Antimicrobial resistance in southeast Asian water environments: A systematic review of current evidence and future research directions. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
660301.0000Antimicrobial resistance in southeast Asian water environments: A systematic review of current evidence and future research directions. Antimicrobial resistance has been a serious and complex issue for over a decade. Although research on antimicrobial resistance (AMR) has mainly focused on clinical and animal samples as essential for treatment, the AMR situation in aquatic environments may vary and have complicated patterns according to geographical area. Therefore, this study aimed to examine recent literature on the current situation and identify gaps in the AMR research on freshwater, seawater, and wastewater in Southeast Asia. The PubMed, Scopus, and ScienceDirect databases were searched for relevant publications published from January 2013 to June 2023 that focused on antimicrobial resistance bacteria (ARB) and antimicrobial resistance genes (ARGs) among water sources. Based on the inclusion criteria, the final screening included 41 studies, with acceptable agreement assessed using Cohen's inter-examiner kappa equal to 0.866. This review found that 23 out of 41 included studies investigated ARGs and ARB reservoirs in freshwater rather than in seawater and wastewater, and it frequently found that Escherichia coli was a predominant indicator in AMR detection conducted by both phenotypic and genotypic methods. Different ARGs, such as bla(TEM), sul1, and tetA genes, were found to be at a high prevalence in wastewater, freshwater, and seawater. Existing evidence highlights the importance of wastewater management and constant water monitoring in preventing AMR dissemination and strengthening effective mitigation strategies. This review may be beneficial for updating current evidence and providing a framework for spreading ARB and ARGs, particularly region-specific water sources. Future AMR research should include samples from various water systems, such as drinking water or seawater, to generate contextually appropriate results. Robust evidence regarding standard detection methods is required for prospective-era work to raise practical policies and alerts for developing microbial source tracking and identifying sources of contamination-specific indicators in aquatic environment markers.202337394072
660410.9999The spread of antimicrobial resistance in the aquatic environment from faecal pollution: a scoping review of a multifaceted issue. Antimicrobial resistance (AMR) is a major global health concern accelerated by the misuse and mismanagement of antibiotics in clinical and veterinary settings, leading to longer treatment times, increased costs and greater mortality rates. The environment can play a major role as a source and disseminator of AMR, with faecal pollution, from both anthropogenic and non-anthropogenic sources making a significant contribution. The review aimed to identify how faecal pollution contributes to AMR in surface water, focusing on current methods of source tracking faecal pollution. The databases used were Medline Ovid® and Scopus. From the search, 744 papers from January 2020 to November 2023 were identified, and after the screening, 33 papers were selected that reported on AMR, aquatic environments and faecal pollution and were published in English. The studies were from six different continents, most were from Europe and Asia indicating faecal pollution is influenced by spatiotemporal differences such as population and sanitation infrastructure. Multiple different methodologies were used with a lack of standardised methods making comparability challenging. All studies identified AMR strains of faecal indicator bacteria showing resistance to a wide variety of antibiotics, particularly beta-lactams and tetracyclines. Few studies investigated mobile gene elements with class 1 integrons being the most frequently studied. Wastewater treatment plants were significant contributors, releasing large amounts of AMR bacteria into the environment. Environmental factors such as seasonal differences, temperature, rainfall and UV exposure, along with local antibiotic usage influenced the local resistome. Animals, both wild and domestic, introduced antimicrobial resistance genes and potential pathogens into the aquatic environment. Overall, faecal pollution is a complicated issue with multiple factors contributing to and facilitating the spread of AMR. Standardisation of methods and surveillance, robust wastewater management and further research into AMR dissemination are needed to address the human health, animal health and environmental concerns.202540131552
