Does Irrigation with Treated and Untreated Wastewater Increase Antimicrobial Resistance in Soil and Water: A Systematic Review. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
655801.0000Does Irrigation with Treated and Untreated Wastewater Increase Antimicrobial Resistance in Soil and Water: A Systematic Review. Population growth and water scarcity necessitate alternative agriculture practices, such as reusing wastewater for irrigation. Domestic wastewater has been used for irrigation for centuries in many historically low-income and arid countries and is becoming more widely used by high-income countries to augment water resources in an increasingly dry climate. Wastewater treatment processes are not fully effective in removing all contaminants, such as antimicrobial resistant bacteria (ARB) and antimicrobial resistance genes (ARGs). Literature reviews on the impact of wastewater irrigation on antimicrobial resistance (AMR) in the environment have been inconclusive and mostly focused on treated wastewater. We conducted the first systematic review to assess the impact of irrigation with both treated or untreated domestic wastewater on ARB and ARGs in soil and adjacent water bodies. We screened titles/abstracts of 3002 articles, out of which 41 were screened in full text and 26 were included in this review. Of these, thirteen investigated irrigation with untreated wastewater, and nine found a positive association with ARB/ARGs in soil. Out of thirteen studies focused on treated wastewater, six found a positive association with ARB/ARGs while six found mixed/negative associations. Our findings demonstrate that irrigation with untreated wastewater increases AMR in soil and call for precautionary action by field workers, their families, and consumers when untreated wastewater is used to irrigate crops. The effect of irrigation with treated wastewater was more variable among the studies included in our review, highlighting the need to better understand to what extent AMR is disseminated through this practice. Future research should assess factors that modify the effect of wastewater irrigation on AMR in soil, such as the degree and type of wastewater treatment, and the duration and intensity of irrigation, to inform guidelines on the reuse of wastewater for irrigation.202134769568
655310.9998Antibiotic Resistance in Recreational Waters: State of the Science. Ambient recreational waters can act as both recipients and natural reservoirs for antimicrobial resistant (AMR) bacteria and antimicrobial resistant genes (ARGs), where they may persist and replicate. Contact with AMR bacteria and ARGs potentially puts recreators at risk, which can thus decrease their ability to fight infections. A variety of point and nonpoint sources, including contaminated wastewater effluents, runoff from animal feeding operations, and sewer overflow events, can contribute to environmental loading of AMR bacteria and ARGs. The overall goal of this article is to provide the state of the science related to recreational exposure and AMR, which has been an area of increasing interest. Specific objectives of the review include (1) a description of potential sources of antibiotics, AMR bacteria, and ARGs in recreational waters, as documented in the available literature; (2) a discussion of what is known about human recreational exposures to AMR bacteria and ARGs, using findings from health studies and exposure assessments; and (3) identification of knowledge gaps and future research needs. To better understand the dynamics related to AMR and associated recreational water risks, future research should focus on source contribution, fate and transport-across treatment and in the environment; human health risk assessment; and standardized methods.202033142796
742620.9998Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: a review. Antibiotics are among the most successful group of pharmaceuticals used for human and veterinary therapy. However, large amounts of antibiotics are released into municipal wastewater due to incomplete metabolism in humans or due to disposal of unused antibiotics, which finally find their ways into different natural environmental compartments. The emergence and rapid spread of antibiotic resistant bacteria (ARB) has led to an increasing concern about the potential environmental and public health risks. ARB and antibiotic resistant genes (ARGs) have been detected extensively in wastewater samples. Available data show significantly higher proportion of antibiotic resistant bacteria contained in raw and treated wastewater relative to surface water. According to these studies, the conditions in wastewater treatment plants (WWTPs) are favourable for the proliferation of ARB. Moreover, another concern with regards to the presence of ARB and ARGs is their effective removal from sewage. This review gives an overview of the available data on the occurrence of ARB and ARGs and their fate in WWTPs, on the biological methods dealing with the detection of bacterial populations and their resistance genes, and highlights areas in need for further research studies.201323414720
