Evidence of interspecific plasmid uptake by pathogenic strains of Klebsiella isolated from microplastic pollution on public beaches. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
657501.0000Evidence of interspecific plasmid uptake by pathogenic strains of Klebsiella isolated from microplastic pollution on public beaches. Microplastic beads are becoming a common feature on beaches, and there is increasing evidence that such microplastics can become colonised by potential human pathogens. However, whether the concentrations and pathogenicity of these pathogens pose a public health risk are still unclear. Therefore, the aim of this study was to determine realistic environmental concentrations of potential pathogens colonising microplastic beads, and quantify the expression of virulence and antimicrobial resistance genes (ARGs). Microplastic beads were collected from beaches and a culture-dependent approach was used to determine the concentrations of seven target bacteria (Campylobacter spp.; E. coli; intestinal enterococci; Klebsiella spp.; Pseudomonas aeruginosa; Salmonella spp.; Vibrio spp.). All seven target bacteria were detected without the need for a pre-enrichment step; urban sites had higher bacterial concentrations, whilst polymer type had no influence on bacterial concentrations. Klebsiella was the most abundant target bacteria and possessed virulence and ARGs, some of which were present on plasmids from other species, and showed pathogenicity in a Galleria melonella infection model. Our findings demonstrate how pathogen colonised microplastic beads can pose a heightened public health risk at the beach, and highlights the urgency for improved monitoring and enforcement of regulations on the release of microplastics into the environment.202437741206
657310.9999The bacterial biofilm resistome in drinking water distribution systems: A systematic review. Antibiotic resistance in drinking water systems poses human health risks. Earlier studies, including reviews on antibiotic resistance in drinking water systems are limited to the occurrence, behaviour and fate in bulk raw water and drinking water treatment systems. By comparison, reviews on the bacterial biofilm resistome in drinking water distribution systems are still limited. Therefore, the present systematic review investigates the occurrence, behaviour and fate and, detection methods of bacterial biofilm resistome in the drinking water distribution systems. A total of 12 original articles drawn from 10 countries were retrieved and analyzed. Antibiotic resistant bacteria and antibiotic resistance genes detected in biofilms include those for sulfonamides, tetracycline, and beta-lactamase. The genera detected in biofilms include Staphylococcus, Enterococcus, Pseudomonas, Ralstonia, Mycobacteria, as well as Enterobacteriaceae family and other gram-negative bacteria. The presence of Enterococcus faecium, Staphylococcusaureus, Klebsiella pneumoniae, Acinetobacterbaumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE bacteria) among the detected bacteria points to potential human exposure and health risks especially for susceptible individuals via the consumption of drinking water. Besides, the effects of water quality parameter and residual chlorine, the physico-chemical factors controlling the emergence, persistence and fate of the biofilm resistome are still poorly understood. Culture-based methods, and molecular methods, and their advantages and limitations are discussed. The limited data on the bacterial biofilm resistome in drinking water distribution system points to the need for further research. To this end, future research directions are discussed including understanding the formation, behaviour, and fate of the resistome and the controlling factors.202337059195
656920.9998Unveiling Rare Pathogens and Antibiotic Resistance in Tanzanian Cholera Outbreak Waters. The emergence of antibiotic resistance is a global health concern. Therefore, understanding the mechanisms of its spread is crucial for implementing evidence-based strategies to tackle resistance in the context of the One Health approach. In developing countries where sanitation systems and access to clean and safe water are still major challenges, contamination may introduce bacteria and bacteriophages harboring antibiotic resistance genes (ARGs) into the environment. This contamination can increase the risk of exposure and community transmission of ARGs and infectious pathogens. However, there is a paucity of information on the mechanisms of bacteriophage-mediated spread of ARGs and patterns through the environment. Here, we deploy Droplet Digital PCR (ddPCR) and metagenomics approaches to analyze the abundance of ARGs and bacterial pathogens disseminated through clean and wastewater systems. We detected a relatively less-studied and rare human zoonotic pathogen, Vibrio metschnikovii, known to spread through fecal--oral contamination, similarly to V. cholerae. Several antibiotic resistance genes were identified in both bacterial and bacteriophage fractions from water sources. Using metagenomics, we detected several resistance genes related to tetracyclines and beta-lactams in all the samples. Environmental samples from outlet wastewater had a high diversity of ARGs and contained high levels of blaOXA-48. Other identified resistance profiles included tetA, tetM, and blaCTX-M9. Specifically, we demonstrated that blaCTX-M1 is enriched in the bacteriophage fraction from wastewater. In general, however, the bacterial community has a significantly higher abundance of resistance genes compared to the bacteriophage population. In conclusion, the study highlights the need to implement environmental monitoring of clean and wastewater to inform the risk of infectious disease outbreaks and the spread of antibiotic resistance in the context of One Health.202337894148
