Antimicrobial resistance gene distribution: a socioeconomic and sociocultural perspective. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
666701.0000Antimicrobial resistance gene distribution: a socioeconomic and sociocultural perspective. The appearance of resistance to many first-line antimicrobial agents presents a critical challenge to the successful treatment of bacterial infections. Antimicrobial resistant bacteria and resistance genes are globally distributed, but significant variations in prevalence have been observed in different geographical regions. This article discusses possible relationships between socioeconomic and sociocultural factors and regional differences in the prevalence of antibiotic-resistant bacteria and their associated resistance genes. Findings indicate that the few studies that have been conducted to understand relationships between socioeconomic and sociocultural factors and antimicrobial resistance have focused on patterns of phenotypic antibiotic resistance. Yet, a critical need exists for molecular studies of human influences on bacterial resistance and adaptation. We propose that the results of these studies, coupled with well-coordinated culturally appropriate interventions that address specific socioeconomic and sociocultural needs may be necessary to reduce the scourge of antimicrobial resistance in both developing and developed countries.200820204098
407910.9998Emergence and dissemination of antibiotic resistance: a global problem. Antibiotic resistance is a major problem in clinical health settings. Interestingly the origin of many of antibiotic resistance mechanisms can be traced back to non-pathogenic environmental organisms. Important factors leading to the emergence and spread of antibiotic resistance include absence of regulation in the use of antibiotics, improper waste disposal and associated transmission of antibiotic resistance genes in the community through commensals. In this review, we discussed the impact of globalisation on the transmission of antibiotic resistance genes in bacteria through immigration and export/import of foodstuff. The significance of surveillance to define appropriate use of antibiotics in the clinic has been included as an important preventive measure.201223183460
407420.9998Selection and Transmission of Antibiotic-Resistant Bacteria. Ever since antibiotics were introduced into human and veterinary medicine to treat and prevent bacterial infections there has been a steady selection and increase in the frequency of antibiotic resistant bacteria. To be able to reduce the rate of resistance evolution, we need to understand how various biotic and abiotic factors interact to drive the complex processes of resistance emergence and transmission. We describe several of the fundamental factors that underlay resistance evolution, including rates and niches of emergence and persistence of resistant bacteria, time- and space-gradients of various selective agents, and rates and routes of transmission of resistant bacteria between humans, animals and other environments. Furthermore, we discuss the options available to reduce the rate of resistance evolution and/ or transmission and their advantages and disadvantages.201728752817
666930.9998ANTIBIOTIC RESISTANT BACTERIA IN WILDLIFE: PERSPECTIVES ON TRENDS, ACQUISITION AND DISSEMINATION, DATA GAPS, AND FUTURE DIRECTIONS. The proliferation of antibiotic-resistant bacteria in the environment has potential negative economic and health consequences. Thus, previous investigations have targeted wild animals to understand the occurrence of antibiotic resistance in diverse environmental sources. In this critical review and synthesis, we summarized important concepts learned through the sampling of wildlife for antibiotic-resistant indicator bacteria. These concepts are helpful for understanding dissemination of resistance through environmental pathways and helping to guide future research efforts. Our review begins by briefly introducing antibiotic resistance as it pertains to bacteria harbored in environmental sources such as wild animals. Next, we differentiate wildlife from other animals in the context of how diverse taxa provide different information on antibiotic resistance in the environment. In the third section of our review, we identify representative research and seminal works that illustrate important associations between the occurrence of antibiotic-resistant bacteria in wildlife and anthropogenic inputs into the environment. For example, we highlight numerous investigations that support the premise that anthropogenic inputs into the environment drive the occurrence of antibiotic resistance in bacteria harbored by free-ranging wildlife. Additionally, we summarize previous research demonstrating foraging as a mechanism by which wildlife may be exposed to anthropogenic antibiotic resistance contamination in the environment. In the fourth section of our review, we summarize molecular evidence for the acquisition and dissemination of resistance among bacteria harbored by wildlife. In the fifth