Gut microbiota research nexus: One Health relationship between human, animal, and environmental resistomes. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
670401.0000Gut microbiota research nexus: One Health relationship between human, animal, and environmental resistomes. The emergence and rapid spread of antimicrobial resistance is of global public health concern. The gut microbiota harboring diverse commensal and opportunistic bacteria that can acquire resistance via horizontal and vertical gene transfers is considered an important reservoir and sink of antibiotic resistance genes (ARGs). In this review, we describe the reservoirs of gut ARGs and their dynamics in both animals and humans, use the One Health perspective to track the transmission of ARG-containing bacteria between humans, animals, and the environment, and assess the impact of antimicrobial resistance on human health and socioeconomic development. The gut resistome can evolve in an environment subject to various selective pressures, including antibiotic administration and environmental and lifestyle factors (e.g., diet, age, gender, and living conditions), and interventions through probiotics. Strategies to reduce the abundance of clinically relevant antibiotic-resistant bacteria and their resistance determinants in various environmental niches are needed to ensure the mitigation of acquired antibiotic resistance. With the help of effective measures taken at the national, local, personal, and intestinal management, it will also result in preventing or minimizing the spread of infectious diseases. This review aims to improve our understanding of the correlations between intestinal microbiota and antimicrobial resistance and provide a basis for the development of management strategies to mitigate the antimicrobial resistance crisis.202338818274
663910.9999Environmental Spread of Antibiotic Resistance. Antibiotic resistance represents a global health concern. Soil, water, livestock and plant foods are directly or indirectly exposed to antibiotics due to their agricultural use or contamination. This selective pressure has acted synergistically to bacterial competition in nature to breed antibiotic-resistant (AR) bacteria. Research over the past few decades has focused on the emergence of AR pathogens in food products that can cause disease outbreaks and the spread of antibiotic resistance genes (ARGs), but One Health approaches have lately expanded the focus to include commensal bacteria as ARG donors. Despite the attempts of national and international authorities of developed and developing countries to reduce the over-prescription of antibiotics to humans and the use of antibiotics as livestock growth promoters, the selective flow of antibiotic resistance transmission from the environment to the clinic (and vice-versa) is increasing. This review focuses on the mechanisms of ARG transmission and the hotspots of antibiotic contamination resulting in the subsequent emergence of ARGs. It follows the transmission of ARGs from farm to plant and animal food products and provides examples of the impact of ARG flow to clinical settings. Understudied and emerging antibiotic resistance selection determinants, such as heavy metal and biocide contamination, are also discussed here.202134071771
670320.9999Foodborne Microbial Communities as Potential Reservoirs of Antimicrobial Resistance Genes for Pathogens: A Critical Review of the Recent Literature. Antimicrobial resistance (AMR) is a global and increasing threat to human health. Several genetic determinants of AMR are found in environmental reservoirs, including bacteria naturally associated with widely consumed fermented foods. Through the food chain, these bacteria can reach the gut, where horizontal gene transfer (HGT) can occur within the complex and populated microbial environment. Numerous studies on this topic have been published over the past decades, but a conclusive picture of the potential impact of the non-pathogenic foodborne microbial reservoir on the spread of AMR to human pathogens has not yet emerged. This review critically evaluates a comprehensive list of recent experimental studies reporting the isolation of AMR bacteria associated with fermented foods, focusing on those reporting HGT events, which represent the main driver of AMR spread within and between different bacterial communities. Overall, our analysis points to the methodological heterogeneity as a major weakness impairing determination or a causal relation between the presence of AMR determinants within the foodborne microbial reservoir and their transmission to human pathogens. The aim is therefore to highlight the main gaps and needs to better standardize future studies addressing the potential role of non-pathogenic bacteria in the spread of AMR.202337512869
