Antibiotic Resistance in Escherichia coli from Farm Livestock and Related Analytical Methods: A Review. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
663101.0000Antibiotic Resistance in Escherichia coli from Farm Livestock and Related Analytical Methods: A Review. The indiscriminate use of antibiotics for the treatment of human and animal infections has led to the rise of resistance in pathogens and in commensal bacteria. In particular, farm animals may act as vectors for the dissemination of drug-resistant genes because of the intensive use of antibiotics in animal production, enabling resistance to a wide range of antimicrobial agents, including those normally used in human medicine. Escherichia coli, being a widespread commensal, is considered a good indicator of antibiotic use. Ultimately, it is emerging as a global threat, developing dramatically high levels of antibiotic resistance to multiple classes of drugs. Its prevalence in food animals is hence alarming, and more studies are needed in order to ascertain the spread dynamics between the food chain and humans. In this context, great attention should be paid to the accurate detection of resistance by conventional and molecular methods. In this review, a comprehensive list of the most widely used testing methods is also addressed.201829554996
433410.9999Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals. Antimicrobial agents are used in food animals for therapy and prophylaxis of bacterial infections and in feed to promote growth. The use of antimicrobial agents for food animals may cause problems in the therapy of infections by selecting for resistance among bacteria pathogenic for animals or humans. The emergence of resistant bacteria and resistance genes following the use of antimicrobial agents is relatively well documented and it seems evident that all antimicrobial agents will select for resistance. However, current knowledge regarding the occurrence of antimicrobial resistance in food animals, the quantitative impact of the use of different antimicrobial agents on selection for resistance and the most appropriate treatment regimens to limit the development of resistance is incomplete. Surveillance programmes monitoring the occurrence and development of resistance and consumption of antimicrobial agents are urgently needed, as is research into the most appropriate ways to use antimicrobial agents in veterinary medicine to limit the emergence and spread of antimicrobial resistance.199910493603
663020.9999Antimicrobial Resistance Gene Detection Methods for Bacteria in Animal-Based Foods: A Brief Review of Highlights and Advantages. Antimicrobial resistance is a major public health problem and is mainly due to the indiscriminate use of antimicrobials in human and veterinary medicine. The consumption of animal-based foods can contribute to the transfer of these genes between animal and human bacteria. Resistant and multi-resistant bacteria such as Salmonella spp. and Campylobacter spp. have been detected both in animal-based foods and in production environments such as farms, industries and slaughterhouses. This review aims to compile the techniques for detecting antimicrobial resistance using traditional and molecular methods, highlighting their advantages and disadvantages as well as the effectiveness and confidence of their results.202133925810
662030.9999The growing burden of antimicrobial resistance. Since the first usage of antimicrobials, the burden of resistance among bacteria has progressively increased and has accelerated within the last 10 years. Antibiotic resistance genes were present at very low levels prior to the introduction of antibiotics and it is largely the selective pressure of antibiotic use and the resulting exposure of bacteria, not only in humans but also in companion and food animals and the environment, which has caused the rise. The increasing mobility across the globe of people, food and animals is another factor. Examples of this are the international pandemic of different genotypes of CTX-M extended-spectrum beta-lactamases (particularly CTX-M-14 and -15) and the emergence of the carbapenemase KPC-1 in both the USA and Israel. This review details examples of both the emergence and dissemination through different genetic routes, both direct and indirect selective pressure, of significance resistance in Staphylococcus aureus, Enterococcus species, Enterobacteriaceae and Pseudomonas/Acinetobacter. The response made by society to reduce resistance involves surveillance, reduced usage, improved infection control and the introduction of new antimicrobial agents. Although efforts are being made in all these areas, there is an urgent need to increase the effectiveness of these interventions or some bacterial infections will become difficult if not impossible to treat reliably.200818684701
