofilms when exposed to antibiotics at various concentrations (1-100 μg/L) and frequencies. Results showed that eARGs were more abundant than iARGs in water, while iARGs were the dominant ARGs form in biofilms. eARGs showed differentiated dose-response relationships from iARGs. The abundance of iARGs increased with the concentration of antibiotics as enhanced selective pressure overcame the metabolic burden of antibiotic-resistant bacteria carrying ARGs. However, the abundance of eARGs decreased with increasing antibiotic concentrations because less ARGs were secreted from bacterial hosts at higher concentrations (100 μg/L). Furthermore, combined exposure to two antibiotics (tetracycline & imipenem) showed a synergistic effect on the propagation of iARGs, but an antagonistic effect on the propagation of eARGs compared to exposure to a single antibiotic. When exposed to antibiotic at a fixed total dose, one-time dosing (1 time/10 d) favored the propagation of iARGs, while fractional dosing (5 times /10 d) favored the propagation of eARGs. This study sheds light on the propagation of antibiotic resistance in the environment and can help in assessing the risks associated with the use of antibiotics. | 2023 | 37257347 |
| 6747 | 18 | 0.9990 | Tetracycline accumulation in biofilms enhances the selection pressure on Escherichia coli for expression of antibiotic resistance. Microorganisms are present as either biofilm or planktonic species in natural and engineered environments. Little is known about the selection pressure emanating from exposure to sub-minimal inhibitory concentration of antibiotics on planktonic vs. biofilm bacteria. In this study, an E. coli bioreporter was used to develop biofilms on glass and high-density polyethylene (HDPE) surfaces, and compared with the corresponding planktonic bacteria in antibiotic resistance expression when exposed to a range of μg/L levels of tetracycline. The antibiotic resistance-associated fluorescence emissions from biofilm E. coli reached up to 1.6 times more than those from planktonic bacteria. The intensively developed biofilms on glass surfaces caused the embedded bacteria to experience higher selection pressure and express more antibiotic resistance than those on HDPE surfaces. The temporal pattern of fluorescence emissions from biofilm E. coli was consistent with the biofilm-developing processes during the experimental period. The increased expression of antibiotic resistance from biofilm bacteria could be attributed to the high affinity of tetracycline with extracellular polymeric substances (EPS). The enhanced accumulation of tetracycline in biofilms could exert higher selection pressure on the embedded bacteria. These results suggest that in many natural and engineered systems the higher antibiotic resistance in biofilm bacteria could be attributed partially to the retention antibiotics by the EPS in biofilms. | 2023 | 36252660 |
| 6962 | 19 | 0.9990 | The risk of viable but non-culturable (VBNC) enterococci and antibiotic resistance transmission during simulated municipal sludge composting. Sludge composting is a sludge resource utilization method that can reduce pollutants, such as pathogens. Enterococci are regarded as more reliable and conservative indicators of pathogen inactivation than fecal coliforms, which are typically used as indicators of fecal pollution. Non-spore pathogenic bacteria may enter a viable but non-culturable (VBNC) state during composting, leading to residual risk. The VBNC status of bacteria is related to their survival during composting. However, the survival mechanisms of enterococci during sludge composting remain unclear. Therefore, this study aimed to investigate the VBNC state of enterococci in different phases of simulated sludge composting and the fate of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) during the composting process. This study is expected to provide a basis for subsequent exploration of possible methods to completely inactivate enterococci and reduce ARGs during sludge composting. Culturable enterococci were reduced in the thermophilic phase of sludge composting, but the proportion of VBNC subpopulation increased. It was reported for the first time that most VBNC enterococci were killed by extending the cooling phase of sludge compost, and by prolonging the cooling phase the types of ARG were reduced. However, there was a certain quantity (approximately 10(4)/g dry weight) of culturable and VBNC enterococci in the compost products. In addition, MGEs and ARGs exist in both bacteria and compost products, leading to the risk of spreading antibiotic-resistant bacteria and antibiotic resistance when sludge compost products are used. | 2024 | 38703551 |