- Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
664901.0000 The development of antibiotics has provided much success against infectious diseases in animals and humans. But the intensive and extensive use of antibiotics over the years has resulted in the emergence of drug-resistant bacterial pathogens. The existence of a reservoir(s) of antibiotic resistant bacteria and antibiotic resistance genes in an interactive environment of animals, plants, and humans provides the opportunity for further transfer and dissemination of antibiotic resistance. The emergence of antibiotic resistant bacteria has created growing concern about its impact on animal and human health. To specifically address the impact of antibiotic resistance resulting from the use of antibiotics in agriculture, the American Academy of Microbiology convened a colloquium, “Antibiotic Resistance and the Role of Antimicrobials in Agriculture: A Critical Scientific Assessment,” in Santa Fe, New Mexico, November 2–4, 2001. Colloquium participants included academic, industrial, and government researchers with a wide range of expertise, including veterinary medicine, microbiology, food science, pharmacology, and ecology. These scientists were asked to provide their expert opinions on the current status of antibiotic usage and antibiotic resistance, current research information, and provide recommendations for future research needs. The research areas to be addressed were roughly categorized under the following areas: ▪ Origins and reservoirs of resistance; ▪ Transfer of resistance; ▪ Overcoming/modulating resistance by altering usage; and ▪ Interrupting transfer of resistance. The consensus of colloquium participants was that the evaluation of antibiotic usage and its impact were complex and subject to much speculation and polarization. Part of the complexity stems from the diverse array of animals and production practices for food animal production. The overwhelming consensus was that any use of antibiotics creates the possibility for the development of antibiotic resistance, and that there already exist pools of antibiotic resistance genes and antibiotic resistant bacteria. Much discussion revolved around the measurement of antibiotic usage, the measurement of antibiotic resistance, and the ability to evaluate the impact of various types of usage (animal, human) on overall antibiotic resistance. Additionally, many participants identified commensal bacteria as having a possible role in the continuance of antibiotic resistance as reservoirs. Participants agreed that many of the research questions could not be answered completely because of their complexity and the need for better technologies. The concept of the “smoking gun” to indicate that a specific animal source was important in the emergence of certain antibiotic resistant pathogens was discussed, and it was agreed that ascribing ultimate responsibility is likely to be impossible. There was agreement that expanded and more improved surveillance would add to current knowledge. Science-based risk assessments would provide better direction in the future. As far as preventive or intervention activities, colloquium participants reiterated the need for judicious/prudent use guidelines. Yet they also emphasized the need for better dissemination and incorporation by end-users. It is essential that there are studies to measure the impact of educational efforts on antibiotic usage. Other recommendations included alternatives to antibiotics, such as commonly mentioned vaccines and probiotics. There also was an emphasis on management or production practices that might decrease the need for antibiotics. Participants also stressed the need to train new researchers and to interest students in postdoctoral work, through training grants, periodic workshops, and comprehensive conferences. This would provide the expertise needed to address these difficult issues in the future. Finally, the participants noted that scientific societies and professional organizations should play a pivotal role in providing technical advice, distilling and disseminating information to scientists, media, and consumers, and in increasing the visibility and funding for these important issues. The overall conclusion is that antibiotic resistance remains a complex issue with no simple answers. This reinforces the messages from other meetings. The recommendations from this colloquium provide some insightful directions for future research and action.200232687288
665010.9999 Antibiotic resistance is never going to go away. No matter how many drugs we throw at it, no matter how much money and resources are sacrificed to wage a war on resistance, it will always prevail. Humans are forced to coexist with the fact of antibiotic resistance. Public health officials, clinicians, and scientists must find effective ways to cope with antibiotic resistant bacteria harmful to humans and animals and to control the development of new types of resistance. The American Academy of Microbiology convened a colloquium October 12–14, 2008, to discuss antibiotic resistance and the factors that influence the development and spread of resistance. Participants, whose areas of expertise included medicine, microbiology, and public health, made specific recommendations for needed research, policy development, a surveillance network, and treatment guidelines. Antibiotic resistance issues specific to the developing world were discussed and recommendations for improvements were made. Each antibiotic is injurious only