# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6730 | 0 | 1.0000 | The ecological role of bacterial seed endophytes associated with wild cabbage in the United Kingdom. Endophytic bacteria are known for their ability in promoting plant growth and defense against biotic and abiotic stress. However, very little is known about the microbial endophytes living in the spermosphere. Here, we isolated bacteria from the seeds of five different populations of wild cabbage (Brassica oleracea L) that grow within 15 km of each other along the Dorset coast in the UK. The seeds of each plant population contained a unique microbiome. Sequencing of the 16S rRNA genes revealed that these bacteria belong to three different phyla (Actinobacteria, Firmicutes, and Proteobacteria). Isolated endophytic bacteria were grown in monocultures or mixtures and the effects of bacterial volatile organic compounds (VOCs) on the growth and development on B. oleracea and on resistance against a insect herbivore was evaluated. Our results reveal that the VOCs emitted by the endophytic bacteria had a profound effect on plant development but only a minor effect on resistance against an herbivore of B. oleracea. Plants exposed to bacterial VOCs showed faster seed germination and seedling development. Furthermore, seed endophytic bacteria exhibited activity via volatiles against the plant pathogen F. culmorum. Hence, our results illustrate the ecological importance of the bacterial seed microbiome for host plant health and development. | 2020 | 31721471 |
| 7522 | 1 | 0.9994 | Plants select antibiotic resistome in rhizosphere in early stage. Knowledge of the dissemination and emergence of antibiotic resistance genes (ARGs) in the plant rhizosphere is essential for evaluating the risk of the modern ARGs in soil planetary health. However, little is known about the selection mechanism in the plant rhizosphere. Here, we firstly analyzed the dynamic changes in the rhizosphere antibiotic resistome during the process of three passage enrichment of the rhizosphere microbiome in Arabidopsis thaliana (Col-0) and found evidence that plants directionally enriched levels of beneficial functional bacteria with many ARGs. Using the metagenome, we next evaluated the enrichment potential of the resistome in four common crops (barley, indica rice, japonica rice, and wheat) and found that the wheat rhizosphere harbored more abundant ARGs. Therefore, we finally cultivated the rhizosphere microbiome of wheat for three generations and found that approximately 60 % of ARGs were associated with beneficial bacteria enriched in the wheat rhizosphere, which might enter the soil food web and threaten human health, despite also performing beneficial functions in the plant rhizosphere. Our study provides new insights into the dissemination of ARGs in the plant rhizosphere, and the obtained data may be useful for sustainable and ecologically safe agricultural development. | 2023 | 36461576 |
| 8699 | 2 | 0.9994 | Hordeum vulgare differentiates its response to beneficial bacteria. BACKGROUND: In nature, beneficial bacteria triggering induced systemic resistance (ISR) may protect plants from potential diseases, reducing yield losses caused by diverse pathogens. However, little is known about how the host plant initially responds to different beneficial bacteria. To reveal the impact of different bacteria on barley (Hordeum vulgare), bacterial colonization patterns, gene expression, and composition of seed endophytes were explored. RESULTS: This study used the soil-borne Ensifer meliloti, as well as Pantoea sp. and Pseudomonas sp. isolated from barley seeds, individually. The results demonstrated that those bacteria persisted in the rhizosphere but with different colonization patterns. Although root-leaf translocation was not observed, all three bacteria induced systemic resistance (ISR) against foliar fungal pathogens. Transcriptome analysis revealed that ion- and stress-related genes were regulated in plants that first encountered bacteria. Iron homeostasis and heat stress responses were involved in the response to E. meliloti and Pantoea sp., even if the iron content was not altered. Heat shock protein-encoding genes responded to inoculation with Pantoea sp. and Pseudomonas sp. Furthermore, bacterial inoculation affected the composition of seed endophytes. Investigation of the following generation indicated that the enhanced resistance was not heritable. CONCLUSIONS: Here, using barley as a model, we highlighted different responses to three different beneficial bacteria as well as the influence of soil-borne Ensifer meliloti on the seed microbiome. In total, these results can help to understand the interaction between ISR-triggering bacteria and a crop plant, which is essential for the application of biological agents in sustainable agriculture. | 2023 | 37789272 |