390040.9999Antimicrobial resistance pattern in domestic animal - wildlife - environmental niche via the food chain to humans with a Bangladesh perspective; a systematic review. BACKGROUND: Antimicrobial resistance (AMR) is a growing concern globally, but the impact is very deleterious in the context of Bangladesh. Recent review article on the AMR issue demonstrates the scenario in human medicine; unfortunately, no attempt was taken to address this as One Health issue. The antimicrobial resistance bacteria or genes are circulating in the fragile ecosystems and disseminate into human food chain through direct or indirect ways. In this systematic review we are exploring the mechanism or the process of development of resistance pathogen into human food chain via the domestic animal, wildlife and environmental sources in the context of One Health and future recommendation to mitigate this issue in Bangladesh. RESULTS: Tetracycline resistance genes were presenting in almost all sample sources in higher concentrations against enteric pathogen Escherichia coli. The second most significant antibiotics are amino-penicillin that showed resistant pattern across different source of samples. It is a matter of concerns that cephalosporin tends to acquire resistance in wildlife species that might be an indication of this antibiotic resistance gene or the pathogen been circulating in our surrounding environment though the mechanism is still unclear. CONCLUSIONS: Steps to control antibiotic release and environmental disposal from all uses should be immediate and obligatory. There is a need for detailed system biology analysis of resistance development in-situ.202032838793
418750.9999Human health consequences of use of antimicrobial agents in aquaculture. Intensive use of antimicrobial agents in aquaculture provides a selective pressure creating reservoirs of drug-resistant bacteria and transferable resistance genes in fish pathogens and other bacteria in the aquatic environment. From these reservoirs, resistance genes may disseminate by horizontal gene transfer and reach human pathogens, or drug-resistant pathogens from the aquatic environment may reach humans directly. Horizontal gene transfer may occur in the aquaculture environment, in the food chain, or in the human intestinal tract. Among the antimicrobial agents commonly used in aquaculture, several are classified by the World Health Organisation as critically important for use in humans. Occurrence of resistance to these antimicrobial agents in human pathogens severely limits the therapeutic options in human infections. Considering the rapid growth and importance of aquaculture industry in many regions of the world and the widespread, intensive, and often unregulated use of antimicrobial agents in this area of animal production, efforts are needed to prevent development and spread of antimicrobial resistance in aquaculture to reduce the risk to human health.200919772389
433760.9999Monitoring of antibiotic resistance in bacteria of animal origin: epidemiological and microbiological methodologies. The occurrence of antibiotic-resistant bacteria in food animals is a major public health threat. Information on the prevalence of resistance to specific drugs in both bacterial and animal species together with changes occurring over time, are necessary to understand the magnitude of the problem and to establish baselines for taking action. The aim of this paper is to define the minimum epidemiological and microbiological requirements for establishing a surveillance of antimicrobial resistance in bacteria of animal origin. Surveillance should involve different bacterial species, veterinary pathogens, zoonotic bacteria and commensal bacteria used as indicators. The collected data should be periodically updated and the reports distributed among practising veterinarians and regulatory authorities. These reports would be a useful tool for developing guidelines for the prudent use of antimicrobial agents in veterinary medicine and for action strategies.200010794950
433670.9999Antibiotic Resistance in Bacteria-A Review. A global problem of multi-drug resistance (MDR) among bacteria is the cause of hundreds of thousands of deaths every year. In response to the significant increase of MDR bacteria, legislative measures have widely been taken to limit or eliminate the use of antibiotics, including in the form of feed additives for livestock, but also in metaphylaxis and its treatment, which was the subject of EU Regulation in 2019/6. Numerous studies have documented that bacteria use both phenotypis and gentic strategies enabling a natural defence against antibiotics and the induction of mechanisms in increasing resistance to the used antibacterial chemicals. The mechanisms presented in this review developed by the bacteria have a significant impact on reducing the ability to combat bacterial infections in humans and animals. Moreover, the high prevalence of multi-resistant strains in the environment and the ease of transmission of drug-resistance genes between the different bacterial species including commensal flora and pathogenic like foodborne pathogens (E. coli, Campylobacter spp., Enterococcus spp., Salmonella spp., Listeria spp., Staphylococcus spp.) favor the rapid spread of multi-resistance among bacteria in humans and animals. Given the global threat posed by the widespread phenomenon of multi-drug resistance among bacteria which are dangerous for humans and animals, the subject of this study is the presentation of the mechanisms of resistance in most frequent bacteria called as "foodborne pathoges" isolated from human and animals. In order to present the significance of the global problem related to multi-drug resistance among selected pathogens, especially those danger to humans, the publication also presents statistical data on the percentage range of occurrence of drug resistance among selected bacteria in various regions of the world. In addition to the phenotypic characteristics of pathogen resistance, this review also presents detailed information on the detection of drug resistance genes for specific groups of antibiotics. It should be emphasized that the manuscript also presents the results of own research i.e., Campylobacter spp., E. coli or Enetrococcus spp. This subject and the presentation of data on the risks of drug resistance among bacteria will contribute to initiating research in implementing the prevention of drug resistance and the development of alternatives for antimicrobials methods of controlling bacteria.202236009947
