# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6717 | 0 | 1.0000 | Updated research agenda for water, sanitation and antimicrobial resistance. The emergence and spread of antimicrobial resistance (AMR), including clinically relevant antimicrobial-resistant bacteria, genetic resistance elements, and antibiotic residues, presents a significant threat to human health. Reducing the incidence of infection by improving water, sanitation, and hygiene (WASH) is one of five objectives in the World Health Organization's (WHO) Global Action Plan on AMR. In September 2019, WHO and the Health-Related Water Microbiology specialist group (HRWM-SG) of the International Water Association (IWA) organized its third workshop on AMR, focusing on the following three main issues: environmental pathways of AMR transmission, environmental surveillance, and removal from human waste. The workshop concluded that despite an increase in scientific evidence that the environment may play a significant role, especially in low-resource settings, the exact relative role of the environment is still unclear. Given many antibiotic-resistant bacteria (ARB) can be part of the normal gut flora, it can be assumed that for environmental transmission, the burden of fecal-oral transmission of AMR in a geographical area follows that of WASH-related infections. There are some uncertainties as to the potential for the propagation of particular resistance genes within wastewater treatment plants (WWTPs), but there is no doubt that the reduction in viable microbes (with or without resistance genes) available for transmission via the environment is one of the goals of human waste management. Although progress has been made in the past years with respect to quantifying environmental AMR transmission potential, still more data on the spread of environmental AMR within human communities is needed. Even though evidence on AMR in WWTPs has increased, the reduction in the emergence and spread of AMR by basic sanitation methods is yet unresolved. In order to contribute to the generation of harmonized One Health surveillance data, WHO has initiated an integrated One Health surveillance strategy that includes the environment. The main challenge lies in rolling it out globally including to the poorest regions. | 2020 | 33328358 |
| 6513 | 1 | 0.9999 | Antibiotic Resistance Dissemination and Mapping in the Environment Through Surveillance of Wastewater. Antibiotic resistance is one of the major health threat for humans, animals, and the environment, according to the World Health Organization (WHO) and the Global Antibiotic-Resistance Surveillance System (GLASS). In the last several years, wastewater/sewage has been identified as potential hotspots for the dissemination of antibiotic resistance and transfer of resistance genes. However, systematic approaches for mapping the antibiotic resistance situation in sewage are limited and underdeveloped. The present review has highlighted all possible perspectives by which the dynamics of ARBs/ARGs in the environment may be tracked, quantified and assessed spatio-temporally through surveillance of wastewater. Moreover, application of advanced methods like wastewater metagenomics for determining the community distribution of resistance at large has appeared to be promising. In addition, monitoring wastewater for antibiotic pollution at various levels, may serve as an early warning system and enable policymakers to take timely measures and build infrastructure to mitigate health crises. Thus, by understanding the alarming presence of antibiotic resistance in wastewater, effective action plans may be developed to address this global health challenge and its associated environmental risks. | 2025 | 39676299 |
| 6720 | 2 | 0.9999 | Human, animal and environmental contributors to antibiotic resistance in low-resource settings: integrating behavioural, epidemiological and One Health approaches. Antibiotic resistance (ABR) is recognized as a One Health challenge because of the rapid emergence and dissemination of resistant bacteria and genes among humans, animals and the environment on a global scale. However, there is a paucity of research assessing ABR contemporaneously in humans, animals and the environment in low-resource settings. This critical review seeks to identify the extent of One Health research on ABR in low- and middle-income countries (LMICs). Existing research has highlighted hotspots for environmental contamination; food-animal production systems that are likely to harbour reservoirs or promote transmission of ABR as well as high and increasing human rates of colonization with ABR commensal bacteria such as Escherichia coli However, very few studies have integrated all three components of the One Health spectrum to understand the dynamics of transmission and the prevalence of community-acquired resistance in humans and animals. Microbiological, epidemiological and social science research is needed at community and population levels across the One Health spectrum in order to fill the large gaps in knowledge of ABR in low-resource settings. | 2018 | 29643217 |