| 6731 | 3 | 0.9994 | Bacterial, archaeal and micro-eukaryotic communities characterize a disease-suppressive or conducive soil and a cultivar resistant or susceptible to common scab. Control of common scab disease can be reached by resistant cultivars or suppressive soils. Both mechanisms are likely to translate into particular potato microbiome profiles, but the relative importance of each is not known. Here, microbiomes of bulk and tuberosphere soil and of potato periderm were studied in one resistant and one susceptible cultivar grown in a conducive and a suppressive field. Disease severity was suppressed similarly by both means yet, the copy numbers of txtB gene (coding for a pathogenicity determinant) were similar in both soils but higher in periderms of the susceptible cultivar from conducive soil. Illumina sequencing of 16S rRNA genes for bacteria (completed by 16S rRNA microarray approach) and archaea, and of 18S rRNA genes for micro-eukarytes showed that in bacteria, the more important was the effect of cultivar and diversity decreased from resistant cultivar to bulk soil to susceptible cultivar. The major changes occurred in proportions of Actinobacteria, Chloroflexi, and Proteobacteria. In archaea and micro-eukaryotes, differences were primarily due to the suppressive and conducive soil. The effect of soil suppressiveness × cultivar resistance depended on the microbial community considered, but differed also with respect to soil and plant nutrient contents particularly in N, S and Fe. | 2019 | 31619759 |
| 7521 | 4 | 0.9993 | Rhizosphere suppression hinders antibiotic resistance gene (ARG) spread under bacterial invasion. The rhizosphere is an extremely important component of the "one health" scenario by linking the soil microbiome and plants, in which the potential enrichment of antibiotic resistance genes (ARGs) might ultimately flow into the human food chain. Despite the increased occurrence of soil-borne diseases, which can lead to increased use of pesticides and antibiotic-producing biocontrol agents, the understanding of the dynamics of ARG spread in the rhizosphere is largely overlooked. Here, tomato seedlings grown in soils conducive and suppressive to the pathogen Ralstonia solanacearum were selected as a model to investigate ARG spread in the rhizosphere with and without pathogen invasion. Metagenomics data revealed that R. solanacearum invasion increased the density of ARGs and mobile genetic elements (MGEs). Although we found ARGs originating from human pathogenic bacteria in both soils, the enrichment was alleviated in the suppressive soil. In summary, the suppressive soil hindered ARG spread through pathogen suppression and had a lower number of taxa carrying antibiotic resistance. | 2023 | 36683960 |
| 8700 | 5 | 0.9992 | Beneficial Endophytic Bacteria-Serendipita indica Interaction for Crop Enhancement and Resistance to Phytopathogens. Serendipita (=Piriformospora) indica is a fungal endophytic symbiont with the capabilities to enhance plant growth and confer resistance to different stresses. However, the application of this fungus in the field has led to inconsistent results, perhaps due to antagonism with other microbes. Here, we studied the impact of individual bacterial isolates from the endophytic bacterial community on the in vitro growth of S. indica. We further analyzed how combinations of bacteria and S. indica influence plant growth and protection against the phytopathogens Fusarium oxysporum and Rhizoctonia solani. Bacterial strains of the genera Bacillus, Enterobacter and Burkholderia negatively affected S. indica growth on plates, whereas Mycolicibacterium, Rhizobium, Paenibacillus strains and several other bacteria from different taxa stimulated fungal growth. To further explore the potential of bacteria positively interacting with S. indica, four of the most promising strains belonging to the genus Mycolicibacterium were selected for further experiments. Some dual inoculations of S. indica and Mycolicibacterium strains boosted the beneficial effects triggered by S. indica, further enhancing the growth of tomato plants, and alleviating the symptoms caused by the