Investigating the occurrence of antimicrobial resistance in the environment in Canada: a scoping review. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
670701.0000Investigating the occurrence of antimicrobial resistance in the environment in Canada: a scoping review. Antimicrobial resistance is an environmental, agricultural, and public health problem that is impacting the health of humans and animals. The role of the environment as a source of and transmission pathway for antibiotic resistant bacteria and antibiotic resistance genes is a topic of increasing interest that, to date, has received limited attention. This study aimed to describe the sources and possible pathways contributing to antimicrobial resistance dissemination through bioaerosols, water, and soil in Canada using a scoping review methodology and systems thinking approach. A systems map was created to describe the occurrence and relationships between sources and pathways for antimicrobial resistance dissemination through water, soil, and bioaerosols. The map guided the development of the scoping review protocol, specifically the keywords searched and what data were extracted from the included studies. In total, 103 studies of antimicrobial resistance in water, 67 in soil, and 12 in air were identified. Studies to detect the presence of antimicrobial resistance genes have mainly been conducted at wastewater treatment plants and commercial animal livestock facilities. We also identified elements in the systems map with little or no data available (e.g., retail) that need to be investigated further to have a better understanding of antimicrobial resistance dissemination through different Canadian environments.202540279669
390010.9999Antimicrobial resistance pattern in domestic animal - wildlife - environmental niche via the food chain to humans with a Bangladesh perspective; a systematic review. BACKGROUND: Antimicrobial resistance (AMR) is a growing concern globally, but the impact is very deleterious in the context of Bangladesh. Recent review article on the AMR issue demonstrates the scenario in human medicine; unfortunately, no attempt was taken to address this as One Health issue. The antimicrobial resistance bacteria or genes are circulating in the fragile ecosystems and disseminate into human food chain through direct or indirect ways. In this systematic review we are exploring the mechanism or the process of development of resistance pathogen into human food chain via the domestic animal, wildlife and environmental sources in the context of One Health and future recommendation to mitigate this issue in Bangladesh. RESULTS: Tetracycline resistance genes were presenting in almost all sample sources in higher concentrations against enteric pathogen Escherichia coli. The second most significant antibiotics are amino-penicillin that showed resistant pattern across different source of samples. It is a matter of concerns that cephalosporin tends to acquire resistance in wildlife species that might be an indication of this antibiotic resistance gene or the pathogen been circulating in our surrounding environment though the mechanism is still unclear. CONCLUSIONS: Steps to control antibiotic release and environmental disposal from all uses should be immediate and obligatory. There is a need for detailed system biology analysis of resistance development in-situ.202032838793
389920.9999Overview of Evidence of Antimicrobial Use and Antimicrobial Resistance in the Food Chain. Antimicrobial resistance (AMR) is a global health problem. Bacteria carrying resistance genes can be transmitted between humans, animals and the environment. There are concerns that the widespread use of antimicrobials in the food chain constitutes an important source of AMR in humans, but the extent of this transmission is not well understood. The aim of this review is to examine published evidence on the links between antimicrobial use (AMU) in the food chain and AMR in people and animals. The evidence showed a link between AMU in animals and the occurrence of resistance in these animals. However, evidence of the benefits of a reduction in AMU in animals on the prevalence of resistant bacteria in humans is scarce. The presence of resistant bacteria is documented in the human food supply chain, which presents a potential exposure route and risk to public health. Microbial genome sequencing has enabled the establishment of some links between the presence of resistant bacteria in humans and animals but, for some antimicrobials, no link could be established. Research and monitoring of AMU and AMR in an integrated manner is essential for a better understanding of the biology and the dynamics of antimicrobial resistance.202032013023
390330.9999Combining analytical epidemiology and genomic surveillance to identify risk factors associated with the spread of antimicrobial resistance in Salmonella enterica subsp. enterica serovar Heidelberg. Antimicrobial resistance (AMR) has become a critical threat to public health worldwide. The use of antimicrobials in food and livestock agriculture, including the production of poultry, is thought to contribute to the dissemination of antibiotic resistant bacteria (ARB) and the genes and plasmids that confer the resistant phenotype (ARG). However, the relative contribution of each of these processes to the emergence of resistant pathogens in poultry production and their potential role in the transmission of resistant pathogens in human infections, requires a deeper understanding of the dynamics of ARB and ARG in food production and the factors involved in the increased risk of transmission.202236748560
