Whole-Genome Sequencing of Pathogenic Bacteria-New Insights into Antibiotic Resistance Spreading. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
661401.0000Whole-Genome Sequencing of Pathogenic Bacteria-New Insights into Antibiotic Resistance Spreading. In recent years, the acquisition of antimicrobial resistance (AMR) by both pathogenic and opportunistic bacteria has become a major problem worldwide, which was already noticed as a global healthcare threat by the World Health Organization [...].202134946225
661310.9999Approaches for characterizing and tracking hospital-associated multidrug-resistant bacteria. Hospital-associated infections are a major concern for global public health. Infections with antibiotic-resistant pathogens can cause empiric treatment failure, and for infections with multidrug-resistant bacteria which can overcome antibiotics of "last resort" there exists no alternative treatments. Despite extensive sanitization protocols, the hospital environment is a potent reservoir and vector of antibiotic-resistant organisms. Pathogens can persist on hospital surfaces and plumbing for months to years, acquire new antibiotic resistance genes by horizontal gene transfer, and initiate outbreaks of hospital-associated infections by spreading to patients via healthcare workers and visitors. Advancements in next-generation sequencing of bacterial genomes and metagenomes have expanded our ability to (1) identify species and track distinct strains, (2) comprehensively profile antibiotic resistance genes, and (3) resolve the mobile elements that facilitate intra- and intercellular gene transfer. This information can, in turn, be used to characterize the population dynamics of hospital-associated microbiota, track outbreaks to their environmental reservoirs, and inform future interventions. This review provides a detailed overview of the approaches and bioinformatic tools available to study isolates and metagenomes of hospital-associated bacteria, and their multi-layered networks of transmission.202133582841
663320.9999Food Pathways of Salmonella and Its Ability to Cause Gastroenteritis in North Africa. Infections caused by human pathogenic bacteria in food sources pose significant and widespread concerns, leading to substantial economic losses and adverse impacts on public health. This review seeks to shed light on the recent literature addressing the prevalence of Salmonella in the food supply chains of North African countries. Additionally, it aims to provide an overview of the available information regarding health-related concerns, such as virulence genes, and the presence of antibiotic resistance in Salmonella. This review highlights a gap in our comprehensive understanding of Salmonella prevalence in the food supply chains of North African nations, with limited molecular characterization efforts to identify its sources. Studies at the molecular level across the region have shown the diversity of Salmonella strains and their virulence profiles, thus, these results show the difficulty of controlling Salmonella infections in the region. In addition, the discussion of antibiotic resistance makes it clear that there is a need for the development of comprehensive strategies to fight the potential threat of antimicrobial resistance in Salmonella strains. Despite common reports on animal-derived foods in this region, this review underscores the persistent challenges that Salmonella may pose to food safety and public health in North African countries.202539856919
487330.9999Farm animals and aquaculture: significant reservoirs of mobile colistin resistance genes. Colistin resistance has attracted substantial attention after colistin was considered as a last-resort drug for the treatment of infections caused by carbapenem-resistant and/or multidrug-resistant (MDR) Gram-negative bacteria in clinical settings. However, with the discovery of highly mobile colistin resistance (mcr) genes, colistin resistance has become an increasingly urgent issue worldwide. Despite many reviews, which summarized the prevalence, mechanisms, and structures of these genes in bacteria of human and animal origin, studies on the prevalence of mobile colistin resistance genes in aquaculture and their transmission between animals and humans remain scarce. Herein, we review recent reports on the prevalence of colistin resistance genes in animals, especially wildlife and aquaculture, and their possibility of transmission to humans via the food chain. This review also gives some insights into the routine surveillance, changing policy and replacement of polymyxins by polymyxin derivatives, molecular inhibitors, and traditional Chinese medicine to tackle colistin resistance.202032114703
661240.9999Carbapenem Resistance among Marine Bacteria-An Emerging Threat to the Global Health Sector. The emergence of antibiotic resistance among pathogenic microorganisms is a major issue for global public health, as it results in acute or chronic infections, debilitating diseases, and mortality. Of particular concern is the rapid and common spread of carbapenem resistance in healthcare settings. Carbapenems are a class of critical antibiotics reserved for treatment against multidrug-resistant microorganisms, and resistance to this antibiotic may result in limited treatment against infections. In addition to in clinical facilities, carbapenem resistance has also been identified in aquatic niches, including marine environments. Various carbapenem-resistant genes (CRGs) have been detected in different marine settings, with the majority of the genes incorporated in mobile genetic elements, i.e., transposons or plasmids, which may contribute to efficient genetic transfer. This review highlights the potential of the marine environment as a reservoir for carbapenem resistance and provides a general overview of CRG transmission among marine microbes.202134683467