398430.9999Antimicrobial and the Resistances in the Environment: Ecological and Health Risks, Influencing Factors, and Mitigation Strategies. Antimicrobial contamination and antimicrobial resistance have become global environmental and health problems. A large number of antimicrobials are used in medical and animal husbandry, leading to the continuous release of residual antimicrobials into the environment. It not only causes ecological harm, but also promotes the occurrence and spread of antimicrobial resistance. The role of environmental factors in antimicrobial contamination and the spread of antimicrobial resistance is often overlooked. There are a large number of antimicrobial-resistant bacteria and antimicrobial resistance genes in human beings, which increases the likelihood that pathogenic bacteria acquire resistance, and also adds opportunities for human contact with antimicrobial-resistant pathogens. In this paper, we review the fate of antimicrobials and antimicrobial resistance in the environment, including the occurrence, spread, and impact on ecological and human health. More importantly, this review emphasizes a number of environmental factors that can exacerbate antimicrobial contamination and the spread of antimicrobial resistance. In the future, the timely removal of antimicrobials and antimicrobial resistance genes in the environment will be more effective in alleviating antimicrobial contamination and antimicrobial resistance.202336851059
651440.9999Review of antibiotic-resistant bacteria and antibiotic resistance genes within the one health framework. Background: The interdisciplinary One Health (OH) approach recognizes that human, animal, and environmental health are all interconnected. Its ultimate goal is to promote optimal health for all through the exploration of these relationships. Antibiotic resistance (AR) is a public health challenge that has been primarily addressed within the context of human health and clinical settings. However, it has become increasingly evident that antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) that confer resistance are transmitted and circulated within humans, animals, and the environment. Therefore, to effectively address this issue, antibiotic resistance must also be considered an environmental and livestock/wildlife problem. Objective: This review was carried out to provide a broad overview of the existence of ARB and ARGs in One Health settings. Methods: Relevant studies that placed emphasis on ARB and ARGs were reviewed and key findings were accessed that illustrate the importance of One Health as a measure to tackle growing public and environmental threats. Results: In this review, we delve into the complex interplay of the three components of OH in relation to ARB and ARGs. Antibiotics used in animal husbandry and plants to promote growth, treat, and prevent infectious diseases lead to the development of antibiotic-resistant bacteria in animals. These bacteria are transmitted from animals to humans through food and environmental exposure. The environment plays a critical role in the circulation and persistence of antibiotic-resistant bacteria and genes, posing a significant threat to human and animal health. This article also highlights how ARGs are spread in the environment through the transfer of genetic material between bacteria. This transfer can occur naturally or through human activities such as the use of antibiotics in agriculture and waste management practices. Conclusion: It is important to integrate the One Health approach into the public health system to effectively tackle the emergence and spread of ARB and genes that code for resistance to different antibiotics.202438371518
670250.9999Reservoirs of antimicrobial resistance in the context of One Health. The emergence and spread of antimicrobial resistance (AMR) and resistant bacteria, are a global public health challenge. Through horizontal gene transfer, potential pathogens can acquire antimicrobial resistance genes (ARGs) that can subsequently be spread between human, animal, and environmental reservoirs. To understand the dissemination of ARGs and linked microbial taxa, it is necessary to map the resistome within different microbial reservoirs. By integrating knowledge on ARGs in the different reservoirs, the One Health approach is crucial to our understanding of the complex mechanisms and epidemiology of AMR. Here, we highlight the latest insights into the emergence and spread of AMR from the One Health perspective, providing a baseline of understanding for future scientific investigations into this constantly growing global health threat.202336913905