670640.9999Antimicrobial Resistance Development Pathways in Surface Waters and Public Health Implications. Human health is threatened by antibiotic-resistant bacteria and their related infections, which cause thousands of human deaths every year worldwide. Surface waters are vulnerable to human activities and natural processes that facilitate the emergence and spread of antibiotic-resistant bacteria in the environment. This study evaluated the pathways and drivers of antimicrobial resistance (AR) in surface waters. We analyzed antibiotic resistance healthcare-associated infection (HAI) data reported to the CDC's National Healthcare Safety Network to determine the number of antimicrobial-resistant pathogens and their isolates detected in healthcare facilities. Ten pathogens and their isolates associated with HAIs tested resistant to the selected antibiotics, indicating the role of healthcare facilities in antimicrobial resistance in the environment. The analyzed data and literature research revealed that healthcare facilities, wastewater, agricultural settings, food, and wildlife populations serve as the major vehicles for AR in surface waters. Antibiotic residues, heavy metals, natural processes, and climate change were identified as the drivers of antimicrobial resistance in the aquatic environment. Food and animal handlers have a higher risk of exposure to resistant pathogens through ingestion and direct contact compared with the general population. The AR threat to public health may grow as pathogens in aquatic systems adjust to antibiotic residues, contaminants, and climate change effects. The unnecessary use of antibiotics increases the risk of AR, and the public should be encouraged to practice antibiotic stewardship to decrease the risk.202235740227
670150.9999Current Insights Regarding the Role of Farm Animals in the Spread of Antimicrobial Resistance from a One Health Perspective. Antimicrobial resistance (AMR) represents a global threat to both human and animal health and has received increasing attention over the years from different stakeholders. Certain AMR bacteria circulate between humans, animals, and the environment, while AMR genes can be found in all ecosystems. The aim of the present review was to provide an overview of antimicrobial use in food-producing animals and to document the current status of the role of farm animals in the spread of AMR to humans. The available body of scientific evidence supported the notion that restricted use of antimicrobials in farm animals was effective in reducing AMR in livestock and, in some cases, in humans. However, most recent studies have reported that livestock have little contribution to the acquisition of AMR bacteria and/or AMR genes by humans. Overall, strategies applied on farms that target the reduction of all antimicrobials are recommended, as these are apparently associated with notable reduction in AMR (avoiding co-resistance between antimicrobials). The interconnection between human and animal health as well as the environment requires the acceleration of the implementation of the 'One Health' approach to effectively fight AMR while preserving the effectiveness of antimicrobials.202236136696
656960.9999Unveiling Rare Pathogens and Antibiotic Resistance in Tanzanian Cholera Outbreak Waters. The emergence of antibiotic resistance is a global health concern. Therefore, understanding the mechanisms of its spread is crucial for implementing evidence-based strategies to tackle resistance in the context of the One Health approach. In developing countries where sanitation systems and access to clean and safe water are still major challenges, contamination may introduce bacteria and bacteriophages harboring antibiotic resistance genes (ARGs) into the environment. This contamination can increase the risk of exposure and community transmission of ARGs and infectious pathogens. However, there is a paucity of information on the mechanisms of bacteriophage-mediated spread of ARGs and patterns through the environment. Here, we deploy Droplet Digital PCR (ddPCR) and metagenomics approaches to analyze the abundance of ARGs and bacterial pathogens disseminated through clean and wastewater systems. We detected a relatively less-studied and rare human zoonotic pathogen, Vibrio metschnikovii, known to spread through fecal--oral contamination, similarly to V. cholerae. Several antibiotic resistance genes were identified in both bacterial and bacteriophage fractions from water sources. Using metagenomics, we detected several resistance genes related to tetracyclines and beta-lactams in all the samples. Environmental samples from outlet wastewater had a high diversity of ARGs and contained high levels of blaOXA-48. Other identified resistance profiles included tetA, tetM, and blaCTX-M9. Specifically, we demonstrated that blaCTX-M1 is enriched in the bacteriophage fraction from wastewater. In general, however, the bacterial community has a significantly higher abundance of resistance genes compared to the bacteriophage population. In conclusion, the study highlights the need to implement environmental monitoring of clean and wastewater to inform the risk of infectious disease outbreaks and the spread of antibiotic resistance in the context of One Health.202337894148