660220.9999Environmental Risk Factors Contributing to the Spread of Antibiotic Resistance in West Africa. Antibiotic resistance is a well-documented global health challenge that disproportionately impacts low- and middle-income countries. In 2019, the number of deaths attributed to and associated with antibiotic resistance in Western Sub-Saharan Africa was approximately 27 and 115 per 100,000, respectively, higher than in other regions worldwide. Extensive research has consistently confirmed the persistent presence and spread of antibiotic resistance in hospitals, among livestock, within food supply chains, and across various environmental contexts. This review documents the environmental risk factors contributing to the spread of antibiotic resistance in West Africa. We collected studies from multiple West African countries using the Web of Science and PubMed databases. We screened them for factors associated with antibiotic-resistant bacteria and resistance genes between 2018 and 2024. Our findings indicate that antibiotic resistance remains a significant concern in West Africa, with environmental pollution and waste management identified as major factors in the proliferation of antibiotic-resistant bacteria and resistance genes between 2018 and 2024. Additional contributing factors include poor hygiene, the use of antibiotics in agriculture, aquaculture, and animal farming, and the transmission of antibiotic resistance within hospital settings. Unfortunately, the lack of comprehensive genetic characterization of antibiotic-resistant bacteria and resistance genes hinders a thorough understanding of this critical issue in the region. Since antibiotic resistance transcends national borders and can spread within and between countries, it is essential to understand the environmental risk factors driving its dissemination in West African countries. Such understanding will be instrumental in developing and recommending effective strategies nationally and internationally to combat antibiotic resistance.202540284787
498630.9998Towards the standardization of Enterococcus culture methods for waterborne antibiotic resistance monitoring: A critical review of trends across studies. Antibiotic resistance is a major 21(st) century One Health (humans, animals, environment) challenge whose spread limits options to treat bacterial infections. There is growing interest in monitoring water environments, including surface water and wastewater, which have been identified as key recipients, pathways, and sources of antibiotic resistant bacteria (ARB). Aquatic environments also facilitate the transmission and amplification of ARB. Enterococcus spp. often carry clinically-important antibiotic resistance genes and are of interest as environmental monitoring targets. Enterococcus spp. are Gram-positive bacteria that are typically of fecal origin; however, they are also found in relevant environmental niches, with various species and strains that are opportunistic human pathogens. Although the value of environmental monitoring of antibiotic-resistant Enterococcus has been recognized by both national and international organizations, lack of procedural standardization has hindered generation of comparable data needed to implement integrated surveillance programs. Here we provide a comprehensive methodological review to assess the techniques used for the culturing and characterization of antibiotic-resistant Enterococcus across water matrices for the purpose of environmental monitoring. We analyzed 117 peer-reviewed articles from 33 countries across six continents. The goal of this review is to provide a critical analysis of (i) the various methods applied globally for isolation, confirmation, and speciation of Enterococcus isolates, (ii) the different methods for profiling antibiotic resistance among enterococci, and (iii) the current prevalence of resistance to clinically-relevant antibiotics among Enterococcus spp. isolated from various environments. Finally, we provide advice regarding a path forward for standardizing culturing of Enterococcus spp. for the purpose of antibiotic resistance monitoring in wastewater and wastewater-influenced waters within a global surveillance framework.202236466738
497940.9998Emerging threat: Antimicrobial resistance proliferation during epidemics - A case study of the SARS-CoV-2 pandemic in South Brazil. The escalating global concern of antimicrobial resistance poses a significant challenge to public health. This study delved into the occurrence of resistant bacteria and antimicrobial resistance genes in the waters and sediments of urban rivers and correlated this emergence and the heightened use of antimicrobials during the COVID-19 pandemic. Isolating 45 antimicrobial-resistant bacteria across 11 different species, the study identifies prevalent resistance patterns, with ceftriaxone resistance observed in 18 isolates and ciprofloxacin resistance observed in 13 isolates. The detection of extended-spectrum β-lactamases, carbapenemases, and acquired quinolone resistance genes in all samples underscores the gravity of the situation. Comparison with a pre-pandemic study conducted in the same rivers in 2019 reveals the emergence of previously undetected new resistant species, and the noteworthy presence of new resistant species and alterations in resistance profiles among existing species. Notably, antimicrobial concentrations in rivers increased during the pandemic, contributing significantly to the scenario of antimicrobial resistance observed in these rivers. We underscore the substantial impact of heightened antimicrobial usage during epidemics, such as COVID-19, on resistance in urban rivers. It provides valuable insights into the complex dynamics of antimicrobial resistance in environmental settings and calls for comprehensive approaches to combat this pressing global health issue, safeguarding both public and environmental health.202438581873