section, we identify what we believe to be important data gaps and potential future directions that other researchers may find useful toward the development of efficient, informative, and impactful investigations of antibiotic-resistant bacteria in wildlife. Finally, we conclude our review by highlighting the need to move from surveys that simply identify antibiotic-resistant bacteria in wildlife toward hypothesis-driven investigations that: 1) identify point sources of antibiotic resistance; 2) provide information on risk to human and animal health; 3) identify interventions that may interrupt environmentally mediated pathways of antibiotic resistance acquisition and transmission; and 4) evaluate whether management practices are leading to desirable outcomes.202031567035
402240.9998Antibiotic resistance in the environment. Antibiotic resistance is a global health challenge, involving the transfer of bacteria and genes between humans, animals and the environment. Although multiple barriers restrict the flow of both bacteria and genes, pathogens recurrently acquire new resistance factors from other species, thereby reducing our ability to prevent and treat bacterial infections. Evolutionary events that lead to the emergence of new resistance factors in pathogens are rare and challenging to predict, but may be associated with vast ramifications. Transmission events of already widespread resistant strains are, on the other hand, common, quantifiable and more predictable, but the consequences of each event are limited. Quantifying the pathways and identifying the drivers of and bottlenecks for environmental evolution and transmission of antibiotic resistance are key components to understand and manage the resistance crisis as a whole. In this Review, we present our current understanding of the roles of the environment, including antibiotic pollution, in resistance evolution, in transmission and as a mere reflection of the regional antibiotic resistance situation in the clinic. We provide a perspective on current evidence, describe risk scenarios, discuss methods for surveillance and the assessment of potential drivers, and finally identify some actions to mitigate risks.202234737424
665950.9998Tackling antibiotic resistance: the environmental framework. Antibiotic resistance is a threat to human and animal health worldwide, and key measures are required to reduce the risks posed by antibiotic resistance genes that occur in the environment. These measures include the identification of critical points of control, the development of reliable surveillance and risk assessment procedures, and the implementation of technological solutions that can prevent environmental contamination with antibiotic resistant bacteria and genes. In this Opinion article, we discuss the main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment.201525817583
408560.9998The antibiotic resistome. IMPORTANCE OF THE FIELD: Antibiotics are essential for the treatment of bacterial infections and are among our most important drugs. Resistance has emerged to all classes of antibiotics in clinical use. Antibiotic resistance has, proven inevitable and very often it emerges rapidly after the introduction of a drug into the clinic. There is, therefore, a great interest in understanding the origins, scope and evolution of antibiotic resistance. AREAS COVERED IN THIS REVIEW: The review discusses the concept of the antibiotic resistome, which is the collection of all genes that directly or indirectly contribute to antibiotic resistance. WHAT THE READER WILL GAIN: The review seeks to assemble current knowledge of the resistome concept as a means of understanding the totality of resistance and not just resistance in pathogenic bacteria. TAKE HOME MESSAGE: The concept of the antibiotic resistome provides a framework for the study and understanding of how resistance emerges and evolves. Furthermore, the study of the resistome reveals strategies that can be applied in new antibiotic discoveries.201022827799
408770.9998Next-generation approaches to understand and combat the antibiotic resistome. Antibiotic resistance is a natural feature of diverse microbial ecosystems. Although recent studies of the antibiotic resistome have highlighted barriers to the horizontal transfer of antibiotic resistance genes between habitats, the rapid global spread of genes that confer resistance to carbapenem, colistin and quinolone antibiotics illustrates the dire clinical and societal consequences of such events. Over time, the study of antibiotic resistance has grown from focusing on single pathogenic organisms in axenic culture to studying antibiotic resistance in pathogenic, commensal and environmental bacteria at the level of microbial communities. As the study of antibiotic resistance advances, it is important to incorporate this comprehensive approach to better inform global antibiotic resistance surveillance and antibiotic development. It is increasingly becoming apparent that although not all resistance genes are likely to geographically and phylogenetically disseminate, the threat presented by those that are is serious and warrants an interdisciplinary research focus. In this Review, we highlight seminal work in the resistome field, discuss recent advances in the studies of resistomes, and propose a resistome paradigm that can pave the way for the improved proactive identification and mitigation of emerging antibiotic resistance threats.201728392565