657430.9998Exploiting microplastics and the plastisphere for the surveillance of human pathogenic bacteria discharged into surface waters in wastewater effluent. Discharge from wastewater treatment plants (WWTPs) is a well-characterised source of human pathogens and antimicrobial resistance genes entering the environment. However, determining whether pathogens released from effluent into surface waters are viable, and consequently pose a risk to human health, is hindered by the use of transient grab-sampling monitoring approaches. Here we present a novel surveillance system using low-cost microparticles (polyethylene, cork and rubber) deployed upstream and downstream of a WWTP effluent pipe, that exploits the ability of bacterial pathogens to form biofilms. Using quantitative culture-based and molecular methods, viable E. coli, Klebsiella spp., Citrobacter spp., and Enterococcus spp. were identified after only 24-hour of deployment. Moreover, these pathogens were continually present at each timepoint (2, 4, 6, 8, 10, 14 and 23 days) as biofilm communities matured, with all pathogens detected at higher concentrations downstream of the WWTP effluent pipe. Long-read whole genome sequencing revealed a suite of plasmids, virulence genes and antimicrobial resistance genes in bacterial pathogens isolated from biofilms formed downstream of the effluent pipe. Furthermore, recognising that pathogens are typically present at proportionally low concentrations within mixed biofilm communities, total biofilm pathogenicity was confirmed using a Galleria mellonella infection model. Full-length 16S rRNA gene sequencing revealed that human pathogens present in microplastic biofilms (the 'plastisphere') dominated the microbial community of infected G. mellonella larvae within 24 hr, suggesting these bacteria remained highly virulent. Overall, this study demonstrated the efficacy of an easy-to-deploy system for the surveillance and rapid detection of pathogenic bacteria being discharged from point-source pollution. We envisage that if used as part of an integrated environmental management approach, this approach could help to reduce the public and environmental health risks of human pathogens and antimicrobial resistance genes, by monitoring viable human pathogens entering surface waters.202540184703
325440.9998Temporal trends of antibiotic resistance in culturable bacteria reveal the role of potential pathogens as pioneering carriers and resistance accumulators. Understanding the occurrence and temporal trends of antibiotic resistance genes (ARGs) within bacteria is crucial for controlling and predicting the proliferation of antibiotic-resistant bacteria. However, gaps remain in understanding the long-term trends across different bacterial species and in assessing related health risks. We collected 22,360 bacterial complete genome sequences with collection time and compiled a temporal dataset of ARGs in culturable bacteria. Our results revealed the widespread presence of ARGs among culturable bacterial species, with potential pathogens carrying significantly more ARGs than non-pathogenic species. Temporal trend analysis revealed that only 11.0 % of bacterial species experienced an increase of more than one unit in ARG quantity and diversity over one century, with 83.3 % of them being potential pathogenic species. The temporal accumulation of ARGs in many potential pathogenic species is influenced by the abundance of mobile genetic elements, with several species also exhibiting temporal accumulation of plasmid-borne ARGs. Notably, Shigella flexneri and Klebsiella pneumoniae exhibited an accumulation of high-risk ARGs associated with at least five antibiotic types over at least 40 years. Furthermore, the distribution of ARG-carrying strains before the use of antibiotics revealed a wide range of bacterial species and antibiotic types for intrinsic resistance, including some synthetic antibiotics. This work reveals the significant role of potential pathogens in the expansion of antibiotic resistance and highlights the importance of strengthening vigilance against the emergence of novel multidrug-resistant pathogens.202540712179