421280.9999Review on the occurrence of the mcr-1 gene causing colistin resistance in cow's milk and dairy products. Both livestock farmers and the clinic use significant amount of antibiotics worldwide, in many cases the same kind. Antibiotic resistance is not a new phenomenon, however, it is a matter of concern that resistance genes (mcr - Mobilized Colistin Resistance - genes) that render last-resort drugs (Colistin) ineffective, have already evolved. Nowadays, there is a significant consumption of milk and dairy products, which, if not treated properly, can contain bacteria (mainly Gram-negative bacteria). We collected articles and reviews in which Gram-negative bacteria carrying the mcr-1 gene have been detected in milk, dairy products, or cattle. Reports have shown that although the incidence is still low, unfortunately the gene has been detected in some dairy products on almost every continent. In the interest of our health, the use of colistin in livestock farming must be banned as soon as possible, and new treatments should be applied so that we can continue to have a chance in fighting multidrug-resistant bacteria in human medicine.202133898852
663290.9999Genes conferring resistance to critically important antimicrobials in Salmonella enterica isolated from animals and food: A systematic review of the literature, 2013-2017. Antimicrobial resistance is a major public health concern, and food systems are a crucial point in the epidemiology of these resistances. Among antimicrobials, critically important ones are therapeutic drugs that should be primarily safeguarded to allow successful outcomes against important bacterial infections in humans. The most important source of antimicrobial resistance has been recognized in the inappropriate use of antimicrobials in human and animal medicine, with farming being a critical stage. Products of animal origin are the link between animal and humans and can contribute to the spread of antimicrobial resistance, in particular through bacteria such as Enterobacteriaceae, commonly present in both animals' gut and food. Salmonella is an important member of this bacterial family due to its pathogenicity, its noteworthy prevalence and the frequent detection of resistance genes in different isolates. In the present systematic review, the distribution of antimicrobial resistance determinants among Salmonella enterica serovars in pigs, cattle and poultry production was investigated in the European context. A comprehensive literature search was carried out in three different databases, and 7955 papers were identified as relevant. After the different steps of the review process, 31 papers were considered eligible for data extraction to gain insight about sources and reservoirs for such genes. Results suggest that despite the increasing attention directed toward antimicrobial resistance in animal production, a wide plethora of genes still exist and further actions should be undertaken to face this challenge.201931442714
3898100.9999Enterococci as a One Health indicator of antimicrobial resistance. The rapid increase of antimicrobial-resistant bacteria in humans and livestock is concerning. Antimicrobials are essential for the treatment of disease in modern day medicine, and their misuse in humans and food animals has contributed to an increase in the prevalence of antimicrobial-resistant bacteria. Globally, antimicrobial resistance is recognized as a One Health problem affecting humans, animals, and environment. Enterococcal species are Gram-positive bacteria that are widely distributed in nature. Their occurrence, prevalence, and persistence across the One Health continuum make them an ideal candidate to study antimicrobial resistance from a One Health perspective. The objective of this review was to summarize the role of enterococci as an indicator of antimicrobial resistance across One Health sectors. We also briefly address the prevalence of enterococci in human, animal, and environmental settings. In addition, a 16S RNA gene-based phylogenetic tree was constructed to visualize the evolutionary relationship among enterococcal species and whether they segregate based on host environment. We also review the genomic basis of antimicrobial resistance in enterococcal species across the One Health continuum.202438696839
4335110.9999Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. In the production of food animals, large amounts of antimicrobial agents are used for therapy and prophylaxis of bacterial infections and in feed to promote growth. There are large variations in the amounts of antimicrobial agents used to produce the same amount of meat among the different European countries, which leaves room for considerable reductions in some countries. The emergence of resistant bacteria and resistance genes due to the use of antimicrobial agents are well documented. In Denmark it has been possible to reduce the usage of antimicrobial agents for food animals significantly and in general decreases in resistance have followed. Guidelines for prudent use of antimicrobial agents may help to slow down the selection for resistance and should be based on knowledge regarding the normal susceptibility patterns of the causative agents and take into account the potential problems for human health. Current knowledge regarding the occurrence of antimicrobial resistance in food animals, the quantitative impact of the use of different antimicrobial agents on selection of resistance and the most appropriate treatment regimes to limit the development of resistance is incomplete. Programmes monitoring the occurrence and development of resistance and consumption of antimicrobial agents are strongly desirable, as is research into the most appropriate ways to use antimicrobial agents in veterinary medicine.200515755309