| 6716 | 3 | 0.9999 | Wastewater surveillance of antibiotic-resistant bacteria for public health action: potential and challenges. Antibiotic resistance is an urgent public health threat. Actions to reduce this threat include requiring prescriptions for antibiotic use, antibiotic stewardship programs, educational programs targeting patients and healthcare providers, and limiting antibiotic use in agriculture, aquaculture, and animal husbandry. Wastewater surveillance might complement clinical surveillance by tracking time/space variation essential for detecting outbreaks and evaluating efficacy of evidence-based interventions, identifying high-risk populations for targeted monitoring, providing early warning of the emergence and spread of antibiotic-resistant bacteria (ARBs), and identifying novel antibiotic-resistant threats. Wastewater surveillance was an effective early warning system for SARS-CoV-2 spread and detection of the emergence of new viral strains. In this data-driven commentary, we explore whether monitoring wastewater for antibiotic-resistant genes (ARGs) and/or bacteria resistant to antibiotics might provide useful information for public health action. Using carbapenem resistance as an example, we highlight technical challenges associated with using wastewater to quantify temporal/spatial trends in ARBs and ARGs and compare with clinical information. While ARGs and ARBs are detectable in wastewater enabling early detection of novel ARGs, quantitation of ARBs and ARGs with current methods is too variable to reliably track space/time variation. | 2025 | 39475072 |
| 6515 | 4 | 0.9999 | Environmental antimicrobial resistance and its drivers: a potential threat to public health. Imprudent and overuse of clinically relevant antibiotics in agriculture, veterinary and medical sectors contribute to the global epidemic increase in antimicrobial resistance (AMR). There is a growing concern among researchers and stakeholders that the environment acts as an AMR reservoir and plays a key role in the dissemination of antimicrobial resistance genes (ARGs). Various drivers are contributing factors to the spread of antibiotic-resistant bacteria and their ARGs either directly through antimicrobial drug use in health care, agriculture/livestock and the environment or antibiotic residues released from various domestic settings. Resistant micro-organisms and their resistance genes enter the soil, air, water and sediments through various routes or hotspots such as hospital wastewater, agricultural waste or wastewater treatment plants. Global mitigation strategies primarily involve the identification of high-risk environments that are responsible for the evolution and spread of resistance. Subsequently, AMR transmission is affected by the standards of infection control, sanitation, access to clean water, access to assured quality antimicrobials and diagnostics, travel and migration. This review provides a brief description of AMR as a global concern and the possible contribution of different environmental drivers to the transmission of antibiotic-resistant bacteria or ARGs through various mechanisms. We also aim to highlight the key knowledge gaps that hinder environmental regulators and mitigation strategies in delivering environmental protection against AMR. | 2021 | 34454098 |
| 6700 | 5 | 0.9999 | Antimicrobial Resistance in Diverse Ecological Niches-One Health Perspective and Food Safety. Antimicrobial resistance (AMR) is a multi-sectoral, systemic, and global issue worldwide. Antimicrobial use (AMU) is a key factor in the selection of resistant bacteria within different ecological niches, from agriculture to food-producing animals to humans. There is a question regarding the extent to which the use of antibiotics in livestock production and the primary food production sector influences the selection and transmission of resistant bacteria and/or resistant genes throughout the food chain and thus contributes to the complexity in the development of AMR in humans. Although the trends in the prevalence of foodborne pathogens have changed over time, the burden of ecological niches with resistance genes, primarily in commensal microorganisms, is of concern. The implementation of the harmonized surveillance of AMU and AMR would provide comprehensive insights into the actual status of resistance and further interventions leading to its reduction. Tracking AMR in different ecological niches by applying advanced genome-based techniques and developing shared AMR data repositories would strengthen the One Health concept. | 2025 | 40426510 |