489250.9999Extraintestinal Pathogenic Escherichia coli: Virulence Factors and Antibiotic Resistance. The One Health approach emphasizes the importance of antimicrobial resistance (AMR) as a major concern both in public health and in food animal production systems. As a general classification, E. coli can be distinguished based on the ability to cause infection of the gastrointestinal system (IPEC) or outside of it (ExPEC). Among the different pathogens, E. coli are becoming of great importance, and it has been suggested that ExPEC may harbor resistance genes that may be transferred to pathogenic or opportunistic bacteria. ExPEC strains are versatile bacteria that can cause urinary tract, bloodstream, prostate, and other infections at non-intestinal sites. In this context of rapidly increasing multidrug-resistance worldwide and a diminishingly effective antimicrobial arsenal to tackle resistant strains. ExPEC infections are now a serious public health threat worldwide. However, the clinical and economic impact of these infections and their optimal management are challenging, and consequently, there is an increasing awareness of the importance of ExPECs amongst healthcare professionals and the general public alike. This review aims to describe pathotype characteristics of ExPEC to increase our knowledge of these bacteria and, consequently, to increase our chances to control them and reduce the risk for AMR, following a One Health approach.202134832511
662560.9999The ecological threat posed by invasive species as silent carriers of global priority bacteria to wildlife. •Invasive species can act as silent carriers of multidrug-resistant bacterial species.•Invasive species in natural environments without predators can amplify the spread of antimicrobial resistance.•Global data on WHO priority bacteria and antimicrobial resistance in invasive species are provided.•Epidemiological surveillance of antimicrobial resistance in invasive species is discussed.202540331078
433270.9999Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact. Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals.201728258227
487480.9999Mobilized colistin resistance (mcr) genes from 1 to 10: a comprehensive review. At the present time, the polymyxin antibiotic colistin is considered a last-line treatment option for severe human infections caused by multi-drug and carbapenem-resistant Gram-negative bacteria. Lately, the vast spread of colistin resistance among bacteria has got great attention worldwide due to its significant role as the last refuge in treating diseases caused by the resistant infectious agents. Therefore, the discovery of plasmid-mediated mobile colistin resistance (mcr) genes raised global public health concerns as they can spread by horizontal transfer and have chances of global dissemination. To date, ten slightly different variants of the mcr-1 gene (mcr-1 to mcr-10) have been identified in different bacteria isolated from animals, foods, farms, humans, and the environment. Therefore, the issue of mcr spread is growing and worsening day after day. In this backdrop, the current article presents an overview of mcr variants, their spread, and the resistance mechanisms they confer. Hence, this paper will advance our knowledge about colistin resistance while supporting the efforts toward better stewardship and proper usage of antimicrobials.202133839987
489390.9999Molecular Characterization of Multidrug-Resistant Shigella flexneri. Due to their propensity for causing diarrheal illnesses and their rising susceptibility to antimicrobials, Shigella infections constitute a serious threat to global public health. This extensive study explores the frequency, antibiotic resistance, genetic evolution, and effects of Shigella infections on vulnerable groups. The research covers a wide range of geographical areas and sheds information on how the prevalence of Shigella species is evolving. Shigella strain antimicrobial resistance patterns are thoroughly examined. Multidrug resistance (MDR) has been found to often occur in investigations, especially when older antimicrobials are used. The improper use of antibiotics in China is blamed for the quick emergence of resistance, and variations in resistance rates have been seen across different geographical areas. Shigella strains' genetic makeup can be used to identify emerging trends and horizontal gene transfer's acquisition of resistance genes. Notably, S. sonnei exhibits the capacity to obtain resistance genes from nearby bacteria, increasing its capacity for infection. The study also emphasizes the difficulties in accurately serotyping Shigella strains due to inconsistencies between molecular and conventional serology. These results highlight the necessity of reliable diagnostic methods for monitoring Shigella infections. In conclusion, this study emphasizes how dynamic Shigella infections are, with varying patterns of occurrence, changing resistance landscapes, and genetic adaptability. In addition to tackling the rising problem of antibiotic resistance in Shigella infections, these findings are essential for guiding efforts for disease surveillance, prevention, and treatment.202438435906