388870.9999A Systematic Review of Culture-Based Methods for Monitoring Antibiotic-Resistant Acinetobacter, Aeromonas, and Pseudomonas as Environmentally Relevant Pathogens in Wastewater and Surface Water. PURPOSE OF REVIEW: Mounting evidence indicates that habitats such as wastewater and environmental waters are pathways for the spread of antibiotic-resistant bacteria (ARB) and mobile antibiotic resistance genes (ARGs). We identified antibiotic-resistant members of the genera Acinetobacter, Aeromonas, and Pseudomonas as key opportunistic pathogens that grow or persist in built (e.g., wastewater) or natural aquatic environments. Effective methods for monitoring these ARB in the environment are needed to understand their influence on dissemination of ARB and ARGs, but standard methods have not been developed. This systematic review considers peer-reviewed papers where the ARB above were cultured from wastewater or surface water, focusing on the accuracy of current methodologies. RECENT FINDINGS: Recent studies suggest that many clinically important ARGs were originally acquired from environmental microorganisms. Acinetobacter, Aeromonas, and Pseudomonas species are of interest because their ability to persist and grow in the environment provides opportunities to engage in horizontal gene transfer with other environmental bacteria. Pathogenic strains of these organisms resistant to multiple, clinically relevant drug classes have been identified as an urgent threat. However, culture methods for these bacteria were generally developed for clinical samples and are not well-vetted for environmental samples. The search criteria yielded 60 peer-reviewed articles over the past 20 years, which reported a wide variety of methods for isolation, confirmation, and antibiotic resistance assays. Based on a systematic comparison of the reported methods, we suggest a path forward for standardizing methodologies for monitoring antibiotic resistant strains of these bacteria in water environments.202336821031
389280.9999Tetracycline and Phenicol Resistance Genes and Mechanisms: Importance for Agriculture, the Environment, and Humans. Recent reports have speculated on the future impact that antibiotic-resistant bacteria will have on food production, human health, and global economics. This review examines microbial resistance to tetracyclines and phenicols, antibiotics that are widely used in global food production. The mechanisms of resistance, mode of spread between agriculturally and human-impacted environments and ecosystems, distribution among bacteria, and the genes most likely to be associated with agricultural and environmental settings are included. Forty-six different tetracycline resistance () genes have been identified in 126 genera, with (M) having the broadest taxonomic distribution among all bacteria and (B) having the broadest coverage among the Gram-negative genera. Phenicol resistance genes are organized into 37 groups and have been identified in 70 bacterial genera. The review provides the latest information on tetracycline and phenicol resistance genes, including their association with mobile genetic elements in bacteria of environmental, medical, and veterinary relevance. Knowing what specific antibiotic-resistance genes (ARGs) are found in specific bacterial species and/or genera is critical when using a selective suite of ARGs for detection or surveillance studies. As detection methods move to molecular techniques, our knowledge about which type of bacteria carry which resistance gene(s) will become more important to ensure that the whole spectrum of bacteria are included in future surveillance studies. This review provides information needed to integrate the biology, taxonomy, and ecology of tetracycline- and phenicol-resistant bacteria and their resistance genes so that informative surveillance strategies can be developed and the correct genes selected.201627065405
398390.9999Antibiotic resistance genes in bacteria: Occurrence, spread, and control. The production and use of antibiotics are becoming increasingly common worldwide, and the problem of antibiotic resistance is increasing alarmingly. Drug-resistant infections threaten human life and health and impose a heavy burden on the global economy. The origin and molecular basis of bacterial resistance is the presence of antibiotic resistance genes (ARGs). Investigations on ARGs mostly focus on the environments in which antibiotics are frequently used, such as hospitals and farms. This literature review summarizes the current knowledge of the occurrence of antibiotic-resistant bacteria in nonclinical environments, such as air, aircraft wastewater, migratory bird feces, and sea areas in-depth, which have rarely been involved in previous studies. Furthermore, the mechanism of action of plasmid and phage during horizontal gene transfer was analyzed, and the transmission mechanism of ARGs was summarized. This review highlights the new mechanisms that enhance antibiotic resistance and the evolutionary background of multidrug resistance; in addition, some promising points for controlling or reducing the occurrence and spread of antimicrobial resistance are also proposed.202134651331