656750.9998Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes. Freshwater environments are susceptible to possible contamination by residual antibiotics that are released through different sources, such as agricultural runoffs, sewage discharges and leaching from nearby farms. Freshwater environment can thus become reservoirs where an antibiotic impact microorganisms, and is an important public health concern. Degradation and dilution processes are fundamental for predicting the actual risk of antibiotic resistance dissemination from freshwater reservoirs. This study reviews major approaches for detecting and quantifying antibiotic resistance bacteria (ARBs) and genes (ARGs) in freshwater and their prevalence in these environments. Finally, the role of dilution, degradation, transmission and the persistence and fate of ARB/ARG in these environments are also reviewed. Culture-based single strain approaches and molecular techniques that include polymerase chain reaction (PCR), quantitative polymerase chain reaction (qPCR) and metagenomics are techniques for quantifying ARB and ARGs in freshwater environments. The level of ARBs is extremely high in most of the river systems (up to 98% of the total detected bacteria), followed by lakes (up to 77% of the total detected bacteria), compared to dam, pond, and spring (<1%). Of most concern is the occurrence of extended-spectrum β-lactamase producing Enterobacteriaceae, methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococcus (VRE), which cause highly epidemic infections. Dilution and natural degradation do not completely eradicate ARBs and ARGs in the freshwater environment. Even if the ARBs in freshwater are effectively inactivated by sunlight, their ARG-containing DNA can still be intact and capable of transferring resistance to non-resistant strains. Antibiotic resistance persists and is preserved in freshwater bodies polluted with high concentrations of antibiotics. Direct transmission of indigenous freshwater ARBs to humans as well as their transitory insertion in the microbiota can occur. These findings are disturbing especially for people that rely on freshwater resources for drinking, crop irrigation, and food in form of fish.201931465907
657260.9998Wastewater treatment plants, an "escape gate" for ESCAPE pathogens. Antibiotics are an essential tool of modern medicine, contributing to significantly decreasing mortality and morbidity rates from infectious diseases. However, persistent misuse of these drugs has accelerated the evolution of antibiotic resistance, negatively impacting clinical practice. The environment contributes to both the evolution and transmission of resistance. From all anthropically polluted aquatic environments, wastewater treatment plants (WWTPs) are probably the main reservoirs of resistant pathogens. They should be regarded as critical control points for preventing or reducing the release of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic-resistance genes (ARGs) into the natural environment. This review focuses on the fate of the pathogens Enterococcus faecium, Staphylococcus aureus, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae spp. (ESCAPE) in WWTPs. All ESCAPE pathogen species, including high-risk clones and resistance determinants to last-resort antibiotics such as carbapenems, colistin, and multi-drug resistance platforms, were detected in wastewater. The whole genome sequencing studies demonstrate the clonal relationships and dissemination of Gram-negative ESCAPE species into the wastewater via hospital effluents and the enrichment of virulence and resistance determinants of S. aureus and enterococci in WWTPs. Therefore, the efficiency of different wastewater treatment processes regarding the removal of clinically relevant ARB species and ARGs, as well as the influence of water quality factors on their performance, should be explored and monitored, along with the development of more effective treatments and appropriate indicators (ESCAPE bacteria and/or ARGs). This knowledge will allow the development of quality standards for point sources and effluents to consolidate the WWTP barrier role against the environmental and public health AR threats.202337293232
372070.9998Urban wastewater as a conduit for pathogenic Gram-positive bacteria and genes encoding resistance to β-lactams and glycopeptides. The emergence and spread of clinical pathogens, antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment pose a direct threat to human and animal health worldwide. In this study, we analyzed qualitatively and quantitatively urban sewage resistome for the occurrence of genes encoding resistance to β-lactams and glycopeptides in the genomes of culturable bacteria, as well as in the wastewater metagenome of the Central Wastewater Treatment Plant in Koziegłowy (Poland). Moreover, we estimated the presence of pathogenic Gram-positive bacteria in wastewater based on analysis of species-specific virulence genes in the wastewater metagenome. The results show that the final effluent contains alarm pathogens with particularly dangerous mechanisms of antibiotic resistance, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). We also noticed that during the wastewater treatment, there is an increase in the frequency of MRSA and VRE. Furthermore, the results prove the effective removal of vanA, but at the same time show that wastewater treatment increases the relative abundance of mecA and virulence genes (groES and sec), indicating the presence of clinical pathogens E. faecalis and S. aureus in the effluent released to surface waters. We also observed an increase in the relative abundance of mecA and vanA genes already in the aeration tank, which suggests accumulation of contaminants affecting enhanced selection and HGT processes in the activated sludge. Moreover, we found a relation between the taxonomic composition and the copy number of ARGs as well as the presence of pathogens at various stages of wastewater treatment. The presence of clinically relevant pathogens, ARB, including multi-resistant bacteria, and ARGs in the effluent indicates that wastewater treatment plant play a key role in the existence of pathogens and antimicrobial resistance spreading pathway in the environment and human communities, which is a direct threat to public health and environmental protection.202133385807