| 6543 | 6 | 0.9999 | A new modelling framework for assessing the relative burden of antimicrobial resistance in aquatic environments. The infections caused by antibiotic resistant bacteria (ARB) can lead to higher medical costs, prolonged hospital stays, and increased mortality compared to bacteria that are susceptible to antibiotics. Challenges exist in quantifying the potential risk/burden associated with antimicrobial resistance (AMR) as there is a lack of dose-response models available for pathogens which are resistant to antibiotics, in addition to the fact that very little is known regarding the health risks posed by antibiotic resistant genes (ARG). In this paper, we proposed a new modelling framework to evaluate the relative burden of AMR in natural aquatic environments. With this framework, an AMR burden score for each sample was calculated based on burden coefficients assigned for each ARB and ARG, as well as weighted burdens for the separate ARBs and ARGs components. The method developed in this study was applied to assess the relative burden of AMR in local aquatic environments with different land uses at different seasons. The collected filed data were used to verify the applicability of the proposed relative burden assessment method. Through the established method, the spatial and temporal hotspots of AMR were identified, which could provide useful information to agencies for better control and management of AMR emergence in natural aquatic environments. | 2022 | 34763923 |
| 6514 | 7 | 0.9998 | Review of antibiotic-resistant bacteria and antibiotic resistance genes within the one health framework. Background: The interdisciplinary One Health (OH) approach recognizes that human, animal, and environmental health are all interconnected. Its ultimate goal is to promote optimal health for all through the exploration of these relationships. Antibiotic resistance (AR) is a public health challenge that has been primarily addressed within the context of human health and clinical settings. However, it has become increasingly evident that antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) that confer resistance are transmitted and circulated within humans, animals, and the environment. Therefore, to effectively address this issue, antibiotic resistance must also be considered an environmental and livestock/wildlife problem. Objective: This review was carried out to provide a broad overview of the existence of ARB and ARGs in One Health settings. Methods: Relevant studies that placed emphasis on ARB and ARGs were reviewed and key findings were accessed that illustrate the importance of One Health as a measure to tackle growing public and environmental threats. Results: In this review, we delve into the complex interplay of the three components of OH in relation to ARB and ARGs. Antibiotics used in animal husbandry and plants to promote growth, treat, and prevent infectious diseases lead to the development of antibiotic-resistant bacteria in animals. These bacteria are transmitted from animals to humans through food and environmental exposure. The environment plays a critical role in the circulation and persistence of antibiotic-resistant bacteria and genes, posing a significant threat to human and animal health. This article also highlights how ARGs are spread in the environment through the transfer of genetic material between bacteria. This transfer can occur naturally or through human activities such as the use of antibiotics in agriculture and waste management practices. Conclusion: It is important to integrate the One Health approach into the public health system to effectively tackle the emergence and spread of ARB and genes that code for resistance to different antibiotics. | 2024 | 38371518 |
| 6521 | 8 | 0.9998 | Hiding in plain sight-wildlife as a neglected reservoir and pathway for the spread of antimicrobial resistance: a narrative review. Antimicrobial resistance represents a global health problem, with infections due to pathogenic antimicrobial resistant bacteria (ARB) predicted to be the most frequent cause of human mortality by 2050. The phenomenon of antimicrobial resistance has spread to and across all ecological niches, and particularly in livestock used for food production with antimicrobials consumed in high volumes. Similarly, hospitals and other healthcare facilities are recognized as significant 'hotspots' of ARB and antimicrobial resistance genes (ARGs); however, over the past decade, new and previously overlooked ecological niches are emerging as hidden reservoirs of ARB/ARGs. Increasingly extensive and intensive industrial activities, degradation of natural environments, burgeoning food requirements, urbanization, and global climatic change have all dramatically affected the evolution and proliferation of ARB/ARGs, which now stand at extremely concerning ecological levels. While antimicrobial resistant bacteria and genes as they originate and emanate from livestock and human hosts have been extensively studied over the past 30 years, numerous ecological niches have received considerably less attention. In the current descriptive review, the authors have sought to highlight the importance of wildlife as sources/reservoirs, pathways and receptors of ARB/ARGs in the environment, thus paving the way for future primary research in these areas. | 2022 | 35425978 |