3889100.9999Emerging Trends in Antimicrobial Resistance in Polar Aquatic Ecosystems. The global spread of antimicrobial resistance (AMR) threatens to plummet society back to the pre-antibiotic era through a resurgence of common everyday infections' morbidity. Thus, studies investigating antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in urban, agricultural, and clinical settings, as well as in extreme environments, have become increasingly relevant in the One Health perspective. Since the Antarctic and Arctic regions are considered amongst the few remaining pristine environments on Earth, the characterization of their native resistome appears to be of the utmost importance to understand whether and how it is evolving as a result of anthropogenic activities and climate change. In the present review, we report on the phenotypic (e.g., disk diffusion test) and genotypic (e.g., PCR, metagenomics) approaches used to study AMR in the aquatic environment of polar regions, as water represents one of AMR main dissemination routes in nature. Their advantages and limits are described, and the emerging trends resulting from the analysis of ARB and ARGs diffusion in polar waters discussed. The resistome detected in these extreme environments appears to be mostly comparable to those from more anthropized areas, with the predominance of tetracycline, β-lactam, and sulfonamide resistance (and related ARGs). Indeed, AMR is, in all cases, more consistently highlighted in sites impacted by human and wildlife activities with respect to more pristine ones. Surprisingly, aminoglycoside and fluroquinolone determinants seem to have an even higher incidence in the Antarctic and Arctic aquatic environment compared to that from other areas of the world, corroborating the need for a more thorough AMR surveillance in these regions.202540298543
3898110.9999Enterococci as a One Health indicator of antimicrobial resistance. The rapid increase of antimicrobial-resistant bacteria in humans and livestock is concerning. Antimicrobials are essential for the treatment of disease in modern day medicine, and their misuse in humans and food animals has contributed to an increase in the prevalence of antimicrobial-resistant bacteria. Globally, antimicrobial resistance is recognized as a One Health problem affecting humans, animals, and environment. Enterococcal species are Gram-positive bacteria that are widely distributed in nature. Their occurrence, prevalence, and persistence across the One Health continuum make them an ideal candidate to study antimicrobial resistance from a One Health perspective. The objective of this review was to summarize the role of enterococci as an indicator of antimicrobial resistance across One Health sectors. We also briefly address the prevalence of enterococci in human, animal, and environmental settings. In addition, a 16S RNA gene-based phylogenetic tree was constructed to visualize the evolutionary relationship among enterococcal species and whether they segregate based on host environment. We also review the genomic basis of antimicrobial resistance in enterococcal species across the One Health continuum.202438696839
3901120.9999Antimicrobial resistance in Chile and The One Health paradigm: Dealing with threats to human and veterinary health resulting from antimicrobial use in salmon aquaculture and the clinic. The emergence and dissemination of antimicrobial-resistant bacteria (ARB) is currently seen as one of the major threats to human and animal public health. Veterinary use of antimicrobials in both developing and developed countries is many-fold greater than their use in human medicine and is an important determinant in selection of ARB. In light of the recently outlined National Plan Against Antimicrobial Resistance in Chile, our findings on antimicrobial use in salmon aquaculture and their impact on the environment and human health are highly relevant. Ninety-five percent of tetracyclines, phenicols and quinolones imported into Chile between 1998 and 2015 were for veterinary use, mostly in salmon aquaculture. Excessive use of antimicrobials at aquaculture sites was associated with antimicrobial residues in marine sediments 8 km distant and the presence of resistant marine bacteria harboring easily transmissible resistance genes, in mobile genetic elements, to these same antimicrobials. Moreover, quinolone and integron resistance genes in human pathogens isolated from patients in coastal regions adjacent to aquaculture sites were identical to genes isolated from regional marine bacteria, consistent with genetic communication between bacteria in these different environments. Passage of antimicrobials into the marine environment can potentially diminish environmental diversity, contaminate wild fish for human consumption, and facilitate the appearance of harmful algal blooms and resistant zoonotic and human pathogens. Our findings suggest that changes in aquaculture in Chile that prevent fish infections and decrease antimicrobial usage will prove a determining factor in preventing human and animal infections with multiply-resistant ARB in accord with the modern paradigm of One Health.201830534910