499850.9998Microbial Contamination and Antibiotic Resistance in Fresh Produce and Agro-Ecosystems in South Asia-A Systematic Review. Fresh produce prone to microbial contamination is a potential reservoir for antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), posing challenges to food safety and public health. This systematic review aims to comprehensively assess the prevalence of bacterial pathogens and the incidence of ARB/ARGs in fresh produce and agro-ecosystems across South Asia. Twenty-two relevant studies published between 2012 and 2022 from three major scientific databases and the grey literature were identified. The results revealed a wide occurrence of microbial contamination in various types of fresh produce across South Asia, with a predominance of E. coli (16/22), Salmonella spp. (13/22), Staphylococcus spp. (5/22), and Klebsiella spp. (4/22). The agro-ecosystem serves as a complex interface for microbial interactions; studies have reported the prevalence of E. coli (1/4), Salmonella spp. (1/4) and Listeria monocytogenes (1/4) in farm environment samples. A concerning prevalence of ARB has been reported, with resistance to multiple classes of antibiotics. The presence of ARGs in fresh produce underscores the potential for gene transfer and the emergence of resistant pathogens. To conclude, our review provides insights into the requirements of enhanced surveillance, collaborative efforts, implementation of good agricultural practices, and public awareness for food safety and safeguarding public health in the region.202439597656
498360.9998Clinically Relevant β-Lactam Resistance Genes in Wastewater Treatment Plants. Antimicrobial resistance (AMR) is one of the largest global concerns due to its influence in multiple areas, which is consistent with One Health's concept of close interconnections between people, animals, plants, and their shared environments. Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) circulate constantly in various niches, sediments, water sources, soil, and wastes of the animal and plant sectors, and is linked to human activities. Sewage of different origins gets to the wastewater treatment plants (WWTPs), where ARB and ARG removal efficiency is still insufficient, leading to their transmission to discharge points and further dissemination. Thus, WWTPs are believed to be reservoirs of ARGs and the source of spreading AMR. According to a World Health Organization report, the most critical pathogens for public health include Gram-negative bacteria resistant to third-generation cephalosporins and carbapenems (last-choice drugs), which represent β-lactams, the most widely used antibiotics. Therefore, this paper aimed to present the available research data for ARGs in WWTPs that confer resistance to β-lactam antibiotics, with a particular emphasis on clinically important life-threatening mechanisms of resistance, including extended-spectrum β-lactamases (ESBLs) and carbapenemases (KPC, NDM).202236360709
660170.9998Use of Wastewater to Monitor Antimicrobial Resistance Trends in Communities and Implications for Wastewater-Based Epidemiology: A Review of the Recent Literature. Antimicrobial resistance (AMR) presents a global health challenge, necessitating comprehensive surveillance and intervention strategies. Wastewater-based epidemiology (WBE) is a promising tool that can be utilized for AMR monitoring by offering population-level insights into microbial dynamics and resistance gene dissemination in communities. This review (n = 29 papers) examines the current landscape of utilizing WBE for AMR surveillance with a focus on methodologies, findings, and gaps in understanding. Reported methods from the reviewed literature included culture-based, PCR-based, whole genome sequencing, mass spectrometry, bioinformatics/metagenomics, and antimicrobial susceptibility testing to identify and measure antibiotic-resistant bacteria and antimicrobial resistance genes (ARGs) in wastewater, as well as liquid chromatography-tandem mass spectrometry to measure antibiotic residues. Results indicate Escherichia coli, Enterococcus spp., and Pseudomonas spp. are the most prevalent antibiotic-resistant bacterial species with hospital effluent demonstrating higher abundances of clinically relevant resistance genes including bla, bcr, qnrS, mcr, sul1, erm, and tet genes compared to measurements from local treatment plants. The most reported antibiotics in influent wastewater across studies analyzed include azithromycin, ciprofloxacin, clindamycin, and clarithromycin. The influence of seasonal variation on the ARG profiles of communities differed amongst studies indicating additional factors hold significance when examining the conference of AMR within communities. Despite these findings, knowledge gaps remain, including longitudinal studies in multiple and diverse geographical regions and understanding co-resistance mechanisms in relation to the complexities of population contributors to AMR. This review underscores the urgent need for collaborative and interdisciplinary efforts to safeguard public health and preserve antimicrobial efficacy. Further investigation on the use of WBE to understand these unique population-level drivers of AMR is advised in a proposed framework to inform best practice approaches moving forward.202541011405