736480.9998Anthropogenic influence shapes the distribution of antibiotic resistant bacteria (ARB) in the sediment of Sundarban estuary in India. The abundance and dissemination of antibiotic resistance genes as emerging environmental contaminants have become a significant and growing threat to human and environmental health. Traditionally, investigations of antibiotic resistance have been confined to a subset of clinically relevant antibiotic-resistant bacterial pathogens. During the last decade it became evident that the environmental microbiota possesses an enormous number and diversity of antibiotic resistance genes, some of which are very similar to the genes circulating in pathogenic microbiota. Recent studies demonstrate that aquatic ecosystems are potential reservoirs of antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs). Therefore, these aquatic ecosystems serve as potential sources for their transmission of ARGs to human pathogens. An assessment of such risks requires a better understanding of the level and variability of the natural resistance background and the extent of the anthropogenic impact. We have analyzed eight sediment samples from Sundarban mangrove ecosystem in India, collected at sampling stations with different histories of anthropogenic influences, and analyzed the relative abundance of the bla(TEM) gene using quantitative real-time PCR. The bla(TEM) gene abundance strongly correlated with the respective anthropogenic influences (polyaromatic hydrocarbon, heavy metals etc.) of the sampling stations. Besides, 18 multidrug-resistant (ampicillin, kanamycin, vancomycin, and tetracycline resistant) bacterial strains (ARBs) were isolated and characterized. Moreover, the effect of different antibiotics on the biofilm forming ability of the isolates was evaluated quantitatively under a variety of experimental regimes. This is the first report of preservation and possible dissemination of ARGs in the mangrove ecosystem.201930180366
325390.9998Metagenome-assembled genomes indicate that antimicrobial resistance genes are highly prevalent among urban bacteria and multidrug and glycopeptide resistances are ubiquitous in most taxa. INTRODUCTION: Every year, millions of deaths are associated with the increased spread of antimicrobial resistance genes (ARGs) in bacteria. With the increasing urbanization of the global population, the spread of ARGs in urban bacteria has become a more severe threat to human health. METHODS: In this study, we used metagenome-assembled genomes (MAGs) recovered from 1,153 urban metagenomes in multiple urban locations to investigate the fate and occurrence of ARGs in urban bacteria. Additionally, we analyzed the occurrence of these ARGs on plasmids and estimated the virulence of the bacterial species. RESULTS: Our results showed that multidrug and glycopeptide ARGs are ubiquitous among urban bacteria. Additionally, we analyzed the deterministic effects of phylogeny on the spread of these ARGs and found ARG classes that have a non-random distribution within the phylogeny of our recovered MAGs. However, few ARGs were found on plasmids and most of the recovered MAGs contained few virulence factors. DISCUSSION: Our results suggest that the observed non-random spreads of ARGs are not due to the transfer of plasmids and that most of the bacteria observed in the study are unlikely to be virulent. Additional research is needed to evaluate whether the ubiquitous and widespread ARG classes will become entirely prevalent among urban bacteria and how they spread among phylogenetically distinct species.202336760505
6570100.9998Impact of point sources on antibiotic resistance genes in the natural environment: a systematic review of the evidence. There is a growing concern about the role of the environment in the dissemination of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG). In this systematic review, we summarize evidence for increases of ARG in the natural environment associated with potential sources of ARB and ARG such as agricultural facilities and wastewater treatment plants. A total of 5247 citations were identified, including studies that ascertained both ARG and ARB outcomes. All studies were screened for relevance to the question and methodology. This paper summarizes the evidence only for those studies with ARG outcomes (n = 24). Sixteen studies were at high (n = 3) or at unclear (n = 13) risk of bias in the estimation of source effects due to lack of information or failure to control for confounders. Statistical methods were used in nine studies; three studies assessed the effect of multiple sources using modeling approaches, and none reported effect measures. Most studies reported higher ARG concentration downstream/near the source, but heterogeneous findings hindered making any sound conclusions. To quantify increases of ARG in the environment due to specific point sources, there is a need for studies that emphasize analytic or design control of confounding, and that provide effect measure estimates.201729231804