6611100.9998Transmission of Antibiotic Resistant Bacteria and Genes: Unveiling the Jigsaw Pieces of a One Health Problem. Antimicrobial Resistance is one of the major Global Health challenges of the twenty-first century, and one of the World Health Organization's (WHO) top ten global health threats. The evolution of antibiotic resistance among bacterial pathogens requires urgent concerted global efforts under a One Health approach integrating human, animal, and environmental surveillance data. This is crucial to develop efficient control strategies and counteract the spread of multidrug-resistant pathogens. The studies in this Special Issue have evidenced the hidden role of less common species, unusual clones or unexplored niches in the dissemination of antimicrobial resistance between different hosts. They reinforce the need for large-scale surveillance studies tracing and tracking both antibiotic resistance and metal tolerance in different bacterial species.202032580441
6617110.9998Mechanisms in colistin-resistant superbugs transmissible from veterinary, livestock and animal food products to humans. In the era of antibiotic resistance, where multidrug-resistant (MDR), extensively drug resistant (XDR), and pan-drug resistant (PDR) Gram-negative infections are prevalent, it is crucial to identify the primary sources of antibiotic resistance, understand resistant mechanisms, and develop strategies to combat these mechanisms. The emergence of resistance to last-resort antibiotics like colistin has sparked a war between humanity and resistant bacteria, leaving humanity struggling to find effective countermeasures. Although colistin is used as a highly toxic antibiotic in infections that are not treated with routine antibiotics, its widespread use in animal breeding and veterinary medicine has contributed to the spread of colistin-resistant bacteria, plasmid-borne colistin resistance genes (mcr), and antibiotic residues in livestock and animal-derived foods. These sources can potentially transmit colistin resistance to humans through various routes. Therefore, managing the use of colistin in livestock and animal foods, implementing strict monitoring, and establishing guidelines for its proper use are essential to prevent the escalation of colistin resistance. This review article discusses the latest mechanisms of colistin antibiotic resistance, particularly biofilm production as a public health threat, the livestock and animal food sources of this resistance, and the routes of transmission to humans.202540386099
4082120.9998The food safety perspective of antibiotic resistance. Bacterial antimicrobial resistance in both the medical and agricultural fields has become a serious problem worldwide. Antibiotic resistant strains of bacteria are an increasing threat to animal and human health, with resistance mechanisms having been identified and described for all known antimicrobials currently available for clinical use. There is currently increased public and scientific interest regarding the administration of therapeutic and sub-therapeutic antimicrobials to animals, due primarily to the emergence and dissemination of multiple antibiotic resistant zoonotic bacterial pathogens. This issue has been the subject of heated debates for many years, however, there is still no complete consensus on the significance of antimicrobial use in animals, or resistance in bacterial isolates from animals, on the development and dissemination of antibiotic resistance among human bacterial pathogens. In fact, the debate regarding antimicrobial use in animals and subsequent human health implications has been going on for over 30 years, beginning with the release of the Swann report in the United Kingdom. The latest report released by the National Research Council (1998) confirmed that there were substantial information gaps that contribute to the difficulty of assessing potential detrimental effects of antimicrobials in food animals on human health. Regardless of the controversy, bacterial pathogens of animal and human origin are becoming increasingly resistant to most frontline antimicrobials, including expanded-spectrum cephalosporins, aminoglycosides, and even fluoroquinolones. The lion's share of these antimicrobial resistant phenotypes is gained from extra-chromosomal genes that may impart resistance to an entire antimicrobial class. In recent years, a number of these resistance genes have been associated with large, transferable, extra-chromosomal DNA elements, called plasmids, on which may be other DNA mobile elements, such as transposons and integrons. These DNA mobile elements have been shown to transmit genetic determinants for several different antimicrobial resistance mechanisms and may account for the rapid dissemination of resistance genes among different bacteria. The increasing incidence of antimicrobial resistant bacterial pathogens has severe implications for the future treatment and prevention of infectious diseases in both animals and humans. Although much scientific information is available on this subject, many aspects of the development of antimicrobial resistance still remain uncertain. The emergence and dissemination of bacterial antimicrobial resistance is the result of numerous complex interactions among antimicrobials, microorganisms, and the surrounding environments. Although research has linked the use of antibiotics in agriculture to the emergence of antibiotic-resistant foodborne pathogens, debate still continues whether this role is significant enough to merit further regulation or restriction.200212212946
