# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6658 | 0 | 1.0000 | Antibiotic Resistant Superbugs: Assessment of the Interrelationship of Occurrence in Clinical Settings and Environmental Niches. The increasing threat to global health posed by antibiotic resistance remains of serious concern. Human health remains at higher risk due to several reported therapeutic failures to many life threatening drug resistant microbial infections. The resultant effects have been prolonged hospital stay, higher cost of alternative therapy, increased mortality, etc. This opinionated review considers the two main concerns in integrated human health risk assessment (i.e., residual antibiotics and antibiotic resistant genes) in various compartments of human environment, as well as clinical dynamics associated with the development and transfer of antibiotic resistance (AR). Contributions of quorum sensing, biofilms, enzyme production, and small colony variants in bacteria, among other factors in soil, water, animal farm and clinical settings were also considered. Every potential factor in environmental and clinical settings that brings about AR needs to be identified for the summative effects in overall resistance. There is a need to embrace coordinated multi-locational approaches and interrelationships to track the emergence of resistance in different niches in soil and water versus the hospital environment. The further integration with advocacy, legislation, enforcement, technological innovations and further research input and recourse to WHO guidelines on antibiotic policy would be advantageous towards addressing the emergence of antibiotic resistant superbugs. | 2016 | 28035988 |
| 6642 | 1 | 0.9998 | A Review of Current Bacterial Resistance to Antibiotics in Food Animals. The overuse of antibiotics in food animals has led to the development of bacterial resistance and the widespread of resistant bacteria in the world. Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in food animals are currently considered emerging contaminants, which are a serious threat to public health globally. The current situation of ARB and ARGs from food animal farms, manure, and the wastewater was firstly covered in this review. Potential risks to public health were also highlighted, as well as strategies (including novel technologies, alternatives, and administration) to fight against bacterial resistance. This review can provide an avenue for further research, development, and application of novel antibacterial agents to reduce the adverse effects of antibiotic resistance in food animal farms. | 2022 | 35633728 |
| 6659 | 2 | 0.9998 | Tackling antibiotic resistance: the environmental framework. Antibiotic resistance is a threat to human and animal health worldwide, and key measures are required to reduce the risks posed by antibiotic resistance genes that occur in the environment. These measures include the identification of critical points of control, the development of reliable surveillance and risk assessment procedures, and the implementation of technological solutions that can prevent environmental contamination with antibiotic resistant bacteria and genes. In this Opinion article, we discuss the main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment. | 2015 | 25817583 |
| 6515 | 3 | 0.9998 | Environmental antimicrobial resistance and its drivers: a potential threat to public health. Imprudent and overuse of clinically relevant antibiotics in agriculture, veterinary and medical sectors contribute to the global epidemic increase in antimicrobial resistance (AMR). There is a growing concern among researchers and stakeholders that the environment acts as an AMR reservoir and plays a key role in the dissemination of antimicrobial resistance genes (ARGs). Various drivers are contributing factors to the spread of antibiotic-resistant bacteria and their ARGs either directly through antimicrobial drug use in health care, agriculture/livestock and the environment or antibiotic residues released from various domestic settings. Resistant micro-organisms and their resistance genes enter the soil, air, water and sediments through various routes or hotspots such as hospital wastewater, agricultural waste or wastewater treatment plants. Global mitigation strategies primarily involve the identification of high-risk environments that are responsible for the evolution and spread of resistance. Subsequently, AMR transmission is affected by the standards of infection control, sanitation, access to clean water, access to assured quality antimicrobials and diagnostics, travel and migration. This review provides a brief description of AMR as a global concern and the possible contribution of different environmental drivers to the transmission of antibiotic-resistant bacteria or ARGs through various mechanisms. We also aim to highlight the key knowledge gaps that hinder environmental regulators and mitigation strategies in delivering environmental protection against AMR. | 2021 | 34454098 |