667480.9998Pandemic Events Caused by Bacteria Throughout Human History and the Risks of Antimicrobial Resistance Today. During human history, many pandemic events have threatened and taken many human lives over the years. The deadliest outbreaks were caused by bacteria such as Yersinia pestis. Nowadays, antimicrobial resistance (AMR) in bacteria is a huge problem for the public worldwide, threatening and taking many lives each year. The present work aimed to gather current evidence published in scientific literature that addresses AMR risks. A literature review was conducted using the following descriptors: antimicrobial resistance, AMR, bacteria, and Boolean operators. The results showed that antimicrobial-resistant genes and antibiotic-resistant bacteria in organisms cause critical infectious diseases and are responsible for the infections caused by antibiotic-resistant bacteria (ARB). This review emphasizes the importance of this topic. It sheds light on the risk of reemerging infections and their relationship with AMR. In addition, it discusses the mechanisms and actions of antibiotics and the mechanisms behind the development of resistance by bacteria, focusing on demonstrating the importance of the search for new drugs, for which research involving peptides is fundamental.202540005822
664090.9998The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health. The agricultural ecosystem creates a platform for the development and dissemination of antimicrobial resistance, which is promoted by the indiscriminate use of antibiotics in the veterinary, agricultural, and medical sectors. This results in the selective pressure for the intrinsic and extrinsic development of the antimicrobial resistance phenomenon, especially within the aquaculture-animal-manure-soil-water-plant nexus. The existence of antimicrobial resistance in the environment has been well documented in the literature. However, the possible transmission routes of antimicrobial agents, their resistance genes, and naturally selected antibiotic-resistant bacteria within and between the various niches of the agricultural environment and humans remain poorly understood. This study, therefore, outlines an overview of the discovery and development of commonly used antibiotics; the timeline of resistance development; transmission routes of antimicrobial resistance in the agro-ecosystem; detection methods of environmental antimicrobial resistance determinants; factors involved in the evolution and transmission of antibiotic resistance in the environment and the agro-ecosystem; and possible ways to curtail the menace of antimicrobial resistance.202032710495
4020100.9998Is there a role for intestinal sporobiota in the antimicrobial resistance crisis? Antimicrobial resistance (AMR) is a complex issue requiring specific, multi-sectoral measures to slow its spread. When people are exposed to antimicrobial agents, it can cause resistant bacteria to increase. This means that the use, misuse, and excessive use of antimicrobial agents exert selective pressure on bacteria, which can lead to the development of "silent" reservoirs of antimicrobial resistance genes. These genes can later be mobilized into pathogenic bacteria and contribute to the spread of AMR. Many socioeconomic and environmental factors influence the transmission and dissemination of resistance genes, such as the quality of healthcare systems, water sanitation, hygiene infrastructure, and pollution. The sporobiota is an essential part of the gut microbiota that plays a role in maintaining gut homeostasis. However, because spores are highly transmissible and can spread easily, they can be a vector for AMR. The sporobiota resistome, particularly the mobile resistome, is important for tracking, managing, and limiting the spread of antimicrobial resistance genes among pathogenic and commensal bacterial species.202439173554
6683110.9998Evolution and Emergence of Antibiotic Resistance in Given Ecosystems: Possible Strategies for Addressing the Challenge of Antibiotic Resistance. Antibiotics were once considered the magic bullet for all human infections. However, their success was short-lived, and today, microorganisms have become resistant to almost all known antimicrobials. The most recent decade of the 20th and the beginning of the 21st century have witnessed the emergence and spread of antibiotic resistance (ABR) in different pathogenic microorganisms worldwide. Therefore, this narrative review examined the history of antibiotics and the ecological roles of antibiotics, and their resistance. The evolution of bacterial antibiotic resistance in different environments, including aquatic and terrestrial ecosystems, and modern tools used for the identification were addressed. Finally, the review addressed the ecotoxicological impact of antibiotic-resistant bacteria and public health concerns and concluded with possible strategies for addressing the ABR challenge. The information provided in this review will enhance our understanding of ABR and its implications for human, animal, and environmental health. Understanding the environmental dimension will also strengthen the need to prevent pollution as the factors influencing ABR in this setting are more than just antibiotics but involve others like heavy metals and biocides, usually not considered when studying ABR.202236671228