657980.9998Occurrence of Pharmaceuticals and Endocrine Disrupting Compounds in Brazilian Water and the Risks They May Represent to Human Health. The risks of pharmaceuticals and endocrine disrupting compounds (P&EDC) to the environment and human health are a current topic of interest. Hundreds of P&EDC may reach the environment, hence, there is a need to rank the level of concern of human exposure to these compounds. Thus, this work aimed at setting a priority list of P&EDC in Brazil, by studying their occurrence in raw and drinking water, calculating health guideline values (GV), and estimating the risks of population exposure to water intake. Data on the Brazilian pharmaceutical market as well as published data of the monitoring of Brazilian natural and drinking water have been collected by means of an exhaustive literature review. Furthermore, many foreign data were also collected to enable a comparison of the values found in Brazilian studies. A list of 55 P&EDC that have the potential to be found in Brazilian water is proposed, and for 41 of these a risk assessment was performed by estimating their margin of exposure (ME), by considering their occurrence in drinking water, and guideline values estimated from reported acceptable daily intake (ADI) data. For seven compounds the risk was deemed high (three estrogens and four anti-inflammatories), whereas for another seven compounds, it was regarded as an 'alert' situation. Although such risk analysis is conservative, since it has been calculated based on the highest reported P&EDC concentration in drinking water, it highlights the need to enhance their monitoring in Brazil to strengthen the database and support decision makers. An analysis of the occurrence of antimicrobial resistance agents (antibiotics, resistant bacteria, and resistance genes) in surface waters was also carried out and confirmed that such agents are present in water sources throughout Brazil, which deserves the attention of policy makers and health agents to prevent dissemination of antimicrobial resistance through water use.202134831521
388690.9998β-Lactam antibiotics and antibiotic resistance in Asian lakes and rivers: An overview of contamination, sources and detection methods. Lakes and rivers are sources of livelihood, food and water in many parts of the world. Lakes provide natural resources and valuable ecosystem services. These aquatic ecosystems are also vulnerable to known and new environmental pollutants. Emerging water contaminants are now being studied including antibiotics because of the global phenomenon on antibiotic resistance. β-Lactam antibiotics are widely used in human and animal disease prevention or treatment. The emergence of antibiotic resistance is a public health threat when bacteria become more resistant and infections consequently increase requiring treatment using last resort drugs that are more expensive. This review summarizes the key findings on the occurrence, contamination sources, and determination of β-lactam antibiotics and β-lactam antibiotic resistant bacteria and genes in the Asian lake and river waters. The current methods in the analytical measurements of β-lactam antibiotics in water involving solid-phase extraction and liquid chromatography-mass spectrometry are discussed. Also described is the determination of antibiotic resistance genes which is primarily based on a polymerase chain reaction method. To date, β-lactam antibiotics in the Asian aquatic environments are reported in the ng/L concentrations. Studies on β-lactam resistant bacteria and resistance genes were mostly conducted in China. The occurrence of these emerging contaminants is largely uncharted because many aquatic systems in the Asian region remain to be studied. Comprehensive investigations encompassing the environmental behavior of β-lactam antibiotics, emergence of resistant bacteria, transfer of resistance genes to non-resistant bacteria, multiple antibiotic resistance, and effects on aquatic biota are needed particularly in rivers and lakes that are eventual sinks of these water contaminants.202133571856
4992100.9998Systematic review in South Africa reveals antibiotic resistance genes shared between clinical and environmental settings. A systematic review was conducted to determine the distribution and prevalence of antibiotic-resistant bacteria (ARB), antimicrobial-resistant genes (ARGs), and antimicrobial-resistant gene determinants (ARGDs) in clinical, environmental, and farm settings and to identify key knowledge gaps in a bid to contain their spread. Fifty-three articles were included. The prevalence of a wide range of antimicrobial-resistant bacteria and their genes was reviewed. Based on the studies reviewed in this systematic review, mutation was found to be the main genetic element investigated. All settings shared 39 ARGs and ARGDs. Despite the fact that ARGs found in clinical settings are present in the environment, in reviewed articles only 12 were found to be shared between environmental and clinical settings; the inclusion of farm settings with these two settings increased this figure to 32. Data extracted from this review revealed farm settings to be one of the main contributors of antibiotic resistance in healthcare settings. ARB, ARGs, and ARGDs were found to be ubiquitous in all settings examined.201830425540