664060.9999The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health. The agricultural ecosystem creates a platform for the development and dissemination of antimicrobial resistance, which is promoted by the indiscriminate use of antibiotics in the veterinary, agricultural, and medical sectors. This results in the selective pressure for the intrinsic and extrinsic development of the antimicrobial resistance phenomenon, especially within the aquaculture-animal-manure-soil-water-plant nexus. The existence of antimicrobial resistance in the environment has been well documented in the literature. However, the possible transmission routes of antimicrobial agents, their resistance genes, and naturally selected antibiotic-resistant bacteria within and between the various niches of the agricultural environment and humans remain poorly understood. This study, therefore, outlines an overview of the discovery and development of commonly used antibiotics; the timeline of resistance development; transmission routes of antimicrobial resistance in the agro-ecosystem; detection methods of environmental antimicrobial resistance determinants; factors involved in the evolution and transmission of antibiotic resistance in the environment and the agro-ecosystem; and possible ways to curtail the menace of antimicrobial resistance.202032710495
397670.9999A novel therapeutic concern: Antibiotic resistance genes in common chronic diseases. Infections caused by multidrug-resistant bacteria carrying antibiotic resistance genes pose a severe threat to global public health and human health. In clinical practice, it has been found that human gut microbiota act as a "reservoir" of antibiotic resistance genes (ARGs) since gut microbiota contain a wide variety of ARGs, and that the structure of the gut microbiome is influenced by the profile of the drug resistance genes present. In addition, ARGs can spread within and between species of the gut microbiome in multiple ways. To better understand gut microbiota ARGs and their effects on patients with chronic diseases, this article reviews the generation of ARGs, common vectors that transmit ARGs, the characteristics of gut microbiota ARGs in common chronic diseases, their impact on prognosis, the current state of treatment for ARGs, and what should be addressed in future research.202236386682
652180.9999Hiding in plain sight-wildlife as a neglected reservoir and pathway for the spread of antimicrobial resistance: a narrative review. Antimicrobial resistance represents a global health problem, with infections due to pathogenic antimicrobial resistant bacteria (ARB) predicted to be the most frequent cause of human mortality by 2050. The phenomenon of antimicrobial resistance has spread to and across all ecological niches, and particularly in livestock used for food production with antimicrobials consumed in high volumes. Similarly, hospitals and other healthcare facilities are recognized as significant 'hotspots' of ARB and antimicrobial resistance genes (ARGs); however, over the past decade, new and previously overlooked ecological niches are emerging as hidden reservoirs of ARB/ARGs. Increasingly extensive and intensive industrial activities, degradation of natural environments, burgeoning food requirements, urbanization, and global climatic change have all dramatically affected the evolution and proliferation of ARB/ARGs, which now stand at extremely concerning ecological levels. While antimicrobial resistant bacteria and genes as they originate and emanate from livestock and human hosts have been extensively studied over the past 30 years, numerous ecological niches have received considerably less attention. In the current descriptive review, the authors have sought to highlight the importance of wildlife as sources/reservoirs, pathways and receptors of ARB/ARGs in the environment, thus paving the way for future primary research in these areas.202235425978
400390.9999Antibiotic resistance: Global health crisis and metagenomics. Antibiotic resistance is a global problem which affects human health. The imprudent use of antibiotics (medicine, agriculture, aquaculture, and food industry) has resulted in the broader dissemination of resistance. Urban wastewater & sewage treatment plants act as the hotspot for the widespread of antimicrobial resistance. Natural environment also plays an important role in the dissemination of resistance. Mapping of antibiotic resistance genes (ARGS) in environment is essential for mitigating antimicrobial resistance (AMR) widespread. Therefore, the review article emphasizes on the application of metagenomics for the surveillance of antimicrobial resistance. Metagenomics is the next generation tool which is being used for cataloging the resistome of diverse environments. We summarize the different metagenomic tools that can be used for mining of ARGs and acquired AMR present in the metagenomic data. Also, we recommend application of targeted sequencing/ capture platform for mapping of resistome with higher specificity and selectivity.202133732632