4086120.9998Insights into antibiotic resistance through metagenomic approaches. The consequences of bacterial infections have been curtailed by the introduction of a wide range of antibiotics. However, infections continue to be a leading cause of mortality, in part due to the evolution and acquisition of antibiotic-resistance genes. Antibiotic misuse and overprescription have created a driving force influencing the selection of resistance. Despite the problem of antibiotic resistance in infectious bacteria, little is known about the diversity, distribution and origins of resistance genes, especially for the unculturable majority of environmental bacteria. Functional and sequence-based metagenomics have been used for the discovery of novel resistance determinants and the improved understanding of antibiotic-resistance mechanisms in clinical and natural environments. This review discusses recent findings and future challenges in the study of antibiotic resistance through metagenomic approaches.201222191448
4200130.9998Antibiotic resistance: are we all doomed? Antibiotic resistance is a growing and worrying problem associated with increased deaths and suffering for people. Overall, there are only two factors that drive antimicrobial resistance, and both can be controlled. These factors are the volumes of antimicrobials used and the spread of resistant micro-organisms and/or the genes encoding for resistance. The One Health concept is important if we want to understand better and control antimicrobial resistance. There are many things we can do to better control antimicrobial resistance. We need to prevent infections. We need to have better surveillance with good data on usage patterns and resistance patterns available across all sectors, both human and agriculture, locally and internationally. We need to act on these results when we see either inappropriate usage or resistance levels rising in bacteria that are of concern for people. We need to ensure that food and water sources do not spread multi-resistant micro-organisms or resistance genes. We need better approaches to restrict successfully what and how antibiotics are used in people. We need to restrict the use of 'critically important' antibiotics in food animals and the entry of these drugs into the environment. We need to ensure that 'One Health' concept is not just a buzz word but implemented. We need to look at all sectors and control not only antibiotic use but also the spread and development of antibiotic resistant bacteria - both locally and internationally.201526563691
6684140.9998An African perspective on the prevalence, fate and effects of carbapenem resistance genes in hospital effluents and wastewater treatment plant (WWTP) final effluents: A critical review. This article provides an overview of the antibiotic era and discovery of earliest antibiotics until the present day state of affairs, coupled with the emergence of carbapenem-resistant bacteria. The ways of response to challenges of antibiotic resistance (AR) such as the development of novel strategies in the search of new antibiotics, designing more effective preventive measures as well as the ecology of AR have been discussed. The applications of plant extract and chemical compounds like nanomaterials which are based on recent developments in the field of antimicrobials, antimicrobial resistance (AMR), and chemotherapy were briefly discussed. The agencies responsible for environmental protection have a role to play in dealing with the climate crisis which poses an existential threat to the planet, and contributes to ecological support towards pathogenic microorganisms. The environment serves as a reservoir and also a vehicle for transmission of antimicrobial resistance genes hence, as dominant inhabitants we have to gain a competitive advantage in the battle against AMR.202032420480