3887110.9998Structure of Bacterial Community with Resistance to Antibiotics in Aquatic Environments. A Systematic Review. Aquatic environments have been affected by the increase in bacterial resistant to antibiotics. The aim of this review is to describe the studies carried out in relation to the bacterial population structure and antibiotic resistance genes in natural and artificial water systems. We performed a systematic review based on the PRISMA guideline (preferred reporting items for systematic reviews and meta-analyzes). Articles were collected from scientific databases between January 2010 and December 2020. Sixty-eight papers meeting the inclusion criteria, i.e., "reporting the water bacterial community composition", "resistance to antibiotics", and "antibiotic resistance genes (ARG)", were evaluated according to pre-defined validity criteria. The results indicate that the predominant phyla were Firmicutes and Bacteroidetes in natural and artificial water systems. Gram-negative bacteria of the family Enterobacteraceae with resistance to antibiotics are commonly reported in drinking water and in natural water systems. The ARGs mainly reported were those that confer resistance to β-lactam antibiotics, aminoglycosides, fluoroquinolones, macrolides and tetracycline. The high influence of anthropogenic activity in the environment is evidenced. The antibiotic resistance genes that are mainly reported in the urban areas of the world are those that confer resistance to the antibiotics that are most used in clinical practice, which constitutes a problem for human and animal health.202133673692
4985120.9998Exploring the Role of the Environment as a Reservoir of Antimicrobial-Resistant Campylobacter: Insights from Wild Birds and Surface Waters. Antimicrobial resistance (AMR) is a growing global health challenge, compromising bacterial infection treatments and necessitating robust surveillance and mitigation strategies. The overuse of antimicrobials in humans and farm animals has made them hotspots for AMR. However, the spread of AMR genes in wildlife and the environment represents an additional challenge, turning these areas into new AMR hotspots. Among the AMR bacteria considered to be of high concern for public health, Campylobacter has been the leading cause of foodborne infections in the European Union since 2005. This study examines the prevalence of AMR genes and virulence factors in Campylobacter isolates from wild birds and surface waters in Luxembourg. The findings reveal a significant prevalence of resistant Campylobacter strains, with 12% of C. jejuni from wild birds and 37% of C. coli from surface waters carrying resistance genes, mainly against key antibiotics like quinolones and tetracycline. This study underscores the crucial role of the environment in the spread of AMR bacteria and genes, highlighting the urgent need for enhanced surveillance and control measures to curb AMR in wildlife and environmental reservoirs and reduce transmission risks to humans. This research supports One Health approaches to tackling antimicrobial resistance and protecting human, animal, and environmental health.202439203463
6549130.9998A Review on the Prevalence and Treatment of Antibiotic Resistance Genes in Hospital Wastewater. Antibiotic resistance is a global environmental and health threat. Approximately 4.95 million deaths were associated with antibiotic resistance in 2019, including 1.27 million deaths that were directly attributable to bacterial antimicrobial resistance. Hospital wastewater is one of the key sources for the spread of clinically relevant antibiotic resistance genes (ARGs) into the environment. Understanding the current situation of ARGs in hospital wastewater is of great significance. Here, we review the prevalence of ARGs and antibiotic-resistant bacteria (ARB) in hospital wastewater and wastewater from other places and the treatment methods used. We further discuss the intersection between ARGs and COVID-19 during the pandemic. This review highlights the issues associated with the dissemination of critical ARGs from hospital wastewater into the environment. It is imperative to implement more effective processes for hospital wastewater treatment to eliminate ARGs, particularly during the current long COVID-19 period.202540278579