742530.9998Antibiotic resistant bacteria and genes in wastewater treatment plants: From occurrence to treatment strategies. This study aims to discuss the following: (1) occurrence and proliferation of antibiotic resistance in wastewater treatment plants (WWTPs); (2) factors influencing antibiotic resistance bacteria and genes in WWTPs; (3) tools to assess antibiotic resistance in WWTPs; (4) environmental contamination of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from WWTPs; (5) effects of ARB and ARGs from WWTPs on human health; and (6) treatment strategies. In general, resistant and multi-resistant bacteria, including Enterobacteriaceae, Pseudomonas aeruginosa, and Escherichia coli, exist in various processes of WWTPs. The existence of ARB and ARGs results from the high concentration of antibiotics in wastewater, which promote selective pressures on the local bacteria present in WWTPs. Thus, improving wastewater treatment technology and avoiding the misuse of antibiotics is critical to overcoming the threat of proliferation of ARBs and ARGs. Numerous factors can affect the development of ARB and ARGs in WWTPs. Abiotic factors can affect the bacterial community dynamics, thereby, affecting the applicability of ARB during the wastewater treatment process. Furthermore, the organic loads and other nutrients influence bacterial survival and growth. Specifically, molecular methods for the rapid characterization and detection of ARBs or their genes comprise DNA sequencing, real-time PCR, simple and multiplex PCR, and hybridization-based technologies, including micro- and macro-arrays. The reuse of effluent from WWTPs for irrigation is an efficient method to overcome water scarcity. However, there are also some potential environmental risks associated with this practice, such as increase in the levels of antibiotic resistance in the soil microbiome. Human mortality rates may significantly increase, as ARB can lead to resistance among several types of antibiotics or longer treatment times. Some treatment technologies, such as anaerobic and aerobic treatment, coagulation, membrane bioreactors, and disinfection processes, are considered potential techniques to restrict antibiotic resistance in the environment.202235679932
655440.9998Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes. Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the "perfect microbial storm". Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.201327029309
655750.9998Antibiotics and antibiotic resistance in water environments. Antibiotic-resistant organisms enter into water environments from human and animal sources. These bacteria are able to spread their genes into water-indigenous microbes, which also contain resistance genes. On the contrary, many antibiotics from industrial origin circulate in water environments, potentially altering microbial ecosystems. Risk assessment protocols for antibiotics and resistant bacteria in water, based on better systems for antibiotics detection and antibiotic-resistance microbial source tracking, are starting to be discussed. Methods to reduce resistant bacterial load in wastewaters, and the amount of antimicrobial agents, in most cases originated in hospitals and farms, include optimization of disinfection procedures and management of wastewater and manure. A policy for preventing mixing human-originated and animal-originated bacteria with environmental organisms seems advisable.200818534838
654760.9998An overview on the prevalence and potential impact of antimicrobials and antimicrobial resistance in the aquatic environment of India. India at present is one of the leading countries in antimicrobial drug production and use, leading to increasing antimicrobial resistance (AMR) and public health problems. Attention has mainly been focused on the human and food animals' contribution to AMR neglecting the potential contribution of the perceptibly degraded aquatic environment in India. The paper reviews the available published literature in India on the prevalence of antimicrobial residues and their dissemination pathways in wastewater of pharmaceutical industries, sewage treatment plants, hospitals, riverine, community pond water, and groundwater. The prevalence of antimicrobial residue concentration, pathogenic and non-pathogenic bacteria antimicrobial resistant bacteria (ARB), their drug resistance levels, and their specific antimicrobial resistant genes (ARGs) occurring in various water matrices of India have been comprehensively depicted from existing literature. The concentration of some widely used antimicrobials recorded from the sewage treatment plants and hospital wastewater and rivers in India has been compared with other countries. The ecotoxicological risk posed by these antimicrobials in the various water matrices in India indicated high hazard quotient (HQ) values for pharmaceutical effluents, hospital effluents, and river water. The degraded aquatic environment exhibited the selection of a wide array of co-existent resistant genes for antibiotics and metals. The review revealed improper use of antibiotics and inadequate wastewater treatment as major drivers of AMR contaminating water bodies in India and suggestion for containing the challenges posed by AMR in India has been proposed.202337530878