phytopathogens F. oxysporum and R. solani. However, some combinations of S. indica and bacteria were less effective than individual inoculations. By analyzing the genomes of the Mycolicibacterium strains, we revealed that these bacteria encode several genes predicted to be involved in the stimulation of S. indica growth, plant development and tolerance to abiotic and biotic stresses. Particularly, a high number of genes related to vitamin and nitrogen metabolism were detected. Taking into consideration multiple interactions on and inside plants, we showed in this study that some bacterial strains may induce beneficial effects on S. indica and could have an outstanding influence on the plant-fungus symbiosis. | 2019 | 31921065 |
| 7523 | 6 | 0.9992 | Transfer of antibiotic resistance genes from soil to wheat: Role of host bacteria, impact on seed-derived bacteria, and affecting factors. The transfer of antibiotic resistance genes (ARGs) from soils to plants is poorly understood, especially the role of host bacteria in soils and its impact on seed-derived bacteria. Wheat (Triticum aestivum L.) was thus used to fill the gap by conducting pot experiments, with target ARGs and bacterial community analyzed. Results showed that the relative abundances of target ARGs gradually decreased during transfer of ARGs from the rhizosphere soil to root and shoot. Host bacteria in the rhizosphere soil were the primary source of ARGs in wheat. The 38, 21, and 19 potential host bacterial genera of target ARGs and intI1 in the rhizosphere soil, root, and shoot were identified, respectively, and they mainly belonged to phylum Proteobacteria. The abundance of ARGs carried by pathogenic Corynebacterium was reduced in sequence. During transfer of ARGs from the rhizosphere soil to root and shoot, some seed-derived bacteria and pathogenic Acinetobacter obtained ARGs through horizontal gene transfer and became potential host bacteria. Furthermore, total organic carbon, available nitrogen of the rhizosphere soil, water use efficiency, vapor pressure deficit, and superoxide dismutase of plants were identified as the key factors affecting potential host bacteria transfer in soils to wheat. This work provides important insights into transfer of ARGs and deepens our understanding of potential health risks of ARGs from soils to plants. | 2023 | 37741386 |
| 8662 | 7 | 0.9992 | Relationships between Phyllosphere Bacterial Communities and Leaf Functional Traits in a Temperate Forest. As a vital component of biodiversity, phyllosphere bacteria in forest canopy play a critical role in maintaining plant health and influencing the global biogeochemical cycle. There is limited research on the community structure of phyllosphere bacteria in natural forests, which creates a gap in our understanding of whether and/or how phyllosphere bacteria are connected to leaf traits of their host. In this study, we investigated the bacterial diversity and composition of the canopy leaves of six dominant tree species in deciduous broad-leaved forests in northeastern China, using high-throughput sequencing. We then compare the differences in phyllosphere bacterial community structure and functional genes of dominant tree species. Fourteen key leaf functional traits of their host trees were also measured according to standard protocols to investigate the relationships between bacterial community composition and leaf functional traits. Our result suggested that tree species with closer evolutionary distances had similar phyllosphere microbial alpha diversity. The dominant phyla of phyllosphere bacteria were Proteobacteria, Actinobacteria, and Firmicutes. For these six tree species, the functional genes of phyllosphere bacteria were mainly involved in amino acid metabolism and carbohydrate metabolism processes. The redundancy and envfit analysis results showed that the functional traits relating to plant nutrient acquisition and resistance to diseases and pests (such as leaf area, isotope carbon content, and copper content) were the main factors influencing the community structure of phyllosphere bacteria. This study highlights the key role of plant interspecific genetic relationships and plant attributes in shaping phyllosphere bacterial diversity. | 2023 | 38005751 |