6568110.9998Antibiotic resistance genes in water environment. The use of antibiotics may accelerate the development of antibiotic resistance genes (ARGs) and bacteria which shade health risks to humans and animals. The emerging of ARGs in the water environment is becoming an increasing worldwide concern. Hundreds of various ARGs encoding resistance to a broad range of antibiotics have been found in microorganisms distributed not only in hospital wastewaters and animal production wastewaters, but also in sewage, wastewater treatment plants, surface water, groundwater, and even in drinking water. This review summarizes recently published information on the types, distributions, and horizontal transfer of ARGs in various aquatic environments, as well as the molecular methods used to detect environmental ARGs, including specific and multiplex PCR (polymerase chain reaction), real-time PCR, DNA sequencing, and hybridization based techniques.200919130050
3903120.9998Combining analytical epidemiology and genomic surveillance to identify risk factors associated with the spread of antimicrobial resistance in Salmonella enterica subsp. enterica serovar Heidelberg. Antimicrobial resistance (AMR) has become a critical threat to public health worldwide. The use of antimicrobials in food and livestock agriculture, including the production of poultry, is thought to contribute to the dissemination of antibiotic resistant bacteria (ARB) and the genes and plasmids that confer the resistant phenotype (ARG). However, the relative contribution of each of these processes to the emergence of resistant pathogens in poultry production and their potential role in the transmission of resistant pathogens in human infections, requires a deeper understanding of the dynamics of ARB and ARG in food production and the factors involved in the increased risk of transmission.202236748560
6706130.9998Antimicrobial Resistance Development Pathways in Surface Waters and Public Health Implications. Human health is threatened by antibiotic-resistant bacteria and their related infections, which cause thousands of human deaths every year worldwide. Surface waters are vulnerable to human activities and natural processes that facilitate the emergence and spread of antibiotic-resistant bacteria in the environment. This study evaluated the pathways and drivers of antimicrobial resistance (AR) in surface waters. We analyzed antibiotic resistance healthcare-associated infection (HAI) data reported to the CDC's National Healthcare Safety Network to determine the number of antimicrobial-resistant pathogens and their isolates detected in healthcare facilities. Ten pathogens and their isolates associated with HAIs tested resistant to the selected antibiotics, indicating the role of healthcare facilities in antimicrobial resistance in the environment. The analyzed data and literature research revealed that healthcare facilities, wastewater, agricultural settings, food, and wildlife populations serve as the major vehicles for AR in surface waters. Antibiotic residues, heavy metals, natural processes, and climate change were identified as the drivers of antimicrobial resistance in the aquatic environment. Food and animal handlers have a higher risk of exposure to resistant pathogens through ingestion and direct contact compared with the general population. The AR threat to public health may grow as pathogens in aquatic systems adjust to antibiotic residues, contaminants, and climate change effects. The unnecessary use of antibiotics increases the risk of AR, and the public should be encouraged to practice antibiotic stewardship to decrease the risk.202235740227
7325140.9998Profiling the bacterial microbiome diversity and assessing the potential to detect antimicrobial resistance bacteria in wastewater in Kimberley, South Africa. Wastewater treatment plants (WWTPs) are hotspots for pathogens, and can facilitate horizontal gene transfer, potentially releasing harmful genetic material and antimicrobial resistance genes into the environment. Little information exists on the composition and behavior of microbes in WWTPs, especially in developing countries. This study used environmental DNA (eDNA) techniques to examine the microbiome load of wastewater from WWTPs. The DNA was isolated from wastewater samples collected from the treatment trains of three WWTPs in Kimberley, South Africa, and the microbial diversity and composition was compared through 16 S rRNA gene sequencing. The microbes detected were of the Kingdom Bacteria, and of these, 48.27% were successfully identified to genus level. The majority of