| 6514 | 4 | 0.9998 | Review of antibiotic-resistant bacteria and antibiotic resistance genes within the one health framework. Background: The interdisciplinary One Health (OH) approach recognizes that human, animal, and environmental health are all interconnected. Its ultimate goal is to promote optimal health for all through the exploration of these relationships. Antibiotic resistance (AR) is a public health challenge that has been primarily addressed within the context of human health and clinical settings. However, it has become increasingly evident that antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) that confer resistance are transmitted and circulated within humans, animals, and the environment. Therefore, to effectively address this issue, antibiotic resistance must also be considered an environmental and livestock/wildlife problem. Objective: This review was carried out to provide a broad overview of the existence of ARB and ARGs in One Health settings. Methods: Relevant studies that placed emphasis on ARB and ARGs were reviewed and key findings were accessed that illustrate the importance of One Health as a measure to tackle growing public and environmental threats. Results: In this review, we delve into the complex interplay of the three components of OH in relation to ARB and ARGs. Antibiotics used in animal husbandry and plants to promote growth, treat, and prevent infectious diseases lead to the development of antibiotic-resistant bacteria in animals. These bacteria are transmitted from animals to humans through food and environmental exposure. The environment plays a critical role in the circulation and persistence of antibiotic-resistant bacteria and genes, posing a significant threat to human and animal health. This article also highlights how ARGs are spread in the environment through the transfer of genetic material between bacteria. This transfer can occur naturally or through human activities such as the use of antibiotics in agriculture and waste management practices. Conclusion: It is important to integrate the One Health approach into the public health system to effectively tackle the emergence and spread of ARB and genes that code for resistance to different antibiotics. | 2024 | 38371518 |
| 6660 | 5 | 0.9998 | Antimicrobial Resistance and Its Drivers-A Review. Antimicrobial resistance (AMR) is a critical issue in health care in terms of mortality, quality of services, and financial damage. In the battle against AMR, it is crucial to recognize the impacts of all four domains, namely, mankind, livestock, agriculture, and the ecosystem. Many sociocultural and financial practices that are widespread in the world have made resistance management extremely complicated. Several pathways, including hospital effluent, agricultural waste, and wastewater treatment facilities, have been identified as potential routes for the spread of resistant bacteria and their resistance genes in soil and surrounding ecosystems. The overuse of uncontrolled antibiotics and improper treatment and recycled wastewater are among the contributors to AMR. Health-care organizations have begun to address AMR, although they are currently in the early stages. In this review, we provide a brief overview of AMR development processes, the worldwide burden and drivers of AMR, current knowledge gaps, monitoring methodologies, and global mitigation measures in the development and spread of AMR in the environment. | 2022 | 36290020 |
| 6523 | 6 | 0.9998 | Antibiotic resistant genes in the environment-exploring surveillance methods and sustainable remediation strategies of antibiotics and ARGs. Antibiotic Resistant Genes (ARGs) are an emerging environmental health threat due to the potential change in the human microbiome and selection for the emergence of antibiotic resistant bacteria. The rise of antibiotic resistant bacteria has caused a global health burden. The WHO (world health organization) predicts a rise in deaths due to antibiotic resistant infections. Since bacteria can acquire ARGs through horizontal transmission, it is important to assess the dissemination of antibioticresistant genes from anthropogenic sources. There are several sources of antibiotics, antibiotic resistant bacteria and genes in the environment. These include wastewater treatment plants, landfill leachate, agricultural, animal industrial sources and estuaries. The use of antibiotics is a worldwide practice that has resulted in the evolution of resistance to antibiotics. Our review provides a more comprehensive look into multiple sources of ARG's and antibiotics rather than one. Moreover, we focus on effective surveillance methods of ARGs and antibiotics and sustainable abiotic and biotic remediation strategies for removal and reduction of antibiotics and ARGs from both terrestrial and aquatic environments. Further, we consider the impact on public health as this problem cannot be addressed without a global transdisciplinary effort. | 2022 | 36037921 |