to a certain segment of the microbial world, so for a given antibacterial there are some species of bacteria that are susceptible and others not. Bacterial species insusceptible to a particular drug are “naturally resistant.” Species that were once sensitive but eventually became resistant to it are said to have “acquired resistance.” It is important to note that “acquired resistance” affects a subset of strains in the entire species; that is why the prevalence of “acquired resistance” in a species is different according to location. Antibiotic resistance, the acquired ability of a pathogen to withstand an antibiotic that kills off its sensitive counterparts, originally arises from random mutations in existing genes or from intact genes that already serve a similar purpose. Exposure to antibiotics and other antimicrobial products, whether in the human body, in animals, or the environment, applies selective pressure that encourages resistance to emerge favoring both “naturally resistant” strains and strains which have “acquired resistance.” Horizontal gene transfer, in which genetic information is passed between microbes, allows resistance determinants to spread within harmless environmental or commensal microorganisms and pathogens, thus creating a reservoir of resistance. Resistance is also spread by the replication of microbes that carry resistance genes, a process that produces genetically identical (or clonal) progeny. Rapid diagnostic methods and surveillance are some of the most valuable tools in preventing the spread of resistance. Access to more rapid diagnostic tests that could determine the causative agent and antibiotic susceptibility of infections would inform better decision making with respect to antibiotic use, help slow the selection of resistant strains in clinical settings, and enable better disease surveillance. A rigorous surveillance network to track the evolution and spread of resistance is also needed and would probably result in significant savings in healthcare. Developing countries face unique challenges when it comes to antibiotic resistance; chief among them may be the wide availability of antibiotics without a prescription and also counterfeit products of dubious quality. Lack of adequate hygiene, poor water quality, and failure to manage human waste also top the list. Recommendations for addressing the problems of widespread resistance in the developing world include: proposals for training and infrastructure capacity building; surveillance programs; greater access to susceptibility testing; government controls on import, manufacture and use; development and use of vaccines; and incentives for pharmaceutical companies to supply drugs to these countries. Controlling antibiotic resistant bacteria and subsequent infections more efficiently necessitates the prudent and responsible use of antibiotics. It is mandatory to prevent the needless use of antibiotics (e.g., viral infections; unnecessary prolonged treatment) and to improve the rapid prescription of appropriate antibiotics to a patient. Delayed or inadequate prescriptions reduce the efficacy of treatment and favor the spread of the infection. Prudent use also applies to veterinary medicine. For example, antibiotics used as “growth promoters” have been banned in Europe and are subject to review in some other countries. There are proven techniques for limiting the spread of resistance, including hand hygiene, but more rapid screening techniques are needed in order to effectively track and prevent spread in clinical settings. The spread of antibiotic resistance on farms and in veterinary hospitals may also be significant and should not be neglected. Research is needed to pursue alternative approaches, including vaccines, antisense therapy, public health initiatives, and others. The important messages about antibiotic resistance are not getting across from scientists and infectious diseases specialists to prescribers, stakeholders, including the public, healthcare providers, and public officials. Innovative and effective communication initiatives are needed, as are carefully tailored messages for each of the stakeholder groups.200932644325
407820.9996Antibiotic resistance in bacteria associated with food animals: a United States perspective of livestock production. The use of antimicrobial compounds in food animal production provides demonstrated benefits, including improved animal health, higher production and, in some cases, reduction in foodborne pathogens. However, use of antibiotics for agricultural purposes, particularly for growth enhancement, has come under much scrutiny, as it has been shown to contribute to the increased prevalence of antibiotic-resistant bacteria of human significance. The transfer of antibiotic resistance genes and selection for resistant bacteria can occur through a variety of mechanisms, which may not always be linked to specific antibiotic use. Prevalence data may provide some perspective on occurrence and changes in resistance over time; however, the reasons are diverse and complex. Much consideration has been given this issue on both domestic and international fronts, and various countries have enacted or are considering tighter restrictions or bans on some types of antibiotic use in food animal production. In some cases, banning the use of growth-promoting antibiotics appears to have resulted in decreases in prevalence of some drug resistant bacteria; however, subsequent increases in animal morbidity and mortality, particularly in young animals, have