3896130.9999Antimicrobial resistance genes in bacteria from animal-based foods. Antimicrobial resistance is a worldwide public health threat. Farm animals are important sources of bacteria containing antimicrobial resistance genes (ARGs). Although the use of antimicrobials in aquaculture and livestock has been reduced in several countries, these compounds are still routinely applied in animal production, and contribute to ARGs emergence and spread among bacteria. ARGs are transmitted to humans mainly through the consumption of products of animal origin (PAO). Bacteria can present intrinsic resistance, and once antimicrobials are administered, this resistance may be selected and multiply. The exchange of genetic material is another mechanism used by bacteria to acquire resistance. Some of the main ARGs found in bacteria present in PAO are the bla, mcr-1, cfr and tet genes, which are directly associated to antibiotic resistance in the human clinic.202032762867
4301140.9999Patterns of antimicrobial resistance observed in the Middle East: Environmental and health care retrospectives. Antimicrobial resistance is one of the biggest worldwide challenging problems that associates with high morbidity and mortality rates. The resistance of bacteria to various antibiotic classes results in difficulties in the treatment of infectious diseases caused by those bacteria. This paper highlights and provides a critical overview of observational and experimental studies investigating the presence of antibiotic resistant bacteria in different environments in Middle East countries and the mechanisms by which bacteria acquire and spread resistance. The data of this research considered the published papers within the last ten years (2010-2020) and was carried out using PubMed. A total of 66 articles were selected in this review. This review covered studies done on antibiotic resistant bacteria found in a wide range of environments including foods, animals, groundwater, aquatic environments as well as industrial and hospital wastewater. They acquire and achieve their resistance through several mechanisms such as antibiotic resistant genes, efflux pumps and enzymatic reactions. However, the dissemination and spread of antibiotic resistant bacteria is affected by several factors like anthropogenic, domestic, inappropriate use of antibiotics and the expulsion of wastewater containing antibiotic residues to the environments. Therefore, it is important to increase the awareness regarding these activities and their effect on the environment and eventually on health.202032559543
3886150.9999β-Lactam antibiotics and antibiotic resistance in Asian lakes and rivers: An overview of contamination, sources and detection methods. Lakes and rivers are sources of livelihood, food and water in many parts of the world. Lakes provide natural resources and valuable ecosystem services. These aquatic ecosystems are also vulnerable to known and new environmental pollutants. Emerging water contaminants are now being studied including antibiotics because of the global phenomenon on antibiotic resistance. β-Lactam antibiotics are widely used in human and animal disease prevention or treatment. The emergence of antibiotic resistance is a public health threat when bacteria become more resistant and infections consequently increase requiring treatment using last resort drugs that are more expensive. This review summarizes the key findings on the occurrence, contamination sources, and determination of β-lactam antibiotics and β-lactam antibiotic resistant bacteria and genes in the Asian lake and river waters. The current methods in the analytical measurements of β-lactam antibiotics in water involving solid-phase extraction and liquid chromatography-mass spectrometry are discussed. Also described is the determination of antibiotic resistance genes which is primarily based on a polymerase chain reaction method. To date, β-lactam antibiotics in the Asian aquatic environments are reported in the ng/L concentrations. Studies on β-lactam resistant bacteria and resistance genes were mostly conducted in China. The occurrence of these emerging contaminants is largely uncharted because many aquatic systems in the Asian region remain to be studied. Comprehensive investigations encompassing the environmental behavior of β-lactam antibiotics, emergence of resistant bacteria, transfer of resistance genes to non-resistant bacteria, multiple antibiotic resistance, and effects on aquatic biota are needed particularly in rivers and lakes that are eventual sinks of these water contaminants.202133571856