| 8697 | 8 | 0.9992 | Deciphering the Root Endosphere Microbiome of the Desert Plant Alhagi sparsifolia for Drought Resistance-Promoting Bacteria. Drought is among the most destructive abiotic stresses limiting crop growth and yield worldwide. Although most research has focused on the contribution of plant-associated microbial communities to plant growth and disease suppression, far less is known about the microbes involved in drought resistance among desert plants. In the present study, we applied 16S rRNA gene amplicon sequencing to determine the structure of rhizosphere and root endosphere microbiomes of Alhagi sparsifolia Compared to those of the rhizosphere, endosphere microbiomes had lower diversity but contained several taxa with higher relative abundance; many of these taxa were also present in the roots of other desert plants. We isolated a Pseudomonas strain (LTGT-11-2Z) that was prevalent in root endosphere microbiomes of A. sparsifolia and promoted drought resistance during incubation with wheat. Complete genome sequencing of LTGT-11-2Z revealed 1-aminocyclopropane-1-carboxylate deaminases, siderophore, spermidine, and colanic acid biosynthetic genes, as well as type VI secretion system (T6SS) genes, which are likely involved in biofilm formation and plant-microbe interactions. Together, these results indicate that drought-enduring plants harbor bacterial endophytes favorable to plant drought resistance, and they suggest that novel endophytic bacterial taxa and gene resources may be discovered among these desert plants.IMPORTANCE Understanding microbe-mediated plant resistance to drought is important for sustainable agriculture. We performed 16S rRNA gene amplicon sequencing and culture-dependent functional analyses of Alhagi sparsifolia rhizosphere and root endosphere microbiomes and identified key endophytic bacterial taxa and their genes facilitating drought resistance in wheat. This study improves our understanding of plant drought resistance and provides new avenues for drought resistance improvement in crop plants under field conditions. | 2020 | 32220847 |
| 6091 | 9 | 0.9992 | Isolation of Heavy Metal-Tolerant and Anti-Phytopathogenic Plant Growth-Promoting Bacteria from Soils. In this study, multifunctional soil bacteria, which can promote plant development, resist heavy metals, exhibit anti-phytopathogenic action against plant diseaes, and produce extracellular enzymes, were isolated to improve the effectiveness of phytoremediation techniques. In order to isolate multifunctional soil bacteria, a variety of soil samples with diverse characteristics were used as sources for isolation. To look into the diversity and structural traits of the bacterial communities, we conducted amplicon sequencing of the 16S rRNA gene on five types of soils and predicted functional genes using Tax4Fun2. The isolated bacteria were evaluated for their multifunctional capabilities, including heavy metal tolerance, plant growth promotion, anti-phytopathogenic activity, and extracellular enzyme activity. The genes related to plant growth promotion and anti-phytopathogenic activity were most abundant in forest and paddy soils. Burkholderia sp. FZ3 and FZ5 demonstrated excellent heavy metal resistance (≤ 1 mM Cd and ≤ 10 mM Zn), Pantoea sp. FC24 exhibited the highest protease activity (24.90 μmol tyrosine·g-DCW(-1)·h(-1)), and Enterobacter sp. PC20 showed superior plant growth promotion, especially in siderophore production. The multifunctional bacteria isolated using traditional methods included three strains (FC24, FZ3, and FZ5) from the forest and one strain (PC20) from paddy field soil. These results indicate that, for the isolation of beneficial soil microorganisms, utilizing target gene information obtained from isolation sources and subsequently exploring target microorganisms is a valuable strategy. | 2024 | 39468992 |
| 3789 | 10 | 0.9992 | The fate of antibiotic resistance marker genes in transgenic plant feed material fed to chickens. We have examined the fate of an antibiotic resistance marker, incorporated into transgenic maize when fed to chicks. Plant-derived markers were found in the crops of five birds fed transgenic maize and in the stomach contents of two birds. The plant-derived marker gene was not found in the intestines. The survival of the antibiotic resistance marker gene mirrored that of plant DNA targets, demonstrating that it survives no better than other DNA and indicating that it is very unlikely that bacteria in the gut of chickens will be transformed to ampicillin resistance when the birds are fed transgenic maize. | 2002 | 11751781 |