sometimes resulted in higher use of therapeutic antibiotics, which often come from drug families of greater relevance to human medicine. While it is clear that use of antibiotics can over time result in significant pools of resistance genes among bacteria, including human pathogens, the risk posed to humans by resistant organisms from farms and livestock has not been clearly defined. As livestock producers, animal health experts, the medical community, and government agencies consider effective strategies for control, it is critical that science-based information provide the basis for such considerations, and that the risks, benefits, and feasibility of such strategies are fully considered, so that human and animal health can be maintained while at the same time limiting the risks from antibiotic-resistant bacteria.200717600481
665130.9996A complex cyclical One Health pathway drives the emergence and dissemination of antimicrobial resistance. Since their commercialization, scientists have known that antimicrobial use kills or inhibits susceptible bacteria while allowing resistant bacteria to survive and expand. Today there is widespread antimicrobial resistance (AMR), even to antimicrobials of last resort such as the carbapenems, which are reserved for use in life-threatening infections. It is often convenient to assign responsibility for this global health crisis to the users and prescribers of antimicrobials. However, we know that animals never treated with antimicrobials carry clinically relevant AMR bacteria and genes. The causal pathway from bacterial susceptibility to resistance is not simple, and dissemination is cyclical rather than linear. Amplification of AMR occurs in healthcare environments and on farms where frequent exposure to antimicrobials selects for resistant bacterial populations. The recipients of antimicrobial therapy release antimicrobial residues, resistant bacteria, and resistance genes in waste products. These are reduced but not removed during wastewater and manure treatment and enter surface waters, soils, recreational parks, wildlife, and fields where animals graze and crops are grown for human and animal consumption. The cycle is complete when a patient carrying AMR bacteria is treated with antimicrobials that amplify the resistant bacterial populations. Reducing the development and spread of AMR requires a One Health approach with the combined commitment of governments, medical and veterinary professionals, agricultural industries, food and feed processors, and environmental scientists. In this review and in the companion Currents in One Health by Ballash et al, JAVMA, April 2024, we highlight just a few of the steps of the complex cyclical causal pathway that leads to the amplification, dissemination, and maintenance of AMR.202438467112
671040.9996Potential of the livestock industry environment as a reservoir for spreading antimicrobial resistance. Antimicrobial resistance (AMR) in bacteria is a global issue requiring serious attention and management. The indiscriminate use of antibiotics in livestock for growth promotion, disease prevention, and treatment has led to the dissemination of AMR bacteria and resistance genes into the environment. In addition, unethical antibiotic sales without prescriptions, poor sanitation, and improper disposal cause significant amounts of antibiotics used in livestock to enter the environment, causing the emergence of resistant bacteria. Intensive livestock farming is an important source of AMR genes, environmental bacteria contamination, and possible transfer to human pathogens. Bacteria intrinsically antibiotic resistant, which are independent of antibiotic use, further complicate AMR and increase the risk of morbidity and mortality following infections by AMR bacteria. Escherichia coli, Salmonella spp., and Staphylococcus spp. are commonly found in livestock that carry resistance genes and have a risk of human infection. The impact of AMR, if left unchecked, could lead to substantial public health burdens globally, with a predicted mortality rate higher than cancer by 2050. "One Health" integrates strategies across human, animal, and environmental health domains, including improving antibiotic stewardship in livestock, preventing infection, and raising awareness regarding the judicious use of antibiotics. The use of antibiotic alternatives, such as prebiotics, probiotics, bacteriophages, bacteriocins, and vaccinations, to control or prevent infections in livestock will help to avoid over-reliance on antibiotics. Coordinated international actions are needed to mitigate the spread of AMR through improved regulations, technology improvements, and awareness campaigns.202540201833
419950.9996Resistance in bacteria of the food chain: epidemiology and control strategies. Bacteria have evolved multiple mechanisms for the efficient evolution and spread of antimicrobial resistance. Modern food production facilitates the emergence and spread of resistance through the intensive use of antimicrobial agents and international trade of both animals and food products. The main route of transmission between food animals and humans is via food products, although other modes of transmission, such as direct contact and through the environment, also occur. Resistance can spread as resistant pathogens or via transferable genes in different commensal bacteria, making quantification of the transmission difficult. The exposure of humans to antimicrobial resistance from food animals can be controlled by either limiting the selective pressure from antimicrobial usage or by limiting the spread of the bacteria/genes. A number of control options are reviewed, including drug licensing, removing financial incentives, banning or restricting the use of certain drugs, altering prescribers behavior, improving animal health, improving hygiene and implementing microbial criteria for certain types of resistant pathogens for use in the control of trade of both food animals and food.200818847409