4189120.9999Antimicrobial resistance at farm level. Bacteria that are resistant to antimicrobials are widespread. This article reviews the distribution of resistant bacteria in farm environments. Humans, animals, and environmental sites are all reservoirs of bacterial communities that contain some bacteria that are susceptible to antimicrobials and others that are resistant. Farm ecosystems provide an environment in which resistant bacteria and genes can emerge, amplify and spread. Dissemination occurs via the food chain and via several other pathways. Ecological, epidemiological, molecular and mathematical approaches are being used to study the origin and expansion of the resistance problem and its relationship to antibiotic usage. The prudent and responsible use of antibiotics is an essential part of an ethical approach to improving animal health and food safety. The responsible use of antibiotics during research is vital, but to fully contribute to the containment of antimicrobial resistance 'prudent use' must also be part of good management practices at all levels of farm life.200617094710
3897130.9999The use of aminoglycosides in animals within the EU: development of resistance in animals and possible impact on human and animal health: a review. Aminoglycosides (AGs) are important antibacterial agents for the treatment of various infections in humans and animals. Following extensive use of AGs in humans, food-producing animals and companion animals, acquired resistance among human and animal pathogens and commensal bacteria has emerged. Acquired resistance occurs through several mechanisms, but enzymatic inactivation of AGs is the most common one. Resistance genes are often located on mobile genetic elements, facilitating their spread between different bacterial species and between animals and humans. AG resistance has been found in many different bacterial species, including those with zoonotic potential such as Salmonella spp., Campylobacter spp. and livestock-associated MRSA. The highest risk is anticipated from transfer of resistant enterococci or coliforms (Escherichia coli) since infections with these pathogens in humans would potentially be treated with AGs. There is evidence that the use of AGs in human and veterinary medicine is associated with the increased prevalence of resistance. The same resistance genes have been found in isolates from humans and animals. Evaluation of risk factors indicates that the probability of transmission of AG resistance from animals to humans through transfer of zoonotic or commensal foodborne bacteria and/or their mobile genetic elements can be regarded as high, although there are no quantitative data on the actual contribution of animals to AG resistance in human pathogens. Responsible use of AGs is of great importance in order to safeguard their clinical efficacy for human and veterinary medicine.201931002332
3899140.9999Overview of Evidence of Antimicrobial Use and Antimicrobial Resistance in the Food Chain. Antimicrobial resistance (AMR) is a global health problem. Bacteria carrying resistance genes can be transmitted between humans, animals and the environment. There are concerns that the widespread use of antimicrobials in the food chain constitutes an important source of AMR in humans, but the extent of this transmission is not well understood. The aim of this review is to examine published evidence on the links between antimicrobial use (AMU) in the food chain and AMR in people and animals. The evidence showed a link between AMU in animals and the occurrence of resistance in these animals. However, evidence of the benefits of a reduction in AMU in animals on the prevalence of resistant bacteria in humans is scarce. The presence of resistant bacteria is documented in the human food supply chain, which presents a potential exposure route and risk to public health. Microbial genome sequencing has enabled the establishment of some links between the presence of resistant bacteria in humans and animals but, for some antimicrobials, no link could be established. Research and monitoring of AMU and AMR in an integrated manner is essential for a better understanding of the biology and the dynamics of antimicrobial resistance.202032013023
4157150.9999Antimicrobial drug resistance against Escherichia coli and its harmful effect on animal health. Multidrug resistance among pathogenic bacteria is imperilling the worth of antibiotic infection, which has become an emerging problem, which previously transformed the veterinary sciences. Since its discovery, many antibiotics have been effective in treating bacterial infections in animals. Escherichia coli, a bacterium, is one of the reservoirs of antibiotic resistance genes in a community. The current use of antibiotics and demographic factors usually increase multidrug resistance. Genetically, the continuous adoption of environmental changes by E. coli allows it to acquire many multidrug resistance. During the host's life, antimicrobial resistance rarely poses a threat to the E. coli strain and pressure, similar to that of a flexible animal lower intestine. In this review, we describe the E. coli antibiotic drug-resistance mechanism driving transmission, the causes of transmission and the harmful effects on animal health.202235608149