| 7953 | 11 | 0.9992 | Rapid impact of phenanthrene and arsenic on bacterial community structure and activities in sand batches. The impact of both organic and inorganic pollution on the structure of soil microbial communities is poorly documented. A short-time batch experiment (6 days) was conducted to study the impact of both types of pollutants on the taxonomic, metabolic and functional diversity of soil bacteria. For this purpose sand spiked with phenanthrene (500 mg kg(-1) sand) or arsenic (arsenite 0.66 mM and arsenate 12.5 mM) was supplemented with artificial root exudates and was inoculated with bacteria originated from an aged PAH and heavy-metal-polluted soil. The bacterial community was characterised using bacterial strain isolation, TTGE fingerprinting and proteomics. Without pollutant, or with phenanthrene or arsenic, there were no significant differences in the abundance of bacteria and the communities were dominated by Pseudomonas and Paenibacillus genera. However, at the concentrations used, both phenanthrene or arsenic were toxic as shown by the decrease in mineralisation activities. Using community-level physiological profiles (Biolog Ecoplates™) or differential proteomics, we observed that the pollutants had an impact on the community physiology, in particular phenanthrene induced a general cellular stress response with changes in the central metabolism and membrane protein synthesis. Real-time PCR quantification of functional genes and transcripts revealed that arsenic induced the transcription of functional arsenic resistance and speciation genes (arsB, ACR3 and aioA), while no transcription of PAH-degradation genes (PAH-dioxygenase and catechol-dioxygenase) was detected with phenanthrene. Altogether, in our tested conditions, pollutants do not have a major effect on community abundance or taxonomic composition but rather have an impact on metabolic and functional bacterial properties. | 2014 | 24189653 |
| 8705 | 12 | 0.9992 | Culturable Bacterial Endophytes of Wild White Poplar (Populus alba L.) Roots: A First Insight into Their Plant Growth-Stimulating and Bioaugmentation Potential. The white poplar (Populus alba L.) has good potential for a green economy and phytoremediation. Bioaugmentation using endophytic bacteria can be considered as a safe strategy to increase poplar productivity and its resistance to toxic urban conditions. The aim of our work was to find the most promising strains of bacterial endophytes to enhance the growth of white poplar in unfavorable environmental conditions. To this end, for the first time, we performed whole-genome sequencing of 14 bacterial strains isolated from the tissues of the roots of white poplar in different geographical locations. We then performed a bioinformatics search to identify genes that may be useful for poplar growth and resistance to environmental pollutants and pathogens. Almost all endophytic bacteria obtained from white poplar roots are new strains of known species belonging to the genera Bacillus, Corynebacterium, Kocuria, Micrococcus, Peribacillus, Pseudomonas, and Staphylococcus. The genomes of the strains contain genes involved in the enhanced metabolism of nitrogen, phosphorus, and metals, the synthesis of valuable secondary metabolites, and the detoxification of heavy metals and organic pollutants. All the strains are able to grow on media without nitrogen sources, which indicates their ability to fix atmospheric nitrogen. It is concluded that the strains belonging to the genus Pseudomonas and bacteria of the species Kocuria rosea have the best poplar growth-stimulating and bioaugmentation potential, and the roots of white poplar are a valuable source for isolation of endophytic bacteria for possible application in ecobiotechnology. | 2023 | 38132345 |
| 8706 | 13 | 0.9992 | Analysis of 16S rRNA and mxaF genes revealing insights into Methylobacterium niche-specific plant association. The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant. | 2012 | 22481887 |