664860.9996Multi-Drug Resistant Coliform: Water Sanitary Standards and Health Hazards. Water constitutes and sustains life; however, its pollution afflicts its necessity, further worsening its scarcity. Coliform is one of the largest groups of bacteria evident in fecally polluted water, a major public health concern. Coliform thrive as commensals in the gut of warm-blooded animals, and are indefinitely passed through their feces into the environment. They are also called as model organisms as their presence is indicative of the prevalence of other potential pathogens, thus coliform are and unanimously employed as adept indicators of fecal pollution. As only a limited accessible source of fresh water is available on the planet, its contamination severely affects its usability. Coliform densities vary geographically and seasonally which leads to the lack of universally uniform regulatory guidelines regarding water potability often leads to ineffective detection of these model organisms and the misinterpretation of water quality status. Remedial measures such as disinfection, reducing the nutrient concentration or re-population doesn't hold context in huge lotic ecosystems such as freshwater rivers. There is also an escalating concern regarding the prevalence of multi-drug resistance in coliforms which renders antibiotic therapy incompetent. Antimicrobials are increasingly used in household, clinical, veterinary, animal husbandry and agricultural settings. Sub-optimal concentrations of these antimicrobials are unintentionally but regularly dispensed into the environment through seepages, sewages or runoffs from clinical or agricultural settings substantially adding to the ever-increasing pool of antibiotic resistance genes. When present below their minimum inhibitory concentration (MIC), these antimicrobials trigger the transfer of antibiotic-resistant genes that the coliform readily assimilate and further propagate to pathogens, the severity of which is evidenced by the high Multiple Antibiotic Resistance (MAR) index shown by the bacterial isolates procured from the environmental. This review attempts to assiduously anthologize the use of coliforms as water quality standards, their existent methods of detection and the issue of arising multi-drug resistance in them.201829946253
955770.9996Antimicrobial Resistance Profile by Metagenomic and Metatranscriptomic Approach in Clinical Practice: Opportunity and Challenge. The burden of bacterial resistance to antibiotics affects several key sectors in the world, including healthcare, the government, and the economic sector. Resistant bacterial infection is associated with prolonged hospital stays, direct costs, and costs due to loss of productivity, which will cause policy makers to adjust their policies. Current widely performed procedures for the identification of antibiotic-resistant bacteria rely on culture-based methodology. However, some resistance determinants, such as free-floating DNA of resistance genes, are outside the bacterial genome, which could be potentially transferred under antibiotic exposure. Metagenomic and metatranscriptomic approaches to profiling antibiotic resistance offer several advantages to overcome the limitations of the culture-based approach. These methodologies enhance the probability of detecting resistance determinant genes inside and outside the bacterial genome and novel resistance genes yet pose inherent challenges in availability, validity, expert usability, and cost. Despite these challenges, such molecular-based and bioinformatics technologies offer an exquisite advantage in improving clinicians' diagnoses and the management of resistant infectious diseases in humans. This review provides a comprehensive overview of next-generation sequencing technologies, metagenomics, and metatranscriptomics in assessing antimicrobial resistance profiles.202235625299
671180.9996Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. Antibiotic resistance is a serious threat to humanity and its environment. Aberrant usage of antibiotics in the human, animal, and environmental sectors, as well as the dissemination of resistant bacteria and resistance genes among these sectors and globally, are all contributing factors. In humans, antibiotics are generally used to treat infections and prevent illnesses. Antibiotic usage in food-producing animals has lately emerged as a major public health concern. These medicines are currently being utilized to prevent and treat infectious diseases and also for its growth-promoting qualities. These methods have resulted in the induction and spread of antibiotic resistant infections from animals to humans. Antibiotics can be introduced into the environment from a variety of sources, including human wastes, veterinary wastes, and livestock husbandry waste. The soil has been recognized as a reservoir of ABR genes, not only because of the presence of a wide and varied range of bacteria capable of producing natural antibiotics but also for the usage of natural manure on crop fields, which may