| 6685 | 7 | 0.9998 | Fighting Antibiotic Resistance: Insights Into Human Barriers and New Opportunities: Antibiotic Resistance Constantly Rises With the Development of Human Activities. We discuss Barriers and Opportunities to Get It Under Control. The public health issue of bacterial multi-resistance to antibiotics has gained awareness among the public, researchers, and the pharmaceutical sector. Nevertheless, the spread of antimicrobial resistance has been considerably aggravated by human activities, climate change, and the subsequent increased release of antibiotics, drug-resistant bacteria, and antibiotic resistance genes in the environment. The extensive use of antibiotics for medical and veterinary purposes has not only induced increasing resistance but also other health problems, including negative effects on the patient's microbiome. Preventive strategies, new treatment modalities, and increased surveillance are progressively set up. A comprehensive approach is, however, lacking for urgently tackling this adverse situation. To address this challenge, we discussed here the main causes driving antimicrobial resistance and pollution of the environment by factors favorable to the emergence of drug resistance. We next propose some key priorities for research, prevention, surveillance, and education to supervise an effective clinical and sustainable response. | 2025 | 40143711 |
| 6639 | 8 | 0.9998 | Environmental Spread of Antibiotic Resistance. Antibiotic resistance represents a global health concern. Soil, water, livestock and plant foods are directly or indirectly exposed to antibiotics due to their agricultural use or contamination. This selective pressure has acted synergistically to bacterial competition in nature to breed antibiotic-resistant (AR) bacteria. Research over the past few decades has focused on the emergence of AR pathogens in food products that can cause disease outbreaks and the spread of antibiotic resistance genes (ARGs), but One Health approaches have lately expanded the focus to include commensal bacteria as ARG donors. Despite the attempts of national and international authorities of developed and developing countries to reduce the over-prescription of antibiotics to humans and the use of antibiotics as livestock growth promoters, the selective flow of antibiotic resistance transmission from the environment to the clinic (and vice-versa) is increasing. This review focuses on the mechanisms of ARG transmission and the hotspots of antibiotic contamination resulting in the subsequent emergence of ARGs. It follows the transmission of ARGs from farm to plant and animal food products and provides examples of the impact of ARG flow to clinical settings. Understudied and emerging antibiotic resistance selection determinants, such as heavy metal and biocide contamination, are also discussed here. | 2021 | 34071771 |
| 4094 | 9 | 0.9998 | Impact of environment on transmission of antibiotic-resistant superbugs in humans and strategies to lower dissemination of antibiotic resistance. Antibiotics are the most efficient type of therapy developed in the twentieth century. From the early 1960s to the present, the rate of discovery of new and therapeutically useful classes of antibiotics has significantly decreased. As a result of antibiotic use, novel strains emerge that limit the efficiency of therapies in patients, resulting in serious consequences such as morbidity or mortality, as well as clinical difficulties. Antibiotic resistance has created major concern and has a greater impact on global health. Horizontal and vertical gene transfers are two mechanisms involved in the spread of antibiotic resistance genes (ARGs) through environmental sources such as wastewater treatment plants, agriculture, soil, manure, and hospital-associated area discharges. Mobile genetic elements have an important part in microbe selection pressure and in spreading their genes into new microbial communities; additionally, it establishes a loop between the environment, animals, and humans. This review contains antibiotics and their resistance mechanisms, diffusion of ARGs, prevention of ARG transmission, tactics involved in microbiome identification, and therapies that aid to minimize infection, which are explored further below. The emergence of ARGs and antibiotic-resistant bacteria (ARB) is an unavoidable threat to global health. The discovery of novel antimicrobial agents derived from natural products shifts the focus from chemical modification of existing antibiotic chemical composition. In the future, metagenomic research could aid in the identification of antimicrobial resistance genes in the environment. Novel therapeutics may reduce infection and the transmission of ARGs. | 2023 | 37589876 |
| 6661 | 10 | 0.9998 | Country Income Is Only One of the Tiles: The Global Journey of Antimicrobial Resistance among Humans, Animals, and Environment. Antimicrobial resistance (AMR) is one of the most complex global health challenges today: decades of overuse and misuse in human medicine, animal health, agriculture, and dispersion into the environment have produced the dire consequence of infections to become progressively untreatable. Infection control and prevention (IPC) procedures, the reduction of overuse, and the misuse of antimicrobials in human and veterinary medicine are the cornerstones required to prevent the spreading of resistant bacteria. Purified drinking water and strongly improved sanitation even in remote areas would prevent the pollution from inadequate treatment of industrial, residential, and farm waste, as all these situations are expanding the resistome in the environment. The One Health concept addresses the interconnected relationships between human, animal, and environmental health as a whole: several countries and international agencies have now included a One Health Approach within their action plans to address AMR. Improved antimicrobial usage, coupled with regulation and policy, as well as integrated surveillance, infection control and prevention, along with antimicrobial stewardship, sanitation, and animal husbandry should all be integrated parts of any new action plan targeted to tackle AMR on the Earth. Since AMR is found in bacteria from humans, animals, and in the environment, we briefly summarize herein the current concepts of One Health as a global challenge to enable the continued use of antibiotics. | 2020 | 32752276 |