| 7710 | 14 | 0.9991 | Reduced Antibiotic Resistance in the Rhizosphere of Lupinus albus in Mercury-Contaminated Soil Mediated by the Addition of PGPB. The emergence of antibiotic resistance (AR) poses a threat to the "One Health" approach. Likewise, mercury (Hg) pollution is a serious environmental and public health problem. Its ability to biomagnify through trophic levels induces numerous pathologies in humans. As well, it is known that Hg-resistance genes and AR genes are co-selected. The use of plant-growth-promoting bacteria (PGPB) can improve plant adaptation, decontamination of toxic compounds and control of AR dispersal. The cenoantibiogram, a technique that allows estimating the minimum inhibitory concentration (MIC) of a microbial community, has been postulated as a tool to effectively evaluate the evolution of a soil. The present study uses the metagenomics of 16S rRNA gene amplicons to understand the distribution of the microbial soil community prior to bacterial inoculation, and the cenoantibiogram technique to evaluate the ability of four PGPB and their consortia to minimize antibiotic resistance in the rhizosphere of Lupinus albus var. Orden Dorado grown in Hg-contaminated soils. Results showed that the addition of A1 strain (Brevibacterium frigoritolerans) and its consortia with A2, B1 and B2 strains reduced the edaphic community´s MIC against cephalosporins, ertapenem and tigecycline. The metagenomic study revealed that the high MIC of non-inoculated soils could be explained by the bacteria which belong to the detected taxa,. showing a high prevalence of Proteobacteria, Cyanobacteria and Actinobacteria. | 2023 | 37372086 |
| 6740 | 15 | 0.9991 | Metatranscriptomics reveals that plant tannins regulate the expression of intestinal antibiotic resistance genes in Qinghai voles (Neodon fuscus). Antibiotic resistance genes (ARGs) are a persistent harmful environmental pollutant, epidemic of ARGs thought to be a result of antibiotic misuse. Tannin acid (TA) is a natural plant compounds with bactericidal properties. Nowadays, TA is considered to be a potential replacement of antibiotics. However, the role of TA on ARGs is also not yet clear. To address this knowledge gap, we fed the model plateau animal Qinghai voles (Neodon fuscus) with different concentrations of TA. We used 16S rDNA sequencing for revealing total bacteria, 16S rRNA sequencing for revealing active bacteria, and metatranscriptomics (active function) sequencing for revealing ARGs and other functions. Our results showed that although TA reduced macrolide ARGs, TA group enriched 6-fold for tetracycline ARGs, 3-fold for multidrug ARGs, and 5-fold for aminoglycoside ARGs compared with control group. Moreover, TA reduced animal growth performance, and regulated gut microbiome more stable by improving microbial diversity. And TA promoted the production of short-chain fatty acids by gut microbes, such as lactate and acetate. This study reveals modulation of ARGs and gut microbiome by TA and also provides scientific value for the proper use of TA in feed and medical treatment. | 2025 | 39952456 |
| 7692 | 16 | 0.9991 | 16S rRNA gene sequencing data of the human skin microbiome before and after swimming in the ocean. These data represent the abundance, diversity and predicted function gene profiles of the microbial communities present on human skin before and after swimming in the ocean. The skin microbiome has been shown to provide protection against infection from pathogenic bacteria. It is well-known that exposure to ocean water can cause skin infection, but little is known about how exposure can alter the bacterial communities on the skin. Skin microbiome samples were collected from human participants before and after swimming in the ocean. These data were used to analyze the changes in abundance and diversity of microbial communities on the skin and the changes in the functional profiles of the bacteria, specifically focusing on genes involved in antibiotic resistance and bacterial virulence. | 2021 | 34189199 |
| 9001 | 17 | 0.9991 | Bacterial Methionine Metabolism Genes Influence Drosophila melanogaster Starvation Resistance. Animal-associated microorganisms (microbiota) dramatically influence the nutritional and physiological traits of their hosts. To expand our understanding of such influences, we predicted bacterial genes that influence a quantitative animal trait by a comparative genomic approach, and we extended these predictions via mutant analysis. We focused on Drosophila melanogaster starvation resistance (SR). We first confirmed that D. melanogaster SR responds to the microbiota by demonstrating that bacterium-free flies have greater SR than flies bearing a standard 5-species microbial community, and we extended this analysis by revealing the species-specific influences of 38 genome-sequenced bacterial species on D. melanogaster SR. A subsequent metagenome-wide association analysis predicted bacterial genes with potential influence on D. melanogaster SR, among which were significant enrichments in bacterial genes for the metabolism of sulfur-containing amino acids and B vitamins. Dietary supplementation