contain ABR genes or antibiotics. Fears about the human health hazards of ABR related to environmental antibiotic residues include the possible threat of modifying the human microbiota and promoting the rise and selection of resistant bacteria, and the possible danger of generating a selection pressure on the environmental microflora resulting in environmental antibiotic resistance. Because of the connectivity of these sectors, antibiotic use, antibiotic residue persistence, and the existence of antibiotic-resistant bacteria in human-animal-environment habitats are all linked to the One Health triangle. The pillars of support including rigorous ABR surveillance among different sectors individually and in combination, and at national and international level, overcoming laboratory resource challenges, and core plan and action execution should be strictly implemented to combat and contain ABR under one health approach. Implementing One Health could help to avoid the emergence and dissemination of antibiotic resistance while also promoting a healthier One World. This review aims to emphasize antibiotic resistance and its regulatory approaches from the perspective of One Health by highlighting the interconnectedness and multi-sectoral nature of the human, animal, and environmental health or ill-health facets.202236726644
667690.9996Genomic interplay in bacterial communities: implications for growth promoting practices in animal husbandry. The discovery of antibiotics heralded the start of a "Golden Age" in the history of medicine. Over the years, the use of antibiotics extended beyond medical practice into animal husbandry, aquaculture and agriculture. Now, however, we face the worldwide threat of diseases caused by pathogenic bacteria that are resistant to all existing major classes of antibiotic, reflecting the possibility of an end to the antibiotic era. The seriousness of the threat is underscored by the severely limited production of new classes of antibiotics. Evolution of bacteria resistant to multiple antibiotics results from the inherent genetic capability that bacteria have to adapt rapidly to changing environmental conditions. Consequently, under antibiotic selection pressures, bacteria have acquired resistance to all classes of antibiotics, sometimes very shortly after their introduction. Arguably, the evolution and rapid dissemination of multiple drug resistant genes en-masse across microbial pathogens is one of the most serious threats to human health. In this context, effective surveillance strategies to track the development of resistance to multiple antibiotics are vital to managing global infection control. These surveillance strategies are necessary for not only human health but also for animal health, aquaculture and plant production. Shortfalls in the present surveillance strategies need to be identified. Raising awareness of the genetic events that promote co-selection of resistance to multiple antimicrobials is an important prerequisite to the design and implementation of molecular surveillance strategies. In this review we will discuss how lateral gene transfer (LGT), driven by the use of low-dose antibiotics in animal husbandry, has likely played a significant role in the evolution of multiple drug resistance (MDR) in Gram-negative bacteria and has complicated molecular surveillance strategies adopted for predicting imminent resistance threats.201425161648
4185100.9995Containment of antimicrobial resistance due to use of antimicrobial agents in animals intended for food: WHO perspective. The use of antimicrobial agents in humans and food-producing animals has important consequences for human and animal health, as it can lead to the development of resistant bacteria (pathogens and/or commensals with resistance genes). Moreover, resistant bacteria in animals can be transferred to people--usually through the consumption of food, but also through direct contact with food-producing animals or through environmental spread. Ultimately, this can result in human infections with bacteria that are resistant to antimicrobial agents and that can therefore be difficult or impossible to cure. Of special concern is resistance to antimicrobial agents classified by the World Health Organization (WHO) as critically important for human medicine, such as fluoroquinolones, third- and fourth-generation cephalosporins, and macrolides. WHO encourages the agricultural, food, veterinary and health sectors to work together to eliminate the burden of antimicrobial resistance arising from the use of antimicrobial agents in food-producing animals. Joint efforts should be made to reduce the inappropriate use of antimicrobial agents (e.g. the use of antimicrobials as growth promoters) and limit the spread of bacteria resistant to antimicrobial agents. WHO will continueto address this issue in conjunction with the Food and Agriculture Organization of the United Nations, the World Organisation for Animal Health, the animal health/production industry and other important stakeholders. It will also continue to enhance the capacity of its Member States (through training courses and sentinel studies), particularly developing countries, to conduct integrated surveillance of antimicrobial use and resistance, to carry out risk assessments to support the selection of risk management options and to implement strategies for the containment of antimicrobial resistance.201222849282