6610130.9998The Gut Microbiome and Colistin Resistance: A Hidden Driver of Antimicrobial Failure. Colistin, a polymyxin antibiotic reintroduced as a last-resort therapy against multidrug-resistant Gram-negative bacteria, is increasingly being compromised by the emergence of plasmid-mediated colistin resistance genes (mcr-1 to mcr-10). The human gut microbiota serves as a major reservoir and transmission hub for these resistance determinants, even among individuals without prior colistin exposure. This review explores the mechanisms, dissemination, and clinical implications of mcr-mediated colistin resistance within the gut microbiota, highlighting its role in horizontal gene transfer, colonization, and environmental persistence. A comprehensive synthesis of the recent literature was conducted, focusing on epidemiological studies, molecular mechanisms, neonatal implications and decolonization strategies. The intestinal tract supports the enrichment and exchange of mcr genes among commensal and pathogenic bacteria, especially under antibiotic pressure. Colistin use in agriculture has amplified gut colonization with resistant strains in both animals and humans. Surveillance gaps remain, particularly in neonatal populations, where colonization may occur early and persist silently. Promising interventions, such as fecal microbiota transplantation and phage therapies, are under investigation but lack large-scale clinical validation. The gut microbiome plays a central role in the global spread of colistin resistance. Mitigating this threat requires integrated One Health responses, improved diagnostics for gut colonization, and investment in microbiome-based therapies. A proactive, multisectoral approach is essential to safeguard colistin efficacy and address the expanding threat of mcr-mediated resistance.202541009471
6631140.9998Antibiotic Resistance in Escherichia coli from Farm Livestock and Related Analytical Methods: A Review. The indiscriminate use of antibiotics for the treatment of human and animal infections has led to the rise of resistance in pathogens and in commensal bacteria. In particular, farm animals may act as vectors for the dissemination of drug-resistant genes because of the intensive use of antibiotics in animal production, enabling resistance to a wide range of antimicrobial agents, including those normally used in human medicine. Escherichia coli, being a widespread commensal, is considered a good indicator of antibiotic use. Ultimately, it is emerging as a global threat, developing dramatically high levels of antibiotic resistance to multiple classes of drugs. Its prevalence in food animals is hence alarming, and more studies are needed in order to ascertain the spread dynamics between the food chain and humans. In this context, great attention should be paid to the accurate detection of resistance by conventional and molecular methods. In this review, a comprehensive list of the most widely used testing methods is also addressed.201829554996
4888150.9998A Review of Carbapenem Resistance in Enterobacterales and Its Detection Techniques. Infectious disease outbreaks have caused thousands of deaths and hospitalizations, along with severe negative global economic impacts. Among these, infections caused by antimicrobial-resistant microorganisms are a major growing concern. The misuse and overuse of antimicrobials have resulted in the emergence of antimicrobial resistance (AMR) worldwide. Carbapenem-resistant Enterobacterales (CRE) are among the bacteria that need urgent attention globally. The emergence and spread of carbapenem-resistant bacteria are mainly due to the rapid dissemination of genes that encode carbapenemases through horizontal gene transfer (HGT). The rapid dissemination enables the development of host colonization and infection cases in humans who do not use the antibiotic (carbapenem) or those who are hospitalized but interacting with environments and hosts colonized with carbapenemase-producing (CP) bacteria. There are continuing efforts to characterize and differentiate carbapenem-resistant bacteria from susceptible bacteria to allow for the appropriate diagnosis, treatment, prevention, and control of infections. This review presents an overview of the factors that cause the emergence of AMR, particularly CRE, where they have been reported, and then, it outlines carbapenemases and how they are disseminated through humans, the environment, and food systems. Then, current and emerging techniques for the detection and surveillance of AMR, primarily CRE, and gaps in detection technologies are presented. This review can assist in developing prevention and control measures to minimize the spread of carbapenem resistance in the human ecosystem, including hospitals, food supply chains, and water treatment facilities. Furthermore, the development of rapid and affordable detection techniques is helpful in controlling the negative impact of infections caused by AMR/CRE. Since delays in diagnostics and appropriate antibiotic treatment for such infections lead to increased mortality rates and hospital costs, it is, therefore, imperative that rapid tests be a priority.202337374993