4004100.9999Diverse Distribution of Resistomes in the Human and Environmental Microbiomes. The routine therapeutic use of antibiotics has caused resistance genes to be disseminated across microbial populations. In particular, bacterial strains having antibiotic resistance genes are frequently observed in the human microbiome. Moreover, multidrug-resistant pathogens are now widely spread, threatening public health. Such genes are transferred and spread among bacteria even in different environments. Advances in high throughput sequencing technology and computational algorithms have accelerated investigation into antibiotic resistance genes of bacteria. Such studies have revealed that the antibiotic resistance genes are located close to the mobility-associated genes, which promotes their dissemination. An increasing level of information on genomic sequences of resistome should expedite research on drug-resistance in our body and environment, thereby contributing to the development of public health policy. In this review, the high prevalence of antibiotic resistance genes and their exchange in the human and environmental microbiome is discussed with respect to the genomic contents. The relationships among diverse resistomes, related bacterial species, and the antibiotics are reviewed. In addition, recent advances in bioinformatics approaches to investigate such relationships are discussed.201830532649
4026110.9999Gut microbiome in the emergence of antibiotic-resistant bacterial pathogens. The human gastrointestinal tract is home to a complex and dynamic community of microorganisms known as gut microbiota, which provide the host with important metabolic, signaling, and immunomodulatory functions. Both the commensal and pathogenic members of the gut microbiome serve as reservoirs of antimicrobial-resistance genes (ARG), which can cause potential health threats to the host and can transfer the ARGs to the susceptible microbes and into the environment. Antimicrobial resistance is becoming a major burden on human health and is widely recognized as a global challenge. The diversity and abundance of ARGs in the gut microbiome are variable and depend on the exposure to healthcare-associated antibiotics, usage of antibiotics in veterinary and agriculture, and the migration of the population. The transfer frequency of the ARGs through horizontal gene transfer (HGT) with the help of mobile genetic elements (MGEs) like plasmids, transposons, or phages is much higher among bacteria living in the GI tract compared to other microbial ecosystems. HGT in gut bacteria is facilitated through multiple gene transfer mechanisms, including transformation, conjugation, transduction, and vesicle fusion. It is the need of the hour to implement strict policies to limit indiscriminate antibiotic usage when needed. Developing rapid diagnostic tests for resistance determination and alternatives to antibiotics like vaccination, probiotics, and bacteriophage therapy should have the highest priority in the research and development sectors. Collective actions for sustainable development against resistant pathogens by promoting endogenous gut microbial growth and diversity through interdisciplinary research and findings are key to overcoming the current antimicrobial resistance crisis.202236280316
6515120.9999Environmental antimicrobial resistance and its drivers: a potential threat to public health. Imprudent and overuse of clinically relevant antibiotics in agriculture, veterinary and medical sectors contribute to the global epidemic increase in antimicrobial resistance (AMR). There is a growing concern among researchers and stakeholders that the environment acts as an AMR reservoir and plays a key role in the dissemination of antimicrobial resistance genes (ARGs). Various drivers are contributing factors to the spread of antibiotic-resistant bacteria and their ARGs either directly through antimicrobial drug use in health care, agriculture/livestock and the environment or antibiotic residues released from various domestic settings. Resistant micro-organisms and their resistance genes enter the soil, air, water and sediments through various routes or hotspots such as hospital wastewater, agricultural waste or wastewater treatment plants. Global mitigation strategies primarily involve the identification of high-risk environments that are responsible for the evolution and spread of resistance. Subsequently, AMR transmission is affected by the standards of infection control, sanitation, access to clean water, access to assured quality antimicrobials and diagnostics, travel and migration. This review provides a brief description of AMR as a global concern and the possible contribution of different environmental drivers to the transmission of antibiotic-resistant bacteria or ARGs through various mechanisms. We also aim to highlight the key knowledge gaps that hinder environmental regulators and mitigation strategies in delivering environmental protection against AMR.202134454098