reads from the combined bacterial data fall within the class Gammaproteobacteria, which is known to adversely impact ecological and human health. Arcobacteraceae constituted 19% of the bacterial reads, which is expected as this family is widespread in aquatic environments. Interestingly, the most abundant bacterial group was Bacteroides, which contain a variety of antibiotic-resistant members. Overall, various antibiotic-resistant taxa were detected in the wastewater, indicating a concerning level of antibiotic resistance within the bacterial community. Therefore, eDNA analysis can be a valuable tool in monitoring and assessing the bacterial microbiome in wastewater, thus providing important information for the optimization and improvement of wastewater treatment systems and mitigate public health risks.202439500921
6571150.9998What happens in hospitals does not stay in hospitals: antibiotic-resistant bacteria in hospital wastewater systems. Hospitals are hotspots for antimicrobial-resistant bacteria (ARB) and play a major role in both their emergence and spread. Large numbers of these ARB will be ejected from hospitals via wastewater systems. In this review, we present quantitative and qualitative data of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli, vancomycin-resistant enterococci and Pseudomonas aeruginosa in hospital wastewaters compared to community wastewaters. We also discuss the fate of these ARB in wastewater treatment plants and in the downstream environment. Published studies have shown that hospital effluents contain ARB, the burden of these bacteria being dependent on their local prevalence. The large amounts of antimicrobials rejected in wastewater exert a continuous selective pressure. Only a few countries recommend the primary treatment of hospital effluents before their discharge into the main wastewater flow for treatment in municipal wastewater treatment plants. Despite the lack of conclusive data, some studies suggest that treatment could favour the ARB, notably ESBL-producing E. coli. Moreover, treatment plants are described as hotspots for the transfer of antibiotic resistance genes between bacterial species. Consequently, large amounts of ARB are released in the environment, but it is unclear whether this release contributes to the global epidemiology of these pathogens. It is reasonable, nevertheless, to postulate that it plays a role in the worldwide progression of antibiotic resistance. Antimicrobial resistance should now be seen as an 'environmental pollutant', and new wastewater treatment processes must be assessed for their capability in eliminating ARB, especially from hospital effluents.201626944903
6566160.9998Antimicrobial resistance bacteria and genes detected in hospital sewage provide valuable information in predicting clinical antimicrobial resistance. Extensive use of antibiotics is significantly associated with development of antibiotic-resistant (AR) bacteria. However, their causal relationships have not been adequately investigated, especially in human population and hospitals. Our aims were to understand clinical AR through revealing co-occurrence patterns between antibiotic-resistant bacteria and genes (ARB and ARGs), and their association with antibiotic use, and to consider impact of ARB and ARGs on environmental and human health. Antibiotic usage was calculated based on the actual consumption in our target hospital. ARB was identified by culture. In isolates collected from hospital sewage, bacterial-specific DNA sequences and ARGs were determined using metagenomics. Our data revealed that the use of culture-based single-indicator-strain approaches only captured ARB in 16.17% of the infectious samples. On the other hand, 1573 bacterial species and 885 types of ARGs were detected in the sewage. Furthermore, hospital use of antibiotics influenced the resistance profiles, but the strength varied among bacteria. From our metagenomics analyses, ARGs for aminoglycosides were the most common, followed by sulfonamide, tetracycline, phenicol, macrolides, and quinolones, comprising 82.6% of all ARGs. Association analyses indicated that 519 pairs of ARGs were significantly correlated with ARB species (r > 0.8). The co-occurrence patterns of bacteria-ARGs mirrored the AR in the clinic. In conclusion, our systematic investigation further emphasized that antibiotic usage in hospital significantly influenced the abundance and types of ARB and ARGs in dose- and time-dependent manners which, in turn, mirrored clinical AR. In addition, our data provide novel information on development of certain ARB with multiple antibiotic resistance. These ARB and ARGs from sewage can also be disseminated into the environment and communities to create health problems. Therefore, it would be helpful to use such data to develop improved predictive risk model of AR, to enhance effective use of antibiotics, and to reduce environmental pollution.202134247085