743570.9998Insights into the impact of manure on the environmental antibiotic residues and resistance pool. The intensive use of antibiotics in the veterinary sector, linked to the application of manure-derived amendments in agriculture, translates into increased environmental levels of chemical residues, AR bacteria (ARB) and antibiotic resistance genes (ARG). The aim of this review was to evaluate the current evidence regarding the impact of animal farming and manure application on the antibiotic resistance pool in the environment. Several studies reported correlations between the prevalence of clinically relevant ARB and the amount and classes of antibiotics used in animal farming (high resistance rates being reported for medically important antibiotics such as penicillins, tetracyclines, sulfonamides and fluoroquinolones). However, the results are difficult to compare, due to the diversity of the used antimicrobials quantification techniques and to the different amounts and types of antibiotics, exhibiting various degradation times, given in animal feed in different countries. The soils fertilized with manure-derived products harbor a higher and chronic abundance of ARB, multiple ARG and an enriched associated mobilome, which is also sometimes seen in the crops grown on the amended soils. Different manure processing techniques have various efficiencies in the removal of antibiotic residues, ARB and ARGs, but there is only a small amount of data from commercial farms. The efficiency of sludge anaerobic digestion appears to be dependent on the microbial communities composition, the ARB/ARG and operating temperature (mesophilic vs. thermophilic conditions). Composting seems to reduce or eliminate most of antibiotics residues, enteric bacteria, ARB and different representative ARG in manure more rapidly and effectively than lagoon storage. Our review highlights that despite the body of research accumulated in the last years, there are still important knowledge gaps regarding the contribution of manure to the AMR emergence, accumulation, spread and risk of human exposure in countries with high clinical resistance rates. Land microbiome before and after manure application, efficiency of different manure treatment techniques in decreasing the AMR levels in the natural environments and along the food chain must be investigated in depth, covering different geographical regions and countries and using harmonized methodologies. The support of stakeholders is required for the development of specific best practices for prudent - cautious use of antibiotics on farm animals. The use of human reserve antibiotics in veterinary medicine and of unprescribed animal antimicrobials should be stopped and the use of antibiotics on farms must be limited. This integrated approach is needed to determine the optimal conditions for the removal of antibiotic residues, ARB and ARG, to formulate specific recommendations for livestock manure treatment, storage and handling procedures and to translate them into practical on-farm management decisions, to ultimately prevent exposure of human population.202236187968
651280.9998Antimicrobial Resistance in the Environment. This review summarizes selected publications of 2016 with emphasis on occurrence and treatment of antibiotic resistance genes and bacteria in the aquatic environment and wastewater and drinking water treatment plants. The review is conducted with emphasis on fate, modeling, risk assessment and data analysis methodologies for characterizing abundance. After providing a brief introduction, the review is divided into the following four sections: i) Occurrence of AMR in the Environment, ii) Treatment Technologies for AMR, iii) Modeling of Fate, Risk, and Environmental Impact of AMR, and iv) ARG Databases and Pipelines.201728954648
656790.9998Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes. Freshwater environments are susceptible to possible contamination by residual antibiotics that are released through different sources, such as agricultural runoffs, sewage discharges and leaching from nearby farms. Freshwater environment can thus become reservoirs where an antibiotic impact microorganisms, and is an important public health concern. Degradation and dilution processes are fundamental for predicting the actual risk of antibiotic resistance dissemination from freshwater reservoirs. This study reviews major approaches for detecting and quantifying antibiotic resistance bacteria (ARBs) and genes (ARGs) in freshwater and their prevalence in these environments. Finally, the role of dilution, degradation, transmission and the persistence and fate of ARB/ARG in these environments are also reviewed. Culture-based single strain approaches and molecular techniques that include polymerase chain reaction (PCR), quantitative polymerase chain reaction (qPCR) and metagenomics are techniques for quantifying ARB and ARGs in freshwater environments. The level of ARBs is extremely high in most of the river systems (up to 98% of the total detected bacteria), followed by lakes (up to 77% of the total detected bacteria), compared to dam, pond, and spring (<1%). Of most concern is the occurrence of extended-spectrum β-lactamase producing Enterobacteriaceae, methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococcus (VRE), which cause highly epidemic infections. Dilution and natural degradation do not completely eradicate ARBs and ARGs in the freshwater environment. Even if the ARBs in freshwater are effectively inactivated by sunlight, their ARG-containing DNA can still be intact and capable of transferring resistance to non-resistant strains. Antibiotic resistance persists and is preserved in freshwater bodies polluted with high concentrations of antibiotics. Direct transmission of indigenous freshwater ARBs to humans as well as their transitory insertion in the microbiota can occur. These findings are disturbing especially for people that rely on freshwater resources for drinking, crop irrigation, and food in form of fish.201931465907