6665110.9995A One-Health Perspective of Antimicrobial Resistance (AMR): Human, Animals and Environmental Health. Antibiotics are essential for treating bacterial and fungal infections in plants, animals, and humans. Their widespread use in agriculture and the food industry has significantly enhanced animal health and productivity. However, extensive and often inappropriate antibiotic use has driven the emergence and spread of antimicrobial resistance (AMR), a global health crisis marked by the reduced efficacy of antimicrobial treatments. Recognized by the World Health Organization (WHO) as one of the top ten global public health threats, AMR arises when certain bacteria harbor antimicrobial resistance genes (ARGs) that confer resistance that can be horizontally transferred to other bacteria, accelerating resistance spread in the environment. AMR poses a significant global health challenge, affecting humans, animals, and the environment alike. A One-Health perspective highlights the interconnected nature of these domains, emphasizing that resistant microorganisms spread across healthcare, agriculture, and the environment. Recent scientific advances such as metagenomic sequencing for resistance surveillance, innovative wastewater treatment technologies (e.g., ozonation, UV, membrane filtration), and the development of vaccines and probiotics as alternatives to antibiotics in livestock are helping to mitigate resistance. At the policy level, global initiatives including the WHO Global Action Plan on AMR, coordinated efforts by (Food and Agriculture Organization) FAO and World Organisation for Animal Health (WOAH), and recommendations from the O'Neill Report underscore the urgent need for international collaboration and sustainable interventions. By integrating these scientific and policy responses within the One-Health framework, stakeholders can improve antibiotic stewardship, reduce environmental contamination, and safeguard effective treatments for the future.202541157271
6652120.9995Strategic measures for the control of surging antimicrobial resistance in Hong Kong and mainland of China. Antimicrobial-resistant bacteria are either highly prevalent or increasing rapidly in Hong Kong and China. Treatment options for these bacteria are generally limited, less effective and more expensive. The emergence and dynamics of antimicrobial resistance genes in bacteria circulating between animals, the environment and humans are not entirely known. Nonetheless, selective pressure by antibiotics on the microbiomes of animal and human, and their associated environments (especially farms and healthcare institutions), sewage systems and soil are likely to confer survival advantages upon bacteria with antimicrobial-resistance genes, which may be further disseminated through plasmids or transposons with integrons. Therefore, antibiotic use must be tightly regulated to eliminate such selective pressure, including the illegalization of antibiotics as growth promoters in animal feed and regulation of antibiotic use in veterinary practice and human medicine. Heightened awareness of infection control measures to reduce the risk of acquiring resistant bacteria is essential, especially during antimicrobial use or institutionalization in healthcare facilities. The transmission cycle must be interrupted by proper hand hygiene, environmental cleaning, avoidance of undercooked or raw food and compliance with infection control measures by healthcare workers, visitors and patients, especially during treatment with antibiotics. In addition to these routine measures, proactive microbiological screening of hospitalized patients with risk factors for carrying resistant bacteria, including history of travel to endemic countries, transfer from other hospitals, and prolonged hospitalization; directly observed hand hygiene before oral intake of drugs, food and drinks; and targeted disinfection of high-touch or mutual-touch items, such as bed rails and bed curtains, are important. Transparency of surveillance data from each institute for public scrutiny provides an incentive for controlling antimicrobial resistance in healthcare settings at an administrative level.201526038766
4196130.9995Emergence and spread of antibiotic-resistant foodborne pathogens from farm to table. Antibiotics have been overused and misused for preventive and therapeutic purposes. Specifically, antibiotics are frequently used as growth promoters for improving productivity and performance of food-producing animals such as pigs, cattle, and poultry. The increasing use of antibiotics has been of great concern worldwide due to the emergence of antibiotic resistant bacteria. Food-producing animals are considered reservoirs for antibiotic resistance genes (ARGs) and residual antibiotics that transfer from the farm through the table. The accumulation of residual antibiotics can lead to additional antibiotic resistance in bacteria. Therefore, this review evaluates the risk of carriage and spread of antibiotic resistance through food chain and the potential impact of antibiotic use in food-producing animals on food safety. This review also includes in-depth discussion of promising antibiotic alternatives such as vaccines, immune modulators, phytochemicals, antimicrobial peptides, probiotics, and bacteriophages.202236065433