| 6486 | 11 | 0.9998 | Occurrence of antibiotics and bacterial resistance genes in wastewater: resistance mechanisms and antimicrobial resistance control approaches. Antimicrobial pharmaceuticals are classified as emergent micropollutants of concern, implying that even at low concentrations, long-term exposure to the environment can have significant eco-toxicological effects. There is a lack of a standardized regulatory framework governing the permissible antibiotic content for monitoring environmental water quality standards. Therefore, indiscriminate discharge of antimicrobials at potentially active concentrations into urban wastewater treatment facilities is rampant. Antimicrobials may exert selective pressure on bacteria, leading to resistance development and eventual health consequences. The emergence of clinically important multiple antibiotic-resistant bacteria in untreated hospital effluents and wastewater treatment plants (WWTPs) has been linked to the continuous exposure of bacteria to antimicrobials. The levels of environmental exposure to antibiotics and their correlation to the evolution and spread of resistant bacteria need to be elucidated to help in the formulation of mitigation measures. This review explores frequently detected antimicrobials in wastewater and gives a comprehensive coverage of bacterial resistance mechanisms to different antibiotic classes through the expression of a wide variety of antibiotic resistance genes either inherent and/or exchanged among bacteria or acquired from the reservoir of antibiotic resistance genes (ARGs) in wastewater systems. To complement the removal of antibiotics and ARGs from WWTPs, upscaling the implementation of prospective interventions such as vaccines, phage therapy, and natural compounds as alternatives to widespread antibiotic use provides a multifaceted approach to minimize the spread of antimicrobial resistance. | 2022 | 35781751 |
| 6641 | 12 | 0.9998 | Environmental antibiotics and resistance genes as emerging contaminants: Methods of detection and bioremediation. In developing countries, the use of antibiotics has helped to reduce the mortality rate by minimizing the deaths caused by pathogenic infections, but the costs of antibiotic contamination remain a major concern. Antibiotics are released into the environment, creating a complicated environmental problem. Antibiotics are used in human, livestock and agriculture, contributing to its escalation in the environment. Environmental antibiotics pose a range of risks and have significant effects on human and animal health. Nevertheless, this is the result of the development of antibiotic-resistant and multi-drug-resistant bacteria. In the area of health care, animal husbandry and crop processing, the imprudent use of antibiotic drugs produces antibiotic-resistant bacteria. This threat is the deepest in the developing world, with an estimated 700,000 people suffering from antibiotic-resistant infections each year. The study explores how bacteria use a wide variety of antibiotic resistance mechanism and how these approaches have an impact on the environment and on our health. The paper focuses on the processes by which antibiotics degrade, the health effects of these emerging contaminants, and the tolerance of bacteria to antibiotics. | 2021 | 34841318 |
| 6712 | 13 | 0.9998 | Current Trends in Approaches to Prevent and Control Antimicrobial Resistance in Aquatic Veterinary Medicine. The growth of aquaculture production in recent years has revealed multiple challenges, including the rise of antimicrobial resistance (AMR) in aquatic animal production, which is currently attracting significant attention from multiple one-health stakeholders. While antibiotics have played a major role in the treatment of bacterial infections for almost a century, a major consequence of their use is the increase in AMR, including the emergence of AMR in aquaculture. The AMR phenomenon creates a situation where antibiotic use in one system (e.g., aquaculture) may impact another system (e.g., terrestrial-human). Non-prudent use of antibiotics in aquaculture and animal farming increases the risk of AMR emergence, since bacteria harboring antibiotic resistance genes can cross between compartments such as wastewater or other effluents to aquatic environments, including intensive aquaculture. Transferable antimicrobial resistance gene (AMG) elements (plasmids, transposons, integrons, etc.) have already been detected in varying degrees from pathogenic bacteria that are often causing infections in farmed fish (Aeromonas, Vibrio, Streptococcus, Pseudomonas, Edwardsiella, etc.). This review of current veterinary approaches for the prevention and control of AMR emergence in aquaculture focuses on the feasibility of alternatives to antimicrobials and supplemental treatment applications during on-farm bacterial disease control and prevention. The use of vaccines, bacteriophages, biosurfactants, probiotics, bacteriocins, and antimicrobial peptides is discussed. | 2025 | 40732727 |