6559100.9998Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. The discovery and evolution of antibiotics for humans and animals are among the most significant milestones of the 20th century. However, antibiotics play a significant role in the induction and dissemination of antibiotic resistance genes (ARGs) in groundwater that has recently become the primary environmental concern. They are administrated to humans and animals on a large scale and are persistent in the environment. Long term impacts of antibiotics in the ecological environment are not still clearly understood, and their occurrence and consequences have become an important research topic worldwide. The hotspot reservoirs of antibiotics and ARGs include medical facilities, livestock farming, aquaculture, landfills, on-site sanitation systems, sewage, and wastewater treatment plants. Our meta-analysis demonstrated that antibiotics, including ciprofloxacin, sulfamethoxazole, erythromycin, and tetracycline were found at high concentrations while sulfonamide and tetracycline ARGs were more prevalent in groundwater. Moreover, the highest reported concentrations of targeted antibiotics were used to calculate hazard quotient (HQ) and risk quotient (RQ) in global groundwater bodies to estimate environmental and human health risks, respectively. Due to limited available ecotoxicity data, RQ and HQ can only be calculated for a few antibiotics in groundwater. The risk assessment of antibiotics demonstrated that antibiotics with their current groundwater levels pose no human health risks, whereas only ciprofloxacin, erythromycin, flumequine, and sulfamethoxazole revealed moderate to low risks to aquatic species. The occurrence of ARGs and antibiotic resistant bacteria (ARBs) in groundwater is also not likely to pose human health risk but consumption of groundwater contaminated with ARGs and ARBs might contribute to the development of antibiotic resistance in humans. The present review also sheds light on the relationship between ARGs, antibiotics, microbial communities, and environmental factors in groundwater, and reported a significant correlation between them. It also addresses prospects for future outlooks into further areas of relevant research.202033032106
6548110.9998Review of Antimicrobial Resistance in Wastewater in Japan: Current Challenges and Future Perspectives. Antimicrobial resistance (AMR) circulates through humans, animals, and the environments, requiring a One Health approach. Recently, urban sewage has increasingly been suggested as a hotspot for AMR even in high-income countries (HICs), where the water sanitation and hygiene infrastructure are well-developed. To understand the current status of AMR in wastewater in a HIC, we reviewed the epidemiological studies on AMR in the sewage environment in Japan from the published literature. Our review showed that a wide variety of clinically important antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antimicrobial residues are present in human wastewater in Japan. Their concentrations are lower than in low- and middle-income countries (LMICs) and are further reduced by sewage treatment plants (STPs) before discharge. Nevertheless, the remaining ARB and ARGs could be an important source of AMR contamination in river water. Furthermore, hospital effluence may be an important reservoir of clinically important ARB. The high concentration of antimicrobial agents commonly prescribed in Japan may contribute to the selection and dissemination of AMR within wastewater. Our review shows the importance of both monitoring for AMR and antimicrobials in human wastewater and efforts to reduce their contamination load in wastewater.202235884103
6556120.9998Antibiotic resistance in urban runoff. Aquatic ecosystems subjected to anthropogenic pressures are places of rapid evolution of microbial communities and likely hotspots for selection and emergence of antibiotic resistant bacteria. In urban settings, water quality and the risk of infection are generally assessed in sewers and in effluents of wastewater treatment plants. Physical and chemical parameters as well as the presence of antibiotics, antibiotic-resistant bacteria and genes of resistance are driven by urban activities, with adverse effects on aquatic ecosystems. In this paper we review the environmental pressures exerted on bacterial communities in urban runoff waters and discuss the impact of these settings on antibiotic resistance. Considering the worrisome epidemiology of infectious diseases and estimated mortality due to antimicrobial resistance in the coming decades, there is an urgent need to identify all environmental reservoirs of resistant bacteria and resistance genes to complete our knowledge of the epidemiological cycle and of the dynamics of urban antibiotic resistance.201930826682
7377130.9998Impact of treated wastewater irrigation on antibiotic resistance in agricultural soils. Antibiotic resistance (AR) is a global phenomenon with severe epidemiological ramifications. Anthropogenically impacted natural aquatic and terrestrial environments can serve as reservoirs of antibiotic resistance genes (ARG), which can be horizontally transferred to human-associated bacteria through water and food webs, and thus contribute to AR proliferation. Treated-wastewater (TWW) irrigation is becoming increasingly prevalent in arid regions of the world, due to growing demand and decline in freshwater supplies. The release of residual antibiotic compounds, AR bacteria, and ARGs from wastewater effluent may result in proliferation of AR in irrigated soil microcosms. The aim of this study was to assess the impact of TWW-irrigation on soil AR bacterial and ARG reservoirs. Tetracycline, erythromycin, sulfonamide, and ciprofloxacin resistance in soil was assessed using standard culture-based isolation