6520130.9999Antimicrobial Resistance in the Environment: Towards Elucidating the Roles of Bioaerosols in Transmission and Detection of Antibacterial Resistance Genes. Antimicrobial resistance (AMR) is continuing to grow across the world. Though often thought of as a mostly public health issue, AMR is also a major agricultural and environmental problem. As such, many researchers refer to it as the preeminent One Health issue. Aerial transport of antimicrobial-resistant bacteria via bioaerosols is still poorly understood. Recent work has highlighted the presence of antibiotic resistance genes in bioaerosols. Emissions of AMR bacteria and genes have been detected from various sources, including wastewater treatment plants, hospitals, and agricultural practices; however, their impacts on the broader environment are poorly understood. Contextualizing the roles of bioaerosols in the dissemination of AMR necessitates a multidisciplinary approach. Environmental factors, industrial and medical practices, as well as ecological principles influence the aerial dissemination of resistant bacteria. This article introduces an ongoing project assessing the presence and fate of AMR in bioaerosols across Canada. Its various sub-studies include the assessment of the emissions of antibiotic resistance genes from many agricultural practices, their long-distance transport, new integrative methods of assessment, and the creation of dissemination models over short and long distances. Results from sub-studies are beginning to be published. Consequently, this paper explains the background behind the development of the various sub-studies and highlight their shared aspects.202235884228
4005140.9999Metagenomic-based surveillance systems for antibiotic resistance in non-clinical settings. The success of antibiotics as a therapeutic agent has led to their ineffectiveness. The continuous use and misuse in clinical and non-clinical areas have led to the emergence and spread of antibiotic-resistant bacteria and its genetic determinants. This is a multi-dimensional problem that has now become a global health crisis. Antibiotic resistance research has primarily focused on the clinical healthcare sectors while overlooking the non-clinical sectors. The increasing antibiotic usage in the environment - including animals, plants, soil, and water - are drivers of antibiotic resistance and function as a transmission route for antibiotic resistant pathogens and is a source for resistance genes. These natural compartments are interconnected with each other and humans, allowing the spread of antibiotic resistance via horizontal gene transfer between commensal and pathogenic bacteria. Identifying and understanding genetic exchange within and between natural compartments can provide insight into the transmission, dissemination, and emergence mechanisms. The development of high-throughput DNA sequencing technologies has made antibiotic resistance research more accessible and feasible. In particular, the combination of metagenomics and powerful bioinformatic tools and platforms have facilitated the identification of microbial communities and has allowed access to genomic data by bypassing the need for isolating and culturing microorganisms. This review aimed to reflect on the different sequencing techniques, metagenomic approaches, and bioinformatics tools and pipelines with their respective advantages and limitations for antibiotic resistance research. These approaches can provide insight into resistance mechanisms, the microbial population, emerging pathogens, resistance genes, and their dissemination. This information can influence policies, develop preventative measures and alleviate the burden caused by antibiotic resistance.202236532424
6555150.9999Bacteriophages as antibiotic resistance genes carriers in agro-food systems. Antibiotic resistance genes (ARGs) are a global health concern. Antibiotic resistance occurs naturally, but misuse of antibiotics in humans and animals is accelerating the process of antibiotic resistance emergency, which has been aggravated by exposure to molecules of antibiotics present in clinical and agricultural settings and the engagement of many countries in water reuse especially in Middle East and North Africa region. Bacteriophages have the potential to be significant actors in ARGs transmission through the transduction process. These viruses have been detected along with ARGs in non impacted habitats and in anthropogenic impacted environments like wastewater, reclaimed water and manure amended soil as well as minimally processed food and ready to eat vegetables. The ubiquity of bacteriophages and their persistence in the environment raises concern about their involvement in ARGs transmission among different biomes and the generation of pathogenic-resistant bacteria that pose a great threat to human health. The aim of this review is to give an overview of the potential role of bacteriophages in the dissemination and the transfer of ARGs to pathogens in food production and processing and the consequent contribution to antibiotic resistance transmission through faecal oral route carrying ARGs to our dishes.202132916015