| 6714 | 9 | 0.9998 | Differential Drivers of Antimicrobial Resistance across the World. Antimicrobial resistance (AMR) is one of the greatest threats faced by humankind. The development of resistance in clinical and hospital settings has been well documented ever since the initial discovery of penicillin and the subsequent introduction of sulfonamides as clinical antibiotics. In contrast, the environmental (i.e., community-acquired) dimensions of resistance dissemination have been only more recently delineated. The global spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) between air, water, soil, and food is now well documented, while the factors that affect ARB and ARG dissemination (e.g., water and air quality, antibiotic fluxes, urbanization, sanitation practices) in these and other environmental matrices are just now beginning to be more fully appreciated. In this Account, we discuss how the global perpetuation of resistance is dictated by highly interconnected socioeconomic risk factors and illustrate that development status should be more fully considered when developing global strategies to address AMR. We first differentiate low to middle income countries (LMICs) and high-income countries (HICs), then we summarize the modes of action of commercially available antibiotics, and then discuss the four primary mechanisms by which bacteria develop resistance to those antibiotics. Resistance is disseminated via both vertical gene transfer (VGT; parent to offspring) as well as by horizontal gene transfer (HGT; cell to cell transference of genetic material). A key challenge hindering attempts to control resistance dissemination is the presence of native, environmental bacteria that can harbor ARGs. Such environmental "resistomes" have potential to transfer resistance to pathogens via HGT. Of particular concern is the development of resistance to antibiotics of last-resort such as the cephalosporins, carbapenems, and polymyxins. We then illustrate how antibiotic use differs in LMICs relative to HICs in terms of the volumes of antibiotics used and their fate within local environments. Antibiotic use in HICs has remained flat over the past 15 years, while in LMICs use over the same period has increased substantially as a result of economic improvements and changes in diet. These use and fate differences impact local citizens and thus the local dissemination of AMR. Various physical, social, and economic circumstances within LMICs potentially favor AMR dissemination. We focus on three physical factors: changing population density, sanitation infrastructure, and solid-waste disposal. We show that high population densities in cities within LMICs that suffer from poor sanitation and solid-waste disposal can potentially impact the dissemination of resistance. In the final section, we discuss potential monitoring approaches to quantify the spread of resistance both within LMICs as well as in HICs. We posit that culture-based approaches, molecular approaches, and cutting-edge nanotechnology-based methods for monitoring ARB and ARGs should be considered both within HICs and, as appropriate, within LMICs. | 2019 | 30848890 |
| 6520 | 10 | 0.9998 | Antimicrobial Resistance in the Environment: Towards Elucidating the Roles of Bioaerosols in Transmission and Detection of Antibacterial Resistance Genes. Antimicrobial resistance (AMR) is continuing to grow across the world. Though often thought of as a mostly public health issue, AMR is also a major agricultural and environmental problem. As such, many researchers refer to it as the preeminent One Health issue. Aerial transport of antimicrobial-resistant bacteria via bioaerosols is still poorly understood. Recent work has highlighted the presence of antibiotic resistance genes in bioaerosols. Emissions of AMR bacteria and genes have been detected from various sources, including wastewater treatment plants, hospitals, and agricultural practices; however, their impacts on the broader environment are poorly understood. Contextualizing the roles of bioaerosols in the dissemination of AMR necessitates a multidisciplinary approach. Environmental factors, industrial and medical practices, as well as ecological principles influence the aerial dissemination of resistant bacteria. This article introduces an ongoing project assessing the presence and fate of AMR in bioaerosols across Canada. Its various sub-studies include the assessment of the emissions of antibiotic resistance genes from many agricultural practices, their long-distance transport, new integrative methods of assessment, and the creation of dissemination models over short and long distances. Results from sub-studies are beginning to be published. Consequently, this paper explains the background behind the development of the various sub-studies and highlight their shared aspects. | 2022 | 35884228 |