4201140.9995Antimicrobial Resistance on Farms: A Review Including Biosecurity and the Potential Role of Disinfectants in Resistance Selection. Resistance to therapeutic antimicrobial agents is recognized as a growing problem for both human and veterinary medicine, and the need to address the issue in both of these linked domains is a current priority in public policy. Efforts to limit antimicrobial resistance (AMR) on farms have so far focused on control of the supply and use of antimicrobial drugs, plus husbandry measures to reduce infectious disease. In the United Kingdom and some other countries, substantial progress has been made recently against targets on agricultural antimicrobial drug use. However, evidence suggests that resistant pathogenic and commensal bacteria can persist and spread within and between premises despite declining or zero antimicrobial drug use. Reasons for this are likely complex and varied but may include: bacterial adaptations to ameliorate fitness costs associated with maintenance and replication of resistance genes and associated proteins, horizontal transmission of genetic resistance determinants between bacteria, physical transfer of bacteria via movement (of animals, workers, and equipment), ineffective cleaning and disinfection, and co-selection of resistance to certain drugs by use of other antimicrobials, heavy metals, or biocides. Areas of particular concern for public health include extended-spectrum cephalosporinases and fluoroquinolone resistance among Enterobacteriaceae, livestock-associated methicillin-resistant Staphylococcus aureus, and the emergence of transmissible colistin resistance. Aspects of biosecurity have repeatedly been identified as risk factors for the presence of AMR on farm premises, but there are large gaps in our understanding of the most important risk factors and the most effective interventions. The present review aims to summarize the present state of knowledge in this area, from a European perspective.201933336931
6666150.9995Antibiotic residues in poultry products and bacterial resistance: A review in developing countries. Antimicrobial resistance (AMR) is a growing global concern, particularly in poultry farming, where antibiotics are widely used for both disease prevention and growth promotion. This review examines the misuse of antibiotics in poultry production, especially in developing countries, and its contribution to the emergence of antibiotic-resistant bacteria. The findings highlight that factors such as increasing demand for poultry protein, the availability of inexpensive antibiotics, and weak regulatory oversight have led to widespread misuse, accelerating the spread of resistance genes. Although evidence links poultry farming to AMR, significant data gaps remain, especially regarding resistance transmission from poultry to humans. The review underscores the urgent need for stronger regulatory frameworks, phased-out use of antimicrobial growth promoters, and enhanced awareness campaigns to address this issue. Improving the capacity of regulatory bodies and developing more robust national data monitoring systems are essential steps to mitigate the threat of AMR in poultry farming and to protect both animal and human health.202439551017
4197160.9995Antibiotic-resistant bacteria: a challenge for the food industry. Antibiotic-resistant bacteria were first described in the 1940s, but whereas new antibiotics were being discovered at a steady rate, the consequences of this phenomenon were slow to be appreciated. At present, the paucity of new antimicrobials coming into the market has led to the problem of antibiotic resistance fast escalating into a global health crisis. Although the selective pressure exerted by the use of antibiotics (particularly overuse or misuse) has been deemed the major factor in the emergence of bacterial resistance to these antimicrobials, concerns about the role of the food industry have been growing in recent years and have been raised at both national and international levels. The selective pressure exerted by the use of antibiotics (primary production) and biocides (e.g., disinfectants, food and feed preservatives, or decontaminants) is the main driving force behind the selection and spread of antimicrobial resistance throughout the food chain. Genetically modified (GM) crops with antibiotic resistance marker genes, microorganisms added intentionally to the food chain (probiotic or technological) with potentially transferable antimicrobial resistance genes, and food processing technologies used at sub-lethal doses (e.g., alternative non-thermal treatments) are also issues for concern. This paper presents the main trends in antibiotic resistance and antibiotic development in recent decades, as well as their economic and health consequences, current knowledge concerning the generation, dissemination, and mechanisms of antibacterial resistance, progress to date on the possible routes for emergence of resistance throughout the food chain and the role of foods as a vehicle for antibiotic-resistant bacteria. The main approaches to prevention and control of the development, selection, and spread of antibacterial resistance in the food industry are also addressed.201323035919