methods and culture-independent molecular analysis using quantitative real-time PCR (qPCR). High levels of bacterial antibiotic resistance were detected in both freshwater- and TWW-irrigated soils. Nonetheless, in most of the soils analyzed, AR bacteria and ARG levels in TWW-irrigated soils were on the whole identical (or sometimes even lower) than in the freshwater-irrigated soils, indicating that the high number of resistant bacteria that enter the soils from the TWW are not able to compete or survive in the soil environment and that they do not significantly contribute ARG to soil bacteria. This strongly suggests that the impact of the TWW-associated bacteria on the soil microbiome is on the whole negligible, and that the high levels of AR bacteria and ARGs in both the freshwater- and the TWW-irrigated soils are indicative of native AR associated with the natural soil microbiome.201222494147
6474140.9998Impact of treated wastewater irrigation on antibiotic resistance in the soil microbiome. The reuse of treated wastewater (TWW) for irrigation is a practical solution for overcoming water scarcity, especially in arid and semiarid regions of the world. However, there are several potential environmental and health-related risks associated with this practice. One such risk stems from the fact that TWW irrigation may increase antibiotic resistance (AR) levels in soil bacteria, potentially contributing to the global propagation of clinical AR. Wastewater treatment plant (WWTP) effluents have been recognized as significant environmental AR reservoirs due to selective pressure generated by antibiotics and other compounds that are frequently detected in effluents. This review summarizes a myriad of recent studies that have assessed the impact of anthropogenic practices on AR in environmental bacterial communities, with specific emphasis on elucidating the potential effects of TWW irrigation on AR in the soil microbiome. Based on the current state of the art, we conclude that contradictory to freshwater environments where WWTP effluent influx tends to expand antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes levels, TWW irrigation does not seem to impact AR levels in the soil microbiome. Although this conclusion is a cause for cautious optimism regarding the future implementation of TWW irrigation, we conclude that further studies aimed at assessing the scope of horizontal gene transfer between effluent-associated ARB and soil bacteria need to be further conducted before ruling out the possible contribution of TWW irrigation to antibiotic-resistant reservoirs in irrigated soils.201323378260
6570150.9998Impact of point sources on antibiotic resistance genes in the natural environment: a systematic review of the evidence. There is a growing concern about the role of the environment in the dissemination of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG). In this systematic review, we summarize evidence for increases of ARG in the natural environment associated with potential sources of ARB and ARG such as agricultural facilities and wastewater treatment plants. A total of 5247 citations were identified, including studies that ascertained both ARG and ARB outcomes. All studies were screened for relevance to the question and methodology. This paper summarizes the evidence only for those studies with ARG outcomes (n = 24). Sixteen studies were at high (n = 3) or at unclear (n = 13) risk of bias in the estimation of source effects due to lack of information or failure to control for confounders. Statistical methods were used in nine studies; three studies assessed the effect of multiple sources using modeling approaches, and none reported effect measures. Most studies reported higher ARG concentration downstream/near the source, but heterogeneous findings hindered making any sound conclusions. To quantify increases of ARG in the environment due to specific point sources, there is a need for studies that emphasize analytic or design control of confounding, and that provide effect measure estimates.201729231804
6573160.9998The bacterial biofilm resistome in drinking water distribution systems: A systematic review. Antibiotic resistance in drinking water systems poses human health risks. Earlier studies, including reviews on antibiotic resistance in drinking water systems are limited to the occurrence, behaviour and fate in bulk raw water and drinking water treatment systems. By comparison, reviews on the bacterial biofilm resistome in drinking water distribution systems are still limited. Therefore, the present systematic review investigates the occurrence, behaviour and fate and, detection methods of bacterial biofilm resistome in the drinking water distribution systems. A total of 12 original articles drawn from 10 countries were retrieved and analyzed. Antibiotic resistant bacteria and antibiotic resistance genes detected in biofilms include those for sulfonamides, tetracycline, and beta-lactamase. The genera detected in biofilms include Staphylococcus, Enterococcus, Pseudomonas, Ralstonia, Mycobacteria, as well as Enterobacteriaceae family and other gram-negative bacteria. The presence of Enterococcus faecium, Staphylococcusaureus, Klebsiella pneumoniae, Acinetobacterbaumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE bacteria) among the detected bacteria points to potential human exposure and health risks especially for susceptible individuals via the consumption of drinking water. Besides, the effects of water quality parameter and residual chlorine, the physico-chemical factors controlling the emergence, persistence and fate of the biofilm resistome are still poorly understood. Culture-based methods, and molecular methods, and their advantages and limitations are discussed. The limited data on the bacterial biofilm resistome in drinking water distribution system points to the need for further research. To this end, future research directions are discussed including understanding the formation, behaviour, and fate of the resistome and the controlling factors.202337059195