| 3978 | 11 | 0.9998 | Contribution of wastewater to antimicrobial resistance: A review article. OBJECTIVES: Antimicrobial resistance (AMR) is a global challenge that has raised concern globally, owing to its detrimental effects on the health and economy of countries. The ever-growing threat of AMR and sources of AMR are still being investigated. Wastewater plays an important role as a habitat for bacteria and an environment conducive to gene transfer. The primary aim of this review was to highlight the contribution of wastewater to AMR. METHODS: Evidence of AMR in wastewater was drawn from literature published in the last 10 years, from 2012 to 2022. RESULTS: Wastewater from agricultural practices, pharmaceutical manufacturing plants, and hospital effluents was established to promote AMR. Furthermore, stress factors such as the presence of antibiotics, heavy metals, pH, and temperature initiate and propagate AMR in bacteria living in wastewater. AMR in bacteria from wastewater was established to be either natural or acquired. Wastewater treatment techniques such as membrane filtration, coagulation, adsorption, and advanced oxidation processes have been used to remove resistant bacteria with varying success levels. CONCLUSION: Wastewater is a major contributor to AMR, and an understanding of its role in AMR is necessary to find a lasting solution. In this regard, the spread of AMR in wastewater should be considered a threat that requires a strategy to stop further damage. | 2023 | 37285914 |
| 6701 | 12 | 0.9998 | Current Insights Regarding the Role of Farm Animals in the Spread of Antimicrobial Resistance from a One Health Perspective. Antimicrobial resistance (AMR) represents a global threat to both human and animal health and has received increasing attention over the years from different stakeholders. Certain AMR bacteria circulate between humans, animals, and the environment, while AMR genes can be found in all ecosystems. The aim of the present review was to provide an overview of antimicrobial use in food-producing animals and to document the current status of the role of farm animals in the spread of AMR to humans. The available body of scientific evidence supported the notion that restricted use of antimicrobials in farm animals was effective in reducing AMR in livestock and, in some cases, in humans. However, most recent studies have reported that livestock have little contribution to the acquisition of AMR bacteria and/or AMR genes by humans. Overall, strategies applied on farms that target the reduction of all antimicrobials are recommended, as these are apparently associated with notable reduction in AMR (avoiding co-resistance between antimicrobials). The interconnection between human and animal health as well as the environment requires the acceleration of the implementation of the 'One Health' approach to effectively fight AMR while preserving the effectiveness of antimicrobials. | 2022 | 36136696 |
| 6662 | 13 | 0.9998 | One Health strategies in combating antimicrobial resistance: a Southeast Asian perspective. Antimicrobial resistance (AMR) is a multifactorial global public health concern that is interlinked with the health of humans, animals, and the environment. Therapeutically important antibiotics used widely in the mass medication of livestock have contributed significantly to AMR, as they eventually enter the environment due to inadequate treatment of wastewater. Similarly, improper discharge of antibiotic-contaminated waste by the medical sector exacerbates the problem by contributing to the increase in the selection of resistant bacteria and the horizontal transfer of resistance genes. Developed and developing countries and regions worldwide acknowledged that no discipline or sector of society can successfully address climate change, known and emerging infectious diseases, and AMR by acting in isolation. Countries in Southeast Asia, like elsewhere in the world, have also adopted a transdisciplinary and multi-sectoral collaboration integrating human, animal, and environmental health, known as the One Health strategy. | 2025 | 40476586 |