4082170.9995The food safety perspective of antibiotic resistance. Bacterial antimicrobial resistance in both the medical and agricultural fields has become a serious problem worldwide. Antibiotic resistant strains of bacteria are an increasing threat to animal and human health, with resistance mechanisms having been identified and described for all known antimicrobials currently available for clinical use. There is currently increased public and scientific interest regarding the administration of therapeutic and sub-therapeutic antimicrobials to animals, due primarily to the emergence and dissemination of multiple antibiotic resistant zoonotic bacterial pathogens. This issue has been the subject of heated debates for many years, however, there is still no complete consensus on the significance of antimicrobial use in animals, or resistance in bacterial isolates from animals, on the development and dissemination of antibiotic resistance among human bacterial pathogens. In fact, the debate regarding antimicrobial use in animals and subsequent human health implications has been going on for over 30 years, beginning with the release of the Swann report in the United Kingdom. The latest report released by the National Research Council (1998) confirmed that there were substantial information gaps that contribute to the difficulty of assessing potential detrimental effects of antimicrobials in food animals on human health. Regardless of the controversy, bacterial pathogens of animal and human origin are becoming increasingly resistant to most frontline antimicrobials, including expanded-spectrum cephalosporins, aminoglycosides, and even fluoroquinolones. The lion's share of these antimicrobial resistant phenotypes is gained from extra-chromosomal genes that may impart resistance to an entire antimicrobial class. In recent years, a number of these resistance genes have been associated with large, transferable, extra-chromosomal DNA elements, called plasmids, on which may be other DNA mobile elements, such as transposons and integrons. These DNA mobile elements have been shown to transmit genetic determinants for several different antimicrobial resistance mechanisms and may account for the rapid dissemination of resistance genes among different bacteria. The increasing incidence of antimicrobial resistant bacterial pathogens has severe implications for the future treatment and prevention of infectious diseases in both animals and humans. Although much scientific information is available on this subject, many aspects of the development of antimicrobial resistance still remain uncertain. The emergence and dissemination of bacterial antimicrobial resistance is the result of numerous complex interactions among antimicrobials, microorganisms, and the surrounding environments. Although research has linked the use of antibiotics in agriculture to the emergence of antibiotic-resistant foodborne pathogens, debate still continues whether this role is significant enough to merit further regulation or restriction.200212212946
3966180.9995A model of antibiotic resistance genes accumulation through lifetime exposure from food intake and antibiotic treatment. Antimicrobial resistant bacterial infections represent one of the most serious contemporary global healthcare crises. Acquisition and spread of resistant infections can occur through community, hospitals, food, water or endogenous bacteria. Global efforts to reduce resistance have typically focussed on antibiotic use, hygiene and sanitation and drug discovery. However, resistance in endogenous infections, e.g. many urinary tract infections, can result from life-long acquisition and persistence of resistance genes in commensal microbial flora of individual patients, which is not normally considered. Here, using individual based Monte Carlo models calibrated using antibiotic use data and human gut resistomes, we show that the long-term increase in resistance in human gut microbiomes can be substantially lowered by reducing exposure to resistance genes found food and water, alongside reduced medical antibiotic use. Reduced dietary exposure is especially important during patient antibiotic treatment because of increased selection for resistance gene retention; inappropriate use of antibiotics can be directly harmful to the patient being treated for the same reason. We conclude that a holistic approach to antimicrobial resistance that additionally incorporates food production and dietary considerations will be more effective in reducing resistant infections than a purely medical-based approach.202337590256
4200190.9995Antibiotic resistance: are we all doomed? Antibiotic resistance is a growing and worrying problem associated with increased deaths and suffering for people. Overall, there are only two factors that drive antimicrobial resistance, and both can be controlled. These factors are the volumes of antimicrobials used and the spread of resistant micro-organisms and/or the genes encoding for resistance. The One Health concept is important if we want to understand better and control antimicrobial resistance. There are many things we can do to better control antimicrobial resistance. We need to prevent infections. We need to have better surveillance with good data on usage patterns and resistance patterns available across all sectors, both human and agriculture, locally and internationally. We need to act on these results when we see either inappropriate usage or resistance levels rising in bacteria that are of concern for people. We need to ensure that food and water sources do not spread multi-resistant micro-organisms or resistance genes. We need better approaches to restrict successfully what and how antibiotics are used in people. We need to restrict the use of 'critically important' antibiotics in food animals and the entry of these drugs into the environment. We need to ensure that 'One Health' concept is not just a buzz word but implemented. We need to look at all sectors and control not only antibiotic use but also the spread and development of antibiotic resistant bacteria - both locally and internationally.201526563691