4301160.9999Patterns of antimicrobial resistance observed in the Middle East: Environmental and health care retrospectives. Antimicrobial resistance is one of the biggest worldwide challenging problems that associates with high morbidity and mortality rates. The resistance of bacteria to various antibiotic classes results in difficulties in the treatment of infectious diseases caused by those bacteria. This paper highlights and provides a critical overview of observational and experimental studies investigating the presence of antibiotic resistant bacteria in different environments in Middle East countries and the mechanisms by which bacteria acquire and spread resistance. The data of this research considered the published papers within the last ten years (2010-2020) and was carried out using PubMed. A total of 66 articles were selected in this review. This review covered studies done on antibiotic resistant bacteria found in a wide range of environments including foods, animals, groundwater, aquatic environments as well as industrial and hospital wastewater. They acquire and achieve their resistance through several mechanisms such as antibiotic resistant genes, efflux pumps and enzymatic reactions. However, the dissemination and spread of antibiotic resistant bacteria is affected by several factors like anthropogenic, domestic, inappropriate use of antibiotics and the expulsion of wastewater containing antibiotic residues to the environments. Therefore, it is important to increase the awareness regarding these activities and their effect on the environment and eventually on health.202032559543
3896170.9999Antimicrobial resistance genes in bacteria from animal-based foods. Antimicrobial resistance is a worldwide public health threat. Farm animals are important sources of bacteria containing antimicrobial resistance genes (ARGs). Although the use of antimicrobials in aquaculture and livestock has been reduced in several countries, these compounds are still routinely applied in animal production, and contribute to ARGs emergence and spread among bacteria. ARGs are transmitted to humans mainly through the consumption of products of animal origin (PAO). Bacteria can present intrinsic resistance, and once antimicrobials are administered, this resistance may be selected and multiply. The exchange of genetic material is another mechanism used by bacteria to acquire resistance. Some of the main ARGs found in bacteria present in PAO are the bla, mcr-1, cfr and tet genes, which are directly associated to antibiotic resistance in the human clinic.202032762867
4893180.9999Molecular Characterization of Multidrug-Resistant Shigella flexneri. Due to their propensity for causing diarrheal illnesses and their rising susceptibility to antimicrobials, Shigella infections constitute a serious threat to global public health. This extensive study explores the frequency, antibiotic resistance, genetic evolution, and effects of Shigella infections on vulnerable groups. The research covers a wide range of geographical areas and sheds information on how the prevalence of Shigella species is evolving. Shigella strain antimicrobial resistance patterns are thoroughly examined. Multidrug resistance (MDR) has been found to often occur in investigations, especially when older antimicrobials are used. The improper use of antibiotics in China is blamed for the quick emergence of resistance, and variations in resistance rates have been seen across different geographical areas. Shigella strains' genetic makeup can be used to identify emerging trends and horizontal gene transfer's acquisition of resistance genes. Notably, S. sonnei exhibits the capacity to obtain resistance genes from nearby bacteria, increasing its capacity for infection. The study also emphasizes the difficulties in accurately serotyping Shigella strains due to inconsistencies between molecular and conventional serology. These results highlight the necessity of reliable diagnostic methods for monitoring Shigella infections. In conclusion, this study emphasizes how dynamic Shigella infections are, with varying patterns of occurrence, changing resistance landscapes, and genetic adaptability. In addition to tackling the rising problem of antibiotic resistance in Shigella infections, these findings are essential for guiding efforts for disease surveillance, prevention, and treatment.202438435906
6633190.9999Food Pathways of Salmonella and Its Ability to Cause Gastroenteritis in North Africa. Infections caused by human pathogenic bacteria in food sources pose significant and widespread concerns, leading to substantial economic losses and adverse impacts on public health. This review seeks to shed light on the recent literature addressing the prevalence of Salmonella in the food supply chains of North African countries. Additionally, it aims to provide an overview of the available information regarding health-related concerns, such as virulence genes, and the presence of antibiotic resistance in Salmonella. This review highlights a gap in our comprehensive understanding of Salmonella prevalence in the food supply chains of North African nations, with limited molecular characterization efforts to identify its sources. Studies at the molecular level across the region have shown the diversity of Salmonella strains and their virulence profiles, thus, these results show the difficulty of controlling Salmonella infections in the region. In addition, the discussion of antibiotic resistance makes it clear that there is a need for the development of comprehensive strategies to fight the potential threat of antimicrobial resistance in Salmonella strains. Despite common reports on animal-derived foods in this region, this review underscores the persistent challenges that Salmonella may pose to food safety and public health in North African countries.202539856919