4341160.9998Antimicrobial Resistance in Nontyphoidal Salmonella. Non-typhoidal Salmonella is the most common foodborne bacterial pathogen in most countries. It is widely present in food animal species, and therefore blocking its transmission through the food supply is a prominent focus of food safety activities worldwide. Antibiotic resistance in non-typhoidal Salmonella arises in large part because of antibiotic use in animal husbandry. Tracking resistance in Salmonella is required to design targeted interventions to contain or diminish resistance and refine use practices in production. Many countries have established systems to monitor antibiotic resistance in Salmonella and other bacteria, the earliest ones appearing the Europe and the US. In this chapter, we compare recent Salmonella antibiotic susceptibility data from Europe and the US. In addition, we summarize the state of known resistance genes that have been identified in the genus. The advent of routine whole genome sequencing has made it possible to conduct genomic surveillance of resistance based on DNA sequences alone. This points to a new model of surveillance in the future that will provide more definitive information on the sources of resistant Salmonella, the specific types of resistance genes involved, and information on how resistance spreads.201830027887
4890170.9998Understanding of Colistin Usage in Food Animals and Available Detection Techniques: A Review. Progress in the medical profession is determined by the achievements and effectiveness of new antibiotics in the treatment of microbial infections. However, the development of multiple-drug resistance in numerous bacteria, especially Gram-negative bacteria, has limited the treatment options. Due to this resistance, the resurgence of cyclic polypeptide drugs like colistin remains the only option. The drug, colistin, is a well-known growth inhibitor of Gram-negative bacteria like Acinetobacter baumanni, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Technological advancements have uncovered the role of the mcr-1(mobilized colistin resistance) gene, which is responsible for the development of resistance in Gram-negative bacteria, which make them distinct from other bacteria without this gene. Additionally, food animals have been determined to be the reservoir for colistin resistance microbes, from which they spread to other hosts. Due to the adverse effects of colistin, many developed countries have prohibited its usage in animal foods, but developing countries are still using colistin in animal food production, thereby imposing a major risk to the public health. Therefore, there is a need for implementation of sustainable measures in livestock farms to prevent microbial infection. This review highlights the negative effects (increased resistance) of colistin consumption and emphasizes the different approaches used for detecting colistin in animal-based foods as well as the challenges associated with its detection.202033081121
6632180.9998Genes conferring resistance to critically important antimicrobials in Salmonella enterica isolated from animals and food: A systematic review of the literature, 2013-2017. Antimicrobial resistance is a major public health concern, and food systems are a crucial point in the epidemiology of these resistances. Among antimicrobials, critically important ones are therapeutic drugs that should be primarily safeguarded to allow successful outcomes against important bacterial infections in humans. The most important source of antimicrobial resistance has been recognized in the inappropriate use of antimicrobials in human and animal medicine, with farming being a critical stage. Products of animal origin are the link between animal and humans and can contribute to the spread of antimicrobial resistance, in particular through bacteria such as Enterobacteriaceae, commonly present in both animals' gut and food. Salmonella is an important member of this bacterial family due to its pathogenicity, its noteworthy prevalence and the frequent detection of resistance genes in different isolates. In the present systematic review, the distribution of antimicrobial resistance determinants among Salmonella enterica serovars in pigs, cattle and poultry production was investigated in the European context. A comprehensive literature search was carried out in three different databases, and 7955 papers were identified as relevant. After the different steps of the review process, 31 papers were considered eligible for data extraction to gain insight about sources and reservoirs for such genes. Results suggest that despite the increasing attention directed toward antimicrobial resistance in animal production, a wide plethora of genes still exist and further actions should be undertaken to face this challenge.201931442714
6618190.9998A review of antimicrobial resistance in imported foods. Antimicrobial resistance is one of the most serious threats to medical science. Food supply is recognized as a potential source of resistant bacteria, leading to the development of surveillance programs targeting primarily poultry, pork, and beef. These programs are limited in scope, not only in the commodities tested, but also in the organisms targeted (Escherichia coli, Salmonella, and Campylobacter); consequently, neither the breadth of food products available nor the organisms that may harbour clinically relevant and (or) mobile resistance genes are identified. Furthermore, there is an inadequate understanding of how international trade in food products contributes to the global dissemination of resistance. This is despite the recognized role of international travel in disseminating antimicrobial-resistant organisms, notably New Delhi metallo-beta-lactamase. An increasing number of studies describing antimicrobial-resistant organisms in a variety of imported foods are summarized in this review.202234570987