| 6548 | 14 | 0.9998 | Review of Antimicrobial Resistance in Wastewater in Japan: Current Challenges and Future Perspectives. Antimicrobial resistance (AMR) circulates through humans, animals, and the environments, requiring a One Health approach. Recently, urban sewage has increasingly been suggested as a hotspot for AMR even in high-income countries (HICs), where the water sanitation and hygiene infrastructure are well-developed. To understand the current status of AMR in wastewater in a HIC, we reviewed the epidemiological studies on AMR in the sewage environment in Japan from the published literature. Our review showed that a wide variety of clinically important antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antimicrobial residues are present in human wastewater in Japan. Their concentrations are lower than in low- and middle-income countries (LMICs) and are further reduced by sewage treatment plants (STPs) before discharge. Nevertheless, the remaining ARB and ARGs could be an important source of AMR contamination in river water. Furthermore, hospital effluence may be an important reservoir of clinically important ARB. The high concentration of antimicrobial agents commonly prescribed in Japan may contribute to the selection and dissemination of AMR within wastewater. Our review shows the importance of both monitoring for AMR and antimicrobials in human wastewater and efforts to reduce their contamination load in wastewater. | 2022 | 35884103 |
| 6719 | 15 | 0.9998 | Impacts of Antibiotic Residues in the Environment on Bacterial Resistance and Human Health in Eastern China: An Interdisciplinary Mixed-Methods Study Protocol. Antibiotic resistance is a global health challenge that threatens human and animal lives, especially among low-income and vulnerable populations in less-developed countries. Its multi-factorial nature requires integrated studies on antibiotics and resistant bacteria in humans, animals, and the environment. To achieve a comprehensive understanding of the situation and management of antibiotic use and environmental transmission, this paper describes a study protocol to document human exposure to antibiotics from major direct and indirect sources, and its potential health outcomes. Our mixed-methods approach addresses both microbiological and pathogen genomics, and epidemiological, geospatial, anthropological, and sociological aspects. Implemented in two rural residential areas in two provinces in Eastern China, linked sub-studies assess antibiotic exposure in population cohorts through household surveys, medicine diaries, and biological sampling; identify the types and frequencies of antibiotic resistance genes in humans and food-stock animals; quantify the presence of antibiotic residues and antibiotic resistance genes in the aquatic environment, including wastewater; investigate the drivers and behaviours associated with human and livestock antibiotic use; and analyse the national and local policy context, to propose strategies and systematic measurements for optimising and monitoring antibiotic use. As a multidisciplinary collaboration between institutions in the UK and China, this study will provide an in-depth understanding of the influencing factors and allow comprehensive awareness of the complexity of AMR and antibiotic use in rural Eastern China. | 2022 | 35805804 |
| 6694 | 16 | 0.9998 | Interconnected microbiomes and resistomes in low-income human habitats. Antibiotic-resistant infections annually claim hundreds of thousands of lives worldwide. This problem is exacerbated by exchange of resistance genes between pathogens and benign microbes from diverse habitats. Mapping resistance gene dissemination between humans and their environment is a public health priority. Here we characterized the bacterial community structure and resistance exchange networks of hundreds of interconnected human faecal and environmental samples from two low-income Latin American communities. We found that resistomes across habitats are generally structured by bacterial phylogeny along ecological gradients, but identified key resistance genes that cross habitat boundaries and determined their association with mobile genetic elements. We also assessed the effectiveness of widely used excreta management strategies in reducing faecal bacteria and resistance genes in these settings representative of low- and middle-income countries. Our results lay the foundation for quantitative risk assessment and surveillance of resistance gene dissemination across interconnected habitats in settings representing over two-thirds of the world's population. | 2016 | 27172044 |