4020160.9999Is there a role for intestinal sporobiota in the antimicrobial resistance crisis? Antimicrobial resistance (AMR) is a complex issue requiring specific, multi-sectoral measures to slow its spread. When people are exposed to antimicrobial agents, it can cause resistant bacteria to increase. This means that the use, misuse, and excessive use of antimicrobial agents exert selective pressure on bacteria, which can lead to the development of "silent" reservoirs of antimicrobial resistance genes. These genes can later be mobilized into pathogenic bacteria and contribute to the spread of AMR. Many socioeconomic and environmental factors influence the transmission and dissemination of resistance genes, such as the quality of healthcare systems, water sanitation, hygiene infrastructure, and pollution. The sporobiota is an essential part of the gut microbiota that plays a role in maintaining gut homeostasis. However, because spores are highly transmissible and can spread easily, they can be a vector for AMR. The sporobiota resistome, particularly the mobile resistome, is important for tracking, managing, and limiting the spread of antimicrobial resistance genes among pathogenic and commensal bacterial species.202439173554
6700170.9999Antimicrobial Resistance in Diverse Ecological Niches-One Health Perspective and Food Safety. Antimicrobial resistance (AMR) is a multi-sectoral, systemic, and global issue worldwide. Antimicrobial use (AMU) is a key factor in the selection of resistant bacteria within different ecological niches, from agriculture to food-producing animals to humans. There is a question regarding the extent to which the use of antibiotics in livestock production and the primary food production sector influences the selection and transmission of resistant bacteria and/or resistant genes throughout the food chain and thus contributes to the complexity in the development of AMR in humans. Although the trends in the prevalence of foodborne pathogens have changed over time, the burden of ecological niches with resistance genes, primarily in commensal microorganisms, is of concern. The implementation of the harmonized surveillance of AMU and AMR would provide comprehensive insights into the actual status of resistance and further interventions leading to its reduction. Tracking AMR in different ecological niches by applying advanced genome-based techniques and developing shared AMR data repositories would strengthen the One Health concept.202540426510
4000180.9999Biofilms as potential reservoirs of antimicrobial resistance in vulnerable settings. Antimicrobial resistance is a major global health threat, characterized by the ability of microorganisms to withstand the effects of antimicrobial agents. Biofilms, as unique microbial communities, significantly contribute to this threat. They provide a protective environment for pathogens, facilitate horizontal gene transfer, and create an ideal setting for the persistence and evolution of resistant bacteria. This issue can be particularly important in low-income settings and vulnerable communities, such as formal and informal refugee and migrant camps. These settings usually have limited access to healthcare resources and appropriate treatments, contributing to the selective pressure that promotes the survival and proliferation of resistant bacteria. Thus, biofilms formed in wastewater in these areas can play a critical role in spreading antimicrobial resistance or acting as hidden reservoirs for future outbreaks. While emerging efforts focus on detecting antibiotic resistance genes and planktonic bacteria in wastewater, biofilms may be a source of under-appreciated antimicrobial resistance, creating a significant gap in our understanding of resistance dynamics in wastewater systems. Incorporating biofilm surveillance into wastewater monitoring strategies in vulnerable settings can help develop a more comprehensive understanding of resistance transmission and more effective intervention measures in these settings.202540190753
6478190.9999Antibiotic resistance in grass and soil. Antibiotic resistance is currently one of the greatest threats to human health. The global overuse of antibiotics in human medicine and in agriculture has resulted in the proliferation and dissemination of a multitude of antibiotic resistance genes (ARGs). Despite a large proportion of antibiotics being used in agriculture, little is understood about how this may contribute to the overall antibiotic resistance crisis. The use of manure in agriculture is a traditional and widespread practice and is essential for returning nutrients to the soil; however, the impact of continuous manure application on the environmental microbiome and resistome is unknown. The use of antibiotics in animal husbandry in therapeutic and sub-therapeutic doses creates a selective pressure for ARGs in the gut microbiome of the animal, which is then excreted in the faeces. Therefore, the application of manure to agricultural land is a potential route for the transmission of antibiotic-resistant bacteria from livestock to crops, animals and humans. It is of vital importance to understand the mechanisms behind ARG enrichment and its maintenance both on the plant and within the soil microbiome to mitigate the spread of this resistance to animals and humans. Understanding this link between human health, animal health, plant health and the environment is crucial to inform implementation of new regulations and practice regarding antibiotic use in agriculture and manure application, aimed at ensuring the antibiotic resistance crisis is not aggravated.201930783015