3902160.9999Integrons and antibiotic resistance genes in water-borne pathogens: threat detection and risk assessment. Antibiotic-resistant genes (ARGs) are regarded as emerging environmental pollutants and pose a serious health risk to the human population. Integrons are genetic elements that are involved in the spread of ARGs amongst bacterial species. They also act as reservoirs of these resistance traits, further contributing to the development of multi-drug resistance in several water-borne pathogens. Due to inter- and intra-species transfer, integrons are now commonly reported in important water-borne pathogens such as Vibrio, Campylobacter, Salmonella, Shigella, Escherichia coli and other opportunistic pathogens. These pathogens exhibit immense diversity in their resistance gene cassettes. The evolution of multiple novel and complex gene cassettes in integrons further suggests the selection and horizontal transfer of ARGs in multi-drug resistant bacteria. Thus, the detection and characterization of these integrons in water-borne pathogens, especially in epidemic and pandemic strains, is of the utmost importance. It will provide a framework in which health authorities can conduct improved surveillance of antibiotic resistance in our natural water bodies. Such a study will also be helpful in developing better strategies for the containment and cure of infections caused by these bacteria.201930990401
3982170.9999Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: A risk to human health. With the induction of various emerging environmental contaminants such as antibiotic resistance genes (ARGs), environment is considered as a key indicator for the spread of antimicrobial resistance (AMR). As such, the ARGs mediated environmental pollution raises a significant public health concern worldwide. Among various genetic mechanisms that are involved in the dissemination of ARGs, integrons play a vital role in the dissemination of ARGs. Integrons are mobile genetic elements that can capture and spread ARGs among environmental settings via transmissible plasmids and transposons. Most of the ARGs are found in Gram-negative bacteria and are primarily studied for their potential role in antibiotic resistance in clinical settings. As one of the most common microorganisms, Escherichia coli (E. coli) is widely studied as an indicator carrying drug-resistant genes, so this article aims to provide an in-depth study on the spread of ARGs via integrons associated with E. coli outside clinical settings and highlight their potential role as environmental contaminants. It also focuses on multiple but related aspects that do facilitate environmental pollution, i.e. ARGs from animal sources, water treatment plants situated at or near animal farms, agriculture fields, wild birds and animals. We believe that this updated study with summarized text, will facilitate the readers to understand the primary mechanisms as well as a variety of factors involved in the transmission and spread of ARGs among animals, humans, and the environment.202032717638
3885180.9999Antibiotic resistance is widespread in urban aquatic environments of Rio de Janeiro, Brazil. Bacterial resistance to antibiotics has become a public health issue. Over the years, pathogenic organisms with resistance traits have been studied due to the threat they pose to human well-being. However, several studies raised awareness to the often disregarded importance of environmental bacteria as sources of resistance mechanisms. In this work, we analyze the diversity of antibiotic-resistant bacteria occurring in aquatic environments of the state of Rio de Janeiro, Brazil, that are subjected to distinct degrees of anthropogenic impacts. We access the diversity of aquatic bacteria capable of growing in increasing ampicillin concentrations through 16S rRNA gene libraries. This analysis is complemented by the characterization of antibiotic resistance profiles of isolates obtained from urban aquatic environments. We detect communities capable of tolerating antibiotic concentrations up to 600 times higher than the clinical levels. Among the resistant organisms are included potentially pathogenic species, some of them classified as multiresistant. Our results extend the knowledge of the diversity of antibiotic resistance among environmental microorganisms and provide evidence that the diversity of drug-resistant bacteria in aquatic habitats can be influenced by pollution.201424821495
4297190.9999Predicting clinical resistance prevalence using sewage metagenomic data. Antibiotic resistance surveillance through regional and up-to-date testing of clinical isolates is a foundation for implementing effective empirical treatment. Surveillance data also provides an overview of geographical and temporal changes that are invaluable for guiding interventions. Still, due to limited infrastructure and resources, clinical surveillance data is lacking in many parts of the world. Given that sewage is largely made up of human fecal bacteria from many people, sewage epidemiology could provide a cost-efficient strategy to partly fill the current gap in clinical surveillance of antibiotic resistance. Here we explored the potential of sewage metagenomic data to assess clinical antibiotic resistance prevalence using environmental and clinical surveillance data from across the world. The sewage resistome correlated to clinical surveillance data of invasive Escherichia coli isolates, but none of several tested approaches provided a sufficient resolution for clear discrimination between resistance towards different classes of antibiotics. However, in combination with socioeconomic data, the overall clinical resistance situation could be predicted with good precision. We conclude that analyses of bacterial genes in sewage could contribute to informing management of antibiotic resistance.202033244050