| 6706 | 17 | 0.9998 | Antimicrobial Resistance Development Pathways in Surface Waters and Public Health Implications. Human health is threatened by antibiotic-resistant bacteria and their related infections, which cause thousands of human deaths every year worldwide. Surface waters are vulnerable to human activities and natural processes that facilitate the emergence and spread of antibiotic-resistant bacteria in the environment. This study evaluated the pathways and drivers of antimicrobial resistance (AR) in surface waters. We analyzed antibiotic resistance healthcare-associated infection (HAI) data reported to the CDC's National Healthcare Safety Network to determine the number of antimicrobial-resistant pathogens and their isolates detected in healthcare facilities. Ten pathogens and their isolates associated with HAIs tested resistant to the selected antibiotics, indicating the role of healthcare facilities in antimicrobial resistance in the environment. The analyzed data and literature research revealed that healthcare facilities, wastewater, agricultural settings, food, and wildlife populations serve as the major vehicles for AR in surface waters. Antibiotic residues, heavy metals, natural processes, and climate change were identified as the drivers of antimicrobial resistance in the aquatic environment. Food and animal handlers have a higher risk of exposure to resistant pathogens through ingestion and direct contact compared with the general population. The AR threat to public health may grow as pathogens in aquatic systems adjust to antibiotic residues, contaminants, and climate change effects. The unnecessary use of antibiotics increases the risk of AR, and the public should be encouraged to practice antibiotic stewardship to decrease the risk. | 2022 | 35740227 |
| 6718 | 18 | 0.9998 | Agroecosystem exploration for Antimicrobial Resistance in Ahmedabad, India: A Study Protocol. INTRODUCTION: Antimicrobial resistance (AMR) has emerged as one of the leading threats to public health. AMR possesses a multidimensional challenge that has social, economic, and environmental dimensions that encompass the food production system, influencing human and animal health. The One Health approach highlights the inextricable linkage and interdependence between the health of people, animal, agriculture, and the environment. Antibiotic use in any of these areas can potentially impact the health of others. There is a dearth of evidence on AMR from the natural environment, such as the plant-based agriculture sector. Antibiotics, antibiotic-resistant bacteria (ARB), and related AMR genes (ARGs) are assumed to present in the natural environment and disseminate resistance to fresh produce/vegetables and thus to human health upon consumption. Therefore, this study aims to investigate the role of vegetables in the spread of AMR through an agroecosystem exploration in Ahmedabad, India. PROTOCOL: The present study will be executed in Ahmedabad, located in Gujarat state in the Western part of India, by adopting a mixed-method approach. First, a systematic review will be conducted to document the prevalence of ARB and ARGs on fresh produce in South Asia. Second, agriculture farmland surveys will be used to collect the general farming practices and the data on common vegetables consumed raw by the households in Ahmedabad. Third, vegetable and soil samples will be collected from the selected agriculture farms and analyzed for the presence or absence of ARB and ARGs using standard microbiological and molecular methods. DISCUSSION: The analysis will help to understand the spread of ARB/ARGs through the agroecosystem. This is anticipated to provide an insight into the current state of ARB/ARGs contamination of fresh produce/vegetables and will assist in identifying the relevant strategies for effectively controlling and preventing the spread of AMR. | 2023 | 38644926 |
| 6704 | 19 | 0.9998 | Gut microbiota research nexus: One Health relationship between human, animal, and environmental resistomes. The emergence and rapid spread of antimicrobial resistance is of global public health concern. The gut microbiota harboring diverse commensal and opportunistic bacteria that can acquire resistance via horizontal and vertical gene transfers is considered an important reservoir and sink of antibiotic resistance genes (ARGs). In this review, we describe the reservoirs of gut ARGs and their dynamics in both animals and humans, use the One Health perspective to track the transmission of ARG-containing bacteria between humans, animals, and the environment, and assess the impact of antimicrobial resistance on human health and socioeconomic development. The gut resistome can evolve in an environment subject to various selective pressures, including antibiotic administration and environmental and lifestyle factors (e.g., diet, age, gender, and living conditions), and interventions through probiotics. Strategies to reduce the abundance of clinically relevant antibiotic-resistant bacteria and their resistance determinants in various environmental niches are needed to ensure the mitigation of acquired antibiotic resistance. With the help of effective measures taken at the national, local, personal, and intestinal management, it will also result in preventing or minimizing the spread of infectious diseases. This review aims to improve our understanding of the correlations between intestinal microbiota and antimicrobial resistance and provide a basis for the development of management strategies to mitigate the antimicrobial resistance crisis. | 2023 | 38818274 |