| 6711 | 14 | 0.9998 | Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. Antibiotic resistance is a serious threat to humanity and its environment. Aberrant usage of antibiotics in the human, animal, and environmental sectors, as well as the dissemination of resistant bacteria and resistance genes among these sectors and globally, are all contributing factors. In humans, antibiotics are generally used to treat infections and prevent illnesses. Antibiotic usage in food-producing animals has lately emerged as a major public health concern. These medicines are currently being utilized to prevent and treat infectious diseases and also for its growth-promoting qualities. These methods have resulted in the induction and spread of antibiotic resistant infections from animals to humans. Antibiotics can be introduced into the environment from a variety of sources, including human wastes, veterinary wastes, and livestock husbandry waste. The soil has been recognized as a reservoir of ABR genes, not only because of the presence of a wide and varied range of bacteria capable of producing natural antibiotics but also for the usage of natural manure on crop fields, which may contain ABR genes or antibiotics. Fears about the human health hazards of ABR related to environmental antibiotic residues include the possible threat of modifying the human microbiota and promoting the rise and selection of resistant bacteria, and the possible danger of generating a selection pressure on the environmental microflora resulting in environmental antibiotic resistance. Because of the connectivity of these sectors, antibiotic use, antibiotic residue persistence, and the existence of antibiotic-resistant bacteria in human-animal-environment habitats are all linked to the One Health triangle. The pillars of support including rigorous ABR surveillance among different sectors individually and in combination, and at national and international level, overcoming laboratory resource challenges, and core plan and action execution should be strictly implemented to combat and contain ABR under one health approach. Implementing One Health could help to avoid the emergence and dissemination of antibiotic resistance while also promoting a healthier One World. This review aims to emphasize antibiotic resistance and its regulatory approaches from the perspective of One Health by highlighting the interconnectedness and multi-sectoral nature of the human, animal, and environmental health or ill-health facets. | 2022 | 36726644 |
| 6662 | 15 | 0.9998 | One Health strategies in combating antimicrobial resistance: a Southeast Asian perspective. Antimicrobial resistance (AMR) is a multifactorial global public health concern that is interlinked with the health of humans, animals, and the environment. Therapeutically important antibiotics used widely in the mass medication of livestock have contributed significantly to AMR, as they eventually enter the environment due to inadequate treatment of wastewater. Similarly, improper discharge of antibiotic-contaminated waste by the medical sector exacerbates the problem by contributing to the increase in the selection of resistant bacteria and the horizontal transfer of resistance genes. Developed and developing countries and regions worldwide acknowledged that no discipline or sector of society can successfully address climate change, known and emerging infectious diseases, and AMR by acting in isolation. Countries in Southeast Asia, like elsewhere in the world, have also adopted a transdisciplinary and multi-sectoral collaboration integrating human, animal, and environmental health, known as the One Health strategy. | 2025 | 40476586 |
| 4097 | 16 | 0.9998 | Gain and loss of antibiotic resistant genes in multidrug resistant bacteria: One Health perspective. The emergence of multidrug resistance (MDR) has become a global health threat due to the increasing unnecessary use of antibiotics. Multidrug resistant bacteria occur mainly by accumulating resistance genes on mobile genetic elements (MGEs), made possible by horizontal gene transfer (HGT). Humans and animal guts along with natural and engineered environments such as wastewater treatment plants and manured soils have proven to be the major reservoirs and hotspots of spreading antibiotic resistance genes (ARGs). As those environments support the dissemination of MGEs through the complex interactions that take place at the human-animal-environment interfaces, a growing One Health challenge is for multiple sectors to communicate and work together to prevent the emergence and spread of MDR bacteria. However, maintenance of ARGs in a bacterial chromosome and/or plasmids in the environments might place energy burdens on bacterial fitness in the absence of antibiotics, and those unnecessary ARGs could eventually be lost. This review highlights and summarizes the current investigations into the gain and loss of ARG genes in MDR bacteria among human-animal-environment interfaces. We also suggest alternative treatments such as combinatory therapies or sequential use of different classes of antibiotics/adjuvants, treatment with enzyme-inhibitors, and phage therapy with antibiotics to solve the MDR problem from the perspective of One Health issues. | 2021 | 33877574 |