experiments established that the addition of methionine, but not B vitamins, to the diets significantly lowered D. melanogaster SR in a way that was additive, but not interactive, with the microbiota. A direct role for bacterial methionine metabolism genes in D. melanogaster SR was subsequently confirmed by analysis of flies that were reared individually with distinct methionine cycle Escherichia coli mutants. The correlated responses of D. melanogaster SR to bacterial methionine metabolism mutants and dietary modification are consistent with the established finding that bacteria can influence fly phenotypes through dietary modification, although we do not provide explicit evidence of this conclusion. Taken together, this work reveals that D. melanogaster SR is a microbiota-responsive trait, and specific bacterial genes underlie these influences.IMPORTANCE Extending descriptive studies of animal-associated microorganisms (microbiota) to define causal mechanistic bases for their influence on animal traits is an emerging imperative. In this study, we reveal that D. melanogaster starvation resistance (SR), a model quantitative trait in animal genetics, responds to the presence and identity of the microbiota. Using a predictive analysis, we reveal that the amino acid methionine has a key influence on D. melanogaster SR and show that bacterial methionine metabolism mutants alter normal patterns of SR in flies bearing the bacteria. Our data further suggest that these effects are additive, and we propose the untested hypothesis that, similar to bacterial effects on fruit fly triacylglyceride deposition, the bacterial influence may be through dietary modification. Together, these findings expand our understanding of the bacterial genetic basis for influence on a nutritionally relevant trait of a model animal host. | 2018 | 29934334 |
| 8621 | 18 | 0.9991 | Effects of symbiotic bacteria on chemical sensitivity of Daphnia magna. The crustacean zooplankton Daphnia magna has been widely used for chemical toxicity tests. Although abiotic factors have been well documented in ecotoxicological test protocols, biotic factors that may affect the sensitivity to chemical compounds remain limited. Recently, we identified symbiotic bacteria that are critical for the growth and reproduction of D. magna. The presence of symbiotic bacteria on Daphnia raised the question as to whether these bacteria have a positive or negative effect on toxicity tests. In order to evaluate the effects of symbiotic bacteria on toxicity tests, bacteria-free Daphnia were prepared, and their chemical sensitivities were compared with that of Daphnia with symbiotic bacteria based on an acute immobilization test. The Daphnia with symbiotic bacteria showed higher chemical resistance to nonylphenol, fenoxycarb, and pentachlorophenol than bacteria-free Daphnia. These results suggested potential roles of symbiotic bacteria in the chemical resistance of its host Daphnia. | 2017 | 28292585 |
| 7386 | 19 | 0.9991 | Regulation of Antibiotic Resistance Genes on Agricultural Land Is Dependent on Both Choice of Organic Amendment and Prevalence of Predatory Bacteria. Antibiotic resistance genes (ARGs) are widespread in the environment, and soils, specifically, are hotspots for microorganisms with inherent antibiotic resistance. Manure and sludge used as fertilizers in agricultural production have been shown to contain vast amounts of ARGs, and due to continued applications, ARGs accumulate in agricultural soils. Some soils, however, harbor a resilience capacity that could depend on specific soil properties, as well as the presence of predatory bacteria that are able to hydrolyse living bacteria, including bacteria of clinical importance. The objectives of this study were to (i) investigate if the antibiotic resistance profile of the soil microbiota could be differently affected by the addition of cow manure, chicken manure, and sludge, and (ii) investigate if the amendments had an effect on the presence of predatory bacteria. The three organic amendments were mixed separately with a field soil, divided into pots, and incubated in a greenhouse for 28 days. Droplet digital PCR (ddPCR) was used to quantify three ARGs, two predatory bacteria, and total number of bacteria. In this study, we demonstrated that the choice of organic amendment significantly affected the antibiotic resistance profile of soil, and promoted the growth of predatory bacteria, while the total number of bacteria was unaffected. | 2024 | 39200050 |