3886170.9998β-Lactam antibiotics and antibiotic resistance in Asian lakes and rivers: An overview of contamination, sources and detection methods. Lakes and rivers are sources of livelihood, food and water in many parts of the world. Lakes provide natural resources and valuable ecosystem services. These aquatic ecosystems are also vulnerable to known and new environmental pollutants. Emerging water contaminants are now being studied including antibiotics because of the global phenomenon on antibiotic resistance. β-Lactam antibiotics are widely used in human and animal disease prevention or treatment. The emergence of antibiotic resistance is a public health threat when bacteria become more resistant and infections consequently increase requiring treatment using last resort drugs that are more expensive. This review summarizes the key findings on the occurrence, contamination sources, and determination of β-lactam antibiotics and β-lactam antibiotic resistant bacteria and genes in the Asian lake and river waters. The current methods in the analytical measurements of β-lactam antibiotics in water involving solid-phase extraction and liquid chromatography-mass spectrometry are discussed. Also described is the determination of antibiotic resistance genes which is primarily based on a polymerase chain reaction method. To date, β-lactam antibiotics in the Asian aquatic environments are reported in the ng/L concentrations. Studies on β-lactam resistant bacteria and resistance genes were mostly conducted in China. The occurrence of these emerging contaminants is largely uncharted because many aquatic systems in the Asian region remain to be studied. Comprehensive investigations encompassing the environmental behavior of β-lactam antibiotics, emergence of resistant bacteria, transfer of resistance genes to non-resistant bacteria, multiple antibiotic resistance, and effects on aquatic biota are needed particularly in rivers and lakes that are eventual sinks of these water contaminants.202133571856
7362180.9998Multi-antibiotic resistant bacteria in landfill bioaerosols: Environmental conditions and biological risk assessment. Landfills, as well as other waste management facilities are well-known bioaerosols sources. These places may foment antibiotic-resistance in bacterial bioaerosol (A.R.B.) due to inadequate pharmaceutical waste disposal. This issue may foster the necessity of using last-generation antibiotics with extra costs in the health care system, and deaths. The aim of this study was to reveal the multi-antibiotic resistant bacterial bioaerosol emitted by a sanitary landfill and the surrounding area. We evaluated the influence of environmental conditions in the occurrence of A.R.B. and biological risk assessment. Antibiotic resistance found in the bacteria aerosols was compared with the AWaRE consumption classification. We used the BIOGAVAL method to assess the workers' occupational exposure to antibiotic-resistant bacterial bioaerosols in the landfill. This study confirmed the multi-antibiotic resistant in bacterial bioaerosol in a landfill and in the surrounding area. Obtained mean concentrations of bacterial bioaerosols, as well as antibiotic-resistant in bacterial bioaerosol (A.R.B.), were high, especially for fine particles that may be a threat for human health. Results suggest the possible risk of antibiotic-resistance interchange between pathogenic and non-pathogenic species in the landfill facilities, thus promoting antibiotic multi-resistance genes spreading into the environment.202134482243
3721190.9998Contribution of Time, Taxonomy, and Selective Antimicrobials to Antibiotic and Multidrug Resistance in Wastewater Bacteria. The use of nontherapeutic broad-spectrum antimicrobial agents triclosan (TCS) and benzalkonium chloride (BC) can contribute to bacterial resistance to clinically relevant antibiotics. Antimicrobial-resistant bacteria within wastewater may reflect the resistance burden within the human microbiome, as antibiotics and pathogens in wastewater can track with clinically relevant parameters during perturbations to the community. In this study, we monitored culturable and resistant wastewater bacteria and cross-resistance to clinically relevant antibiotics to gauge the impact of each antimicrobial and identify factors influencing cross-resistance profiles. Bacteria resistant to TCS and BC were isolated from wastewater influent over 21 months, and cross-resistance, taxonomy, and monthly changes were characterized under both antimicrobial selection regimes. Cross-resistance profiles from each antimicrobial differed within and between taxa. BC-isolated bacteria had a significantly higher prevalence of resistance to "last-resort antibiotic" colistin, while isolates resistant to TCS exhibited higher rates of multidrug resistance. Prevalence of culturable TCS-resistant bacteria decreased over time following Food and Drug Administration (FDA) TCS bans. Cross-resistance patterns varied according to sampling date, including among the most clinically important antibiotics. Correlations between strain-specific resistance profiles were largely influenced by taxonomy, with some variations associated with sampling date. The results reveal that time, taxonomy, and selection by TCS and BC impact features of cross-resistance patterns among diverse wastewater microorganisms, which could reflect the variety of factors influencing resistance patterns relevant to a community microbiome.202033258596