| 6640 | 17 | 0.9997 | The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health. The agricultural ecosystem creates a platform for the development and dissemination of antimicrobial resistance, which is promoted by the indiscriminate use of antibiotics in the veterinary, agricultural, and medical sectors. This results in the selective pressure for the intrinsic and extrinsic development of the antimicrobial resistance phenomenon, especially within the aquaculture-animal-manure-soil-water-plant nexus. The existence of antimicrobial resistance in the environment has been well documented in the literature. However, the possible transmission routes of antimicrobial agents, their resistance genes, and naturally selected antibiotic-resistant bacteria within and between the various niches of the agricultural environment and humans remain poorly understood. This study, therefore, outlines an overview of the discovery and development of commonly used antibiotics; the timeline of resistance development; transmission routes of antimicrobial resistance in the agro-ecosystem; detection methods of environmental antimicrobial resistance determinants; factors involved in the evolution and transmission of antibiotic resistance in the environment and the agro-ecosystem; and possible ways to curtail the menace of antimicrobial resistance. | 2020 | 32710495 |
| 6710 | 18 | 0.9997 | Potential of the livestock industry environment as a reservoir for spreading antimicrobial resistance. Antimicrobial resistance (AMR) in bacteria is a global issue requiring serious attention and management. The indiscriminate use of antibiotics in livestock for growth promotion, disease prevention, and treatment has led to the dissemination of AMR bacteria and resistance genes into the environment. In addition, unethical antibiotic sales without prescriptions, poor sanitation, and improper disposal cause significant amounts of antibiotics used in livestock to enter the environment, causing the emergence of resistant bacteria. Intensive livestock farming is an important source of AMR genes, environmental bacteria contamination, and possible transfer to human pathogens. Bacteria intrinsically antibiotic resistant, which are independent of antibiotic use, further complicate AMR and increase the risk of morbidity and mortality following infections by AMR bacteria. Escherichia coli, Salmonella spp., and Staphylococcus spp. are commonly found in livestock that carry resistance genes and have a risk of human infection. The impact of AMR, if left unchecked, could lead to substantial public health burdens globally, with a predicted mortality rate higher than cancer by 2050. "One Health" integrates strategies across human, animal, and environmental health domains, including improving antibiotic stewardship in livestock, preventing infection, and raising awareness regarding the judicious use of antibiotics. The use of antibiotic alternatives, such as prebiotics, probiotics, bacteriophages, bacteriocins, and vaccinations, to control or prevent infections in livestock will help to avoid over-reliance on antibiotics. Coordinated international actions are needed to mitigate the spread of AMR through improved regulations, technology improvements, and awareness campaigns. | 2025 | 40201833 |
| 6522 | 19 | 0.9997 | A review of the emergence of antibiotic resistance in bioaerosols and its monitoring methods. Despite significant public health concerns regarding infectious diseases in air environments, potentially harmful microbiological indicators, such as antibiotic resistance genes (ARGs) in bioaerosols, have not received significant attention. Traditionally, bioaerosol studies have focused on the characterization of microbial communities; however, a more serious problem has recently arisen due to the presence of ARGs in bioaerosols, leading to an increased prevalence of horizontal gene transfer (HGT). This constitutes a process by which bacteria transfer genes to other environmental media and consequently cause infectious disease. Antibiotic resistance in water and soil environments has been extensively investigated in the past few years by applying advanced molecular and biotechnological methods. However, ARGs in bioaerosols have not received much attention. In addition, ARG and HGT profiling in air environments is greatly limited in field studies due to the absence of suitable methodological approaches. Therefore, this study comprehensively describes recent findings from published studies and some of the appropriate molecular and biotechnological methods for monitoring antibiotic resistance in bioaerosols. In addition, this review discusses the main knowledge gaps regarding current methodological issues and future research directions. | 2022 | 35694630 |