6707140.9998Investigating the occurrence of antimicrobial resistance in the environment in Canada: a scoping review. Antimicrobial resistance is an environmental, agricultural, and public health problem that is impacting the health of humans and animals. The role of the environment as a source of and transmission pathway for antibiotic resistant bacteria and antibiotic resistance genes is a topic of increasing interest that, to date, has received limited attention. This study aimed to describe the sources and possible pathways contributing to antimicrobial resistance dissemination through bioaerosols, water, and soil in Canada using a scoping review methodology and systems thinking approach. A systems map was created to describe the occurrence and relationships between sources and pathways for antimicrobial resistance dissemination through water, soil, and bioaerosols. The map guided the development of the scoping review protocol, specifically the keywords searched and what data were extracted from the included studies. In total, 103 studies of antimicrobial resistance in water, 67 in soil, and 12 in air were identified. Studies to detect the presence of antimicrobial resistance genes have mainly been conducted at wastewater treatment plants and commercial animal livestock facilities. We also identified elements in the systems map with little or no data available (e.g., retail) that need to be investigated further to have a better understanding of antimicrobial resistance dissemination through different Canadian environments.202540279669
4993150.9998The role of the natural aquatic environment in the dissemination of extended spectrum beta-lactamase and carbapenemase encoding genes: A scoping review. The natural aquatic environment is a significant contributor to the development and circulation of clinically significant antibiotic resistance genes (ARGs). The potential for the aquatic environment to act as a reservoir for ARG accumulation in areas receiving anthropogenic contamination has been thoroughly researched. However, the emergence of novel ARGs in the absence of external influences, as well as the capacity of environmental bacteria to disseminate ARGs via mobile genetic elements remain relatively unchallenged. In order to address these knowledge gaps, this scoping literature review was established focusing on the detection of two important and readily mobile ARGs, namely, extended spectrum beta-lactamase (ESBL) and carbapenemase genes. This review included 41 studies from 19 different countries. A range of different water bodies including rivers (n = 26), seawaters (n = 6) and lakes (n = 3), amongst others, were analysed in the included studies. ESBL genes were reported in 29/41 (70.7%) studies, while carbapenemase genes were reported in 13/41 (31.7%), including joint reporting in 9 studies. The occurrence of mobile genetic elements was evaluated, which included the detection of integrons (n = 22), plasmids (n = 18), insertion sequences (n = 4) and transposons (n = 3). The ability of environmental bacteria to successfully transfer resistance genes via conjugation was also examined in 11 of the included studies. The findings of this scoping review expose the presence of clinically significant ARGs in the natural aquatic environment and highlights the potential ability of environmental isolates to disseminate these genes among different bacterial species. As such, the results presented demonstrate how anthropogenic point discharges may not act as the sole contributor to the development and spread of clinically significant antibiotic resistances. A number of critical knowledge gaps in current research were also identified. Key highlights include the limited number of studies focusing on antibiotic resistance in uncontaminated aquatic environments as well as the lack of standardisation among methodologies of reviewed investigations.202032438141
3297160.9998Antibiotic Resistance in Wastewater Treatment Plants and Transmission Risks for Employees and Residents: The Concept of the AWARE Study. Antibiotic resistance has become a serious global health threat. Wastewater treatment plants may become unintentional collection points for bacteria resistant to antimicrobials. Little is known about the transmission of antibiotic resistance from wastewater treatment plants to humans, most importantly to wastewater treatment plant workers and residents living in the vicinity. We aim to deliver precise information about the methods used in the AWARE (Antibiotic Resistance in Wastewater: Transmission Risks for Employees and Residents around Wastewater Treatment Plants) study. Within the AWARE study, we gathered data on the prevalence of two antibiotic resistance phenotypes, ESBL-producing E. coli and carbapenemase-producing Enterobacteriaceae, as well as on their corresponding antibiotic resistance genes isolated from air, water, and sewage samples taken from inside and outside of different wastewater treatment plants in Germany, the Netherlands, and Romania. Additionally, we analysed stool samples of wastewater treatment plant workers, nearby residents, and members of a comparison group living ≥1000 m away from the closest WWTP. To our knowledge, this is the first study investigating the potential spread of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes from WWTPs to workers, the environment, and nearby residents. Quantifying the contribution of different wastewater treatment processes to the removal efficiency of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes will provide us with evidence-based support for possible mitigation strategies.202133919179