6675150.9998Genomic Insights into Bacterial Antimicrobial Resistance Transmission and Mitigation Strategies. The rapid emergence and global spread of antimicrobial resistance in recent years have raised significant concerns about the future of modern medicine. Superbugs and multidrugresistant bacteria have become endemic in many parts of the world, raising the specter of untreatable infections. The overuse and misuse of antimicrobials over the past 80 years have undoubtedly contributed to the development of antimicrobial resistance, placing immense pressure on healthcare systems worldwide. Nonetheless, the molecular mechanisms underlying antimicrobial resistance in bacteria have existed since ancient times. Some of these mechanisms and processes have served as the precursors of current resistance determinants, highlighting the ongoing arms race between bacteria and their antimicrobial adversaries. Moreover, the environment harbors many putative resistance genes, yet we cannot still predict which of these genes will emerge and manifest as pathogenic resistance phenotypes. The presence of antibiotics in natural habitats, even at sub-inhibitory concentrations, may provide selective pressures that favor the emergence of novel antimicrobial resistance apparatus and, thus, underscores the need for a comprehensive understanding of the factors driving the persistence and spread of antimicrobial resistance. As the development of antimicrobial strategies that evade resistance is urgently needed, a clear perception of these critical factors could ultimately pave the way for the design of innovative therapeutic targets.202439021167
6660160.9998Antimicrobial Resistance and Its Drivers-A Review. Antimicrobial resistance (AMR) is a critical issue in health care in terms of mortality, quality of services, and financial damage. In the battle against AMR, it is crucial to recognize the impacts of all four domains, namely, mankind, livestock, agriculture, and the ecosystem. Many sociocultural and financial practices that are widespread in the world have made resistance management extremely complicated. Several pathways, including hospital effluent, agricultural waste, and wastewater treatment facilities, have been identified as potential routes for the spread of resistant bacteria and their resistance genes in soil and surrounding ecosystems. The overuse of uncontrolled antibiotics and improper treatment and recycled wastewater are among the contributors to AMR. Health-care organizations have begun to address AMR, although they are currently in the early stages. In this review, we provide a brief overview of AMR development processes, the worldwide burden and drivers of AMR, current knowledge gaps, monitoring methodologies, and global mitigation measures in the development and spread of AMR in the environment.202236290020
4031170.9997Application of genomic technologies to measure and monitor antibiotic resistance in animals. One of the richest reservoirs of antibiotic-resistant bacteria and genes, animal intestinal microbiota contributes to the spread of antibiotic resistance in the environment and, potentially, to human pathogens. Both culture-based genomic technology and culture-independent metagenomics have been developed to investigate the abundance and diversity of antibiotic resistance genes. The characteristics, strengths, limitations, and challenges of these genomic approaches are discussed in this review in the context of antibiotic resistance in animals. We also discuss the advances in single-cell genomics and its potential for surveillance of antibiotic resistance in animals.201727997690
4004180.9997Diverse Distribution of Resistomes in the Human and Environmental Microbiomes. The routine therapeutic use of antibiotics has caused resistance genes to be disseminated across microbial populations. In particular, bacterial strains having antibiotic resistance genes are frequently observed in the human microbiome. Moreover, multidrug-resistant pathogens are now widely spread, threatening public health. Such genes are transferred and spread among bacteria even in different environments. Advances in high throughput sequencing technology and computational algorithms have accelerated investigation into antibiotic resistance genes of bacteria. Such studies have revealed that the antibiotic resistance genes are located close to the mobility-associated genes, which promotes their dissemination. An increasing level of information on genomic sequences of resistome should expedite research on drug-resistance in our body and environment, thereby contributing to the development of public health policy. In this review, the high prevalence of antibiotic resistance genes and their exchange in the human and environmental microbiome is discussed with respect to the genomic contents. The relationships among diverse resistomes, related bacterial species, and the antibiotics are reviewed. In addition, recent advances in bioinformatics approaches to investigate such relationships are discussed.201830532649
4080190.9997Antibacterial resistance: an emerging 'zoonosis'? Antibacterial resistance is a worldwide threat, and concerns have arisen about the involvement of animal commensal and pathogenic bacteria in the maintenance and spread of resistance genes. However, beyond the facts related to the occurrence of resistant microorganisms in food, food-producing animals and companion animals and their transmission to humans, it is important to consider the vast environmental 'resistome', the selective pathways underlying the emergence of antibacterial resistance and how we can prepare answers for tomorrow.201425348154