7392170.9998Distribution of genetic elements associated with antibiotic resistance in treated and untreated animal husbandry waste and wastewater. Animal breeding for meat production based on swine, cattle, poultry, and aquaculture is an activity that generates several impacts on the environment, among them the spread of antibiotic resistance. There is a worldwide concern related to the massive use of antibiotics, which causes selective pressure on the microbial community, triggering bacteria that contain "antibiotic resistance genes." According to the survey here presented, antibiotic resistance-related genes such as tetracyclines (tet), erythromycin (erm), and sulfonamides (sul), as well as the genetic mobile element interferon (int), are the most reported genetic elements in qualitative and quantitative studies of swine, cattle, poultry, and aquaculture manure/wastewater. It has been observed that biological treatments based on waste composting and anaerobic digestion are effective in ARG removal, particularly for tet, bla, erm, and qnr (quinolone) genes. On the other hand, sul and intI genes were more persistent in such treatments. Tertiary treatments, such advanced oxidative processes, are suitable strategies to improve ARG reduction. In general temperature, hydraulic retention time, and penetration of sunlight are the main operational parameters for ARG reduction in treatments applied to animal waste, and therefore attention should be addressed to optimize their efficacy regarding ARG removal. Despite being reduced, the presence of ARG in treated effluents and in biosolids indicates that there is a potential risk of antibiotic resistance spread in nature, especially through the release of treated livestock waste into the environment.202133835340
7424180.9998Fate of antibiotic resistance genes and antibiotic-resistant bacteria in water resource recovery facilities. Many important diseases are showing resistance to commonly used antibiotics, and the resistance is potentially caused by widespread use of antibiotics for maintaining human health and improving food production. Antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) are associated with this increase, and their fate in water resource recovery facilities is an important, emerging area of research. This literature review summarizes current findings of worldwide research on the fate of ARB and ARGs in various types of treatment plants. Twenty-five published studies were reviewed which contained 215 observations in activated sludge, membrane bioreactors, anaerobic digestion, constructed wetlands, coagulation-filtration, and three types of disinfection. We found 70% decreased observations, 18% increased observations, and 12% unchanged observations of all observations in all treatment processes. Resistance genes to tetracycline were most often observed, but more studies are needed in other antibiotic resistance genes. The causes for increased abundance of ARGs and ARB are not well understood, and further studies are warranted. PRACTITIONER POINTS: Antibiotic resistance is increasing with concern that treatment plants may acclimate bacteria to antibiotics. A literature survey found 215 resistance observations with 70% decreased, 18% increased, 12% unchanged after treatment. The type of treatment process is important with activated sludge showing the greatest reductions.201930682226
7431190.9998Antibiotic Resistant Bacteria in Municipal Wastes: Is There Reason for Concern? Recently, there has been increased concern about the presence of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG), in treated domestic wastewaters, animal manures and municipal biosolids. The concern is whether these additional sources of ARB contribute to antibiotic resistance levels in the environment, that is, "environmental antibiotic resistance." ARB and ARG occur naturally in soil and water, and it remains unclear whether the introduction of ARB in liquid and solid municipal and animal wastes via land application have any significant impact on the background levels of antibiotic resistance in the environment, and whether they affect human exposure to ARB. In this current review, we examine and re-evaluate the incidence of ARB and ARG resulting from land application activities, and offer a new perspective on the threat of antibiotic resistance to public health via exposure from nonclinical environmental sources. Based on inputs of ARBs and ARGs from land application, their fate in soil due to soil microbial ecology principles, and background indigenous levels of ARBs and ARGs already present in soil, we conclude that while antibiotic resistance levels in soil are increased temporally by land application of wastes, their persistence is not guaranteed and is in fact variable, and often contradictory based on application site. Furthermore, the application of wastes may not produce the most direct impact of ARGs and ARB on public health. Further investigation is still warranted in agriculture and public health, including continued scrutiny of antibiotic use in both sectors.201829505255