6550170.9998Distribution of antibiotic resistance genes in the environment. The prevalence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the microbiome is a major public health concern globally. Many habitats in the environment are under threat due to excessive use of antibiotics and evolutionary changes occurring in the resistome. ARB and ARGs from farms, cities and hospitals, wastewater treatment plants (WWTPs) or as water runoffs, may accumulate in water, soil, and air. We present a global picture of the resistome by examining ARG-related papers retrieved from PubMed and published in the last 30 years (1990-2020). Natural Language Processing (NLP) was used to retrieve 496,640 papers, out of which 9374 passed the filtering test and were further analyzed to determine the distribution and diversity of ARG subtypes. The papers revealed seven major antibiotic families together with their respective ARG subtypes in different habitats on six continents. Asia, especially China, had the highest number of ARGs related papers compared to other countries/regions/continents. ARGs belonging to multidrug, glycopeptide, and β-lactam families were the most common in reports from hospitals and sulfonamide and tetracycline families were common in reports from farms, WWTPs, water and soil. We also highlight the 'omics' tools used in resistome research, describe some factors that shape the development of resistome, and suggest future work needed to better understand the resistome. The goal was to show the global nature of ARB and ARGs in order to encourage collaborate research efforts aimed at reducing the negative impacts of antibiotic resistance on the One Health concept.202134051569
4997180.9998Isolation and Molecular Characterization of Antimicrobial-Resistant Bacteria from Vegetable Foods. Antimicrobial resistance (AMR) poses a growing threat to global health, and its spread through the food chain is gaining increasing attention. While AMR in food of animal origin has been extensively studied, less is known about its prevalence in plant-based foods, particularly fresh and ready-to-eat (RTE) vegetables. This study investigated the occurrence of antimicrobial-resistant bacteria in fresh and RTE vegetables. Isolates were subjected to antimicrobial susceptibility testing and molecular analyses for the characterization of antimicrobial resistance genes (ARGs). A significant proportion of samples were found to harbor antimicrobial-resistant bacteria, including multidrug-resistant strains. Several ARGs, including those encoding extended-spectrum β-lactamases (ESBLs) and resistance to critically important antimicrobials, were detected. The findings point to environmental contamination-potentially originating from wastewater reuse and agricultural practices-as a likely contributor to AMR dissemination in vegetables. The presence of antimicrobial-resistant bacteria and ARGs in fresh produce raises concerns about food safety and public health. The current regulatory framework lacks specific criteria for monitoring AMR in vegetables, highlighting the urgent need for surveillance programs and risk mitigation strategies. This study contributes to a better understanding of AMR in the plant-based food sector and supports the implementation of a One Health approach to address this issue.202540732728
2586190.9998A Scoping Review Unveiling Antimicrobial Resistance Patterns in the Environment of Dairy Farms Across Asia. Antimicrobial resistance (AMR) poses a significant "One Health" challenge in the farming industry attributed to antimicrobial misuse and overuse, affecting the health of humans, animals, and the environment. Recognizing the crucial role of the environment in facilitating the transmission of AMR is imperative for addressing this global health issue. Despite its urgency, there remains a notable gap in understanding resistance levels in the environment. This scoping review aims to consolidate and summarize available evidence of AMR prevalence and resistance genes in dairy farm settings. This study was conducted following the PRISMA Extension checklist to retrieve relevant studies conducted in Asian countries between 2013 and 2023. An electronic literature search involving PubMed, ScienceDirect, Embase, and Scopus resulted in a total of 1126 unique articles that were identified. After a full-text eligibility assessment, 39 studies were included in this review. The findings indicate that AMR studies in dairy farm environments have primarily focused on selective bacteria, especially Escherichia coli and other bacteria such as Staphylococcus aureus, Klebsiella spp., and Salmonella spp. Antimicrobial resistance patterns were reported across 24 studies involving 78 antimicrobials, which predominantly consisted of gentamicin (70.8%), ampicillin (58.3%), and tetracycline (58.3%). This review emphasizes the current state of AMR in the environmental aspects of dairy farms across Asia, highlighting significant gaps in regional coverage and bacterial species studied. It highlights the need for broader surveillance, integration with antimicrobial stewardship, and cross-sector collaboration to